1
|
Trehan R, Huang P, Zhu XB, Wang X, Soliman M, Strepay D, Nur A, Kedei N, Arhin M, Ghabra S, Rodríguez-Matos F, Benmebarek MR, Ma C, Korangy F, Greten TF. SPP1 + macrophages cause exhaustion of tumor-specific T cells in liver metastases. Nat Commun 2025; 16:4242. [PMID: 40335453 PMCID: PMC12059142 DOI: 10.1038/s41467-025-59529-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 04/25/2025] [Indexed: 05/09/2025] Open
Abstract
Functional tumor-specific CD8+ T cells are essential for effective anti-tumor immune response and immune checkpoint inhibitor therapy. Here we show that, compared to other organ sites, primary, metastatic liver tumors in murine models contain a higher number of tumor-specific CD8+ T cells which are also dysfunctional. High-dimensional, multi-omic analysis of patient samples reveals a higher frequency of exhausted tumor-reactive CD8+ T cells and enriched interactions between these cells and SPP1+ macrophages in profibrotic, alpha-SMA rich regions specifically in the liver. Differential pseudotime trajectory inference analysis reveals that extrahepatic signaling promotes an intermediate cell (IC) population in the liver, characterized by co-expression of VISG4, CSF1R, CD163, TGF-βR, IL-6R, and SPP1. Analysis of premetastatic adenocarcinoma patient samples reveals enrichment of this population may predict liver metastasis. These findings suggest a mechanism by which extrahepatic tumors drive liver metastasis by promoting an IC population that inhibits tumor-reactive CD8+ T cell function.
Collapse
Affiliation(s)
- Rajiv Trehan
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick Huang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiao Bin Zhu
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xin Wang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marlaine Soliman
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dillon Strepay
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Amran Nur
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource, OSTR, Office of the Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin Arhin
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Shadin Ghabra
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francisco Rodríguez-Matos
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mohamed-Reda Benmebarek
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi Ma
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Al-Obaidi I, Sandhu C, Qureshi B, Seymour LW. The implications of oncolytic viruses targeting fibroblasts in enhancing the antitumoural immune response. Heliyon 2024; 10:e39204. [PMID: 39502212 PMCID: PMC11535324 DOI: 10.1016/j.heliyon.2024.e39204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/28/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Oncolytic viruses (OVs) are an emerging immunotherapy platform that selectively target tumour cells, inducing immunogenic cell death. This reverses the 'immune-desert' phenotype of tumours, enhancing antitumour immunity. However, oncolytic virotherapy has shown limited efficacy in solid tumours due to the presence of protumoural, immunosuppressive cancer-associated fibroblasts (CAFs). Recent studies have explored OVs that specifically target CAFs to enhance antitumoural immune responses, with promising results. Nevertheless, detailed interrogation of the experimental design of these studies casts doubt on their potential for successful clinical translation. Most studies targeted CAFs non-specifically, failing to acknowledge CAF heterogeneity, with antitumoural CAFs also present. Thus, use of transcriptomics is advisable to provide more focused targeting, limiting potential off-target toxicity. Furthermore, experiments to date have largely been conducted in murine models that do not faithfully recapitulate tumour microenvironments, potentially biasing the efficacy observed. Future work should make use of humanised patient-derived xenograft murine models for animal studies, after which primary human tumour biopsies should be utilised to more closely represent the patient population for maximal translation relevance. Additionally, approaches to enhance the antitumoural immune responses of this therapy should be prioritised, with the ultimate aim of achieving complete remission, which has not yet been observed pre-clinically.
Collapse
Affiliation(s)
- Ibrahem Al-Obaidi
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
- The Queen's College, High Street. Oxford, OX1 4AW, UK
| | - Ciaran Sandhu
- The Queen's College, High Street. Oxford, OX1 4AW, UK
| | - Bilal Qureshi
- Somerville College, Woodstock Road, Oxford, OX2 6HD, UK
| | - Leonard W. Seymour
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
3
|
Trehan R, Zhu XB, Huang P, Wang X, Soliman M, Strepay D, Nur A, Kedei N, Arhin M, Ghabra S, Rodríguez-Matos F, Benmebarek MR, Ma C, Korangy F, Greten TF. A Paradoxical Tumor Antigen Specific Response in the Liver. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.614002. [PMID: 39372792 PMCID: PMC11451677 DOI: 10.1101/2024.09.19.614002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Functional tumor-specific CD8+ T cells are essential for an effective anti-tumor immune response and the efficacy of immune checkpoint inhibitor therapy. In comparison to other organ sites, we found higher numbers of tumor-specific CD8+ T cells in primary, metastatic liver tumors in murine tumor models. Despite their abundance, CD8+ T cells in the liver displayed an exhausted phenotype. Depletion of CD8+ T cells showed that liver tumor-reactive CD8+ T failed to control liver tumors but was effective against subcutaneous tumors. Similarly, analysis of single-cell RNA sequencing data from patients showed a higher frequency of exhausted tumor-reactive CD8+ T cells in liver metastasis compared to paired primary colon cancer. High-dimensional, multi-omic analysis combining proteomic CODEX and scRNA-seq data revealed enriched interaction of SPP1+ macrophages and CD8+ tumor-reactive T cells in profibrotic, alpha-SMA rich regions in the liver. Liver tumors grew less in Spp1-/- mice and the tumor-specific CD8+ T cells were less exhausted. Differential pseudotime trajectory inference analysis revealed extrahepatic signaling promoting an intermediate cell (IC) population in the liver, characterized by co-expression of VISG4, CSF1R, CD163, TGF-βR, IL-6R, SPP1. scRNA-seq of a third data set of premetastatic adenocarcinoma showed that enrichment of this population may predict liver metastasis. Our data suggests a mechanism by which extrahepatic tumors facilitate the formation of liver metastasis by promoting an IC population inhibiting tumor-reactive CD8+ T cell function.
Collapse
Affiliation(s)
- Rajiv Trehan
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiao Bin Zhu
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick Huang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xin Wang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marlaine Soliman
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dillon Strepay
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Amran Nur
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource, OSTR, Office of the Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin Arhin
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Shadin Ghabra
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francisco Rodríguez-Matos
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mohamed-Reda Benmebarek
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi Ma
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Senior author
| | - Tim F. Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
- Senior author
| |
Collapse
|
4
|
Chen M, Chen F, Gao Z, Li X, Hu L, Yang S, Zhao S, Song Z. CAFs and T cells interplay: The emergence of a new arena in cancer combat. Biomed Pharmacother 2024; 177:117045. [PMID: 38955088 DOI: 10.1016/j.biopha.2024.117045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
The interaction between the immune system and the tumor matrix has a huge impact on the progression and treatment of cancer. This paper summarizes and discusses the crosstalk between T cells and cancer-associated fibroblasts (CAFs). CAFs can also produce inhibitors that counteract the function of T cells and promote tumor immune escape, while T cells can also engage in complex two-way interactions with CAFs through direct cell contact, the exchange of soluble factors such as cytokines, and the remodeling of the extracellular matrix. Precise targeted intervention can effectively reverse tumor-promoting crosstalk between T cells and CAFs, improve anti-tumor immune response, and provide a new perspective for cancer treatment. Therefore, it is important to deeply understand the mechanism of crosstalk between T cells and CAFs. This review aims to outline the underlying mechanisms of these interactions and discuss potential therapeutic strategies that may become fundamental tools in the treatment of cancer, especially hard-to-cure cancers.
Collapse
Affiliation(s)
- Minjie Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Fei Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhaofeng Gao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaoping Li
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Lingyu Hu
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shuying Yang
- Department of intensive medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Siqi Zhao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
5
|
Pampeno C, Opp S, Hurtado A, Meruelo D. Sindbis Virus Vaccine Platform: A Promising Oncolytic Virus-Mediated Approach for Ovarian Cancer Treatment. Int J Mol Sci 2024; 25:2925. [PMID: 38474178 PMCID: PMC10932354 DOI: 10.3390/ijms25052925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
This review article provides a comprehensive overview of a novel Sindbis virus vaccine platform as potential immunotherapy for ovarian cancer patients. Ovarian cancer is the most lethal of all gynecological malignancies. The majority of high-grade serous ovarian cancer (HGSOC) patients are diagnosed with advanced disease. Current treatment options are very aggressive and limited, resulting in tumor recurrences and 50-60% patient mortality within 5 years. The unique properties of armed oncolytic Sindbis virus vectors (SV) in vivo have garnered significant interest in recent years to potently target and treat ovarian cancer. We discuss the molecular biology of Sindbis virus, its mechanisms of action against ovarian cancer cells, preclinical in vivo studies, and future perspectives. The potential of Sindbis virus-based therapies for ovarian cancer treatment holds great promise and warrants further investigation. Investigations using other oncolytic viruses in preclinical studies and clinical trials are also presented.
Collapse
Affiliation(s)
- Christine Pampeno
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| | | | - Alicia Hurtado
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Daniel Meruelo
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
6
|
Kumar S, Acharya S, Karthikeyan M, Biswas P, Kumari S. Limitations and potential of immunotherapy in ovarian cancer. Front Immunol 2024; 14:1292166. [PMID: 38264664 PMCID: PMC10803592 DOI: 10.3389/fimmu.2023.1292166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Ovarian cancer (OC) is the third most common gynecological cancer and alone has an emergence rate of approximately 308,069 cases worldwide (2020) with dire survival rates. To put it into perspective, the mortality rate of OC is three times higher than that of breast cancer and it is predicted to only increase significantly by 2040. The primary reasons for such a high rate are that the physical symptoms of OC are detectable only during the advanced phase of the disease when resistance to chemotherapies is high and around 80% of the patients that do indeed respond to chemotherapy initially, show a poor prognosis subsequently. This highlights a pressing need to develop new and effective therapies to tackle advanced OC to improve prognosis and patient survival. A major advance in this direction is the emergence of combination immunotherapeutic methods to boost CD8+ T cell function to tackle OC. In this perspective, we discuss our view of the current state of some of the combination immunotherapies in the treatment of advanced OC, their limitations, and potential approaches toward a safer and more effective response.
Collapse
Affiliation(s)
| | | | | | | | - Sudha Kumari
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
7
|
Goswami S, Zhang Q, Celik CE, Reich EM, Yilmaz ÖH. Dietary fat and lipid metabolism in the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2023; 1878:188984. [PMID: 37722512 PMCID: PMC10937091 DOI: 10.1016/j.bbcan.2023.188984] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
Metabolic reprogramming has been considered a core hallmark of cancer, in which excessive accumulation of lipids promote cancer initiation, progression and metastasis. Lipid metabolism often includes the digestion and absorption of dietary fat, and the ways in which cancer cells utilize lipids are often influenced by the complex interactions within the tumor microenvironment. Among multiple cancer risk factors, obesity has a positive association with multiple cancer types, while diets like calorie restriction and fasting improve health and delay cancer. Impact of these diets on tumorigenesis or cancer prevention are generally studied on cancer cells, despite heterogeneity of the tumor microenvironment. Cancer cells regularly interact with these heterogeneous microenvironmental components, including immune and stromal cells, to promote cancer progression and metastasis, and there is an intricate metabolic crosstalk between these compartments. Here, we focus on discussing fat metabolism and response to dietary fat in the tumor microenvironment, focusing on both immune and stromal components and shedding light on therapeutic strategies surrounding lipid metabolic and signaling pathways.
Collapse
Affiliation(s)
- Swagata Goswami
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Qiming Zhang
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Cigdem Elif Celik
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Hacettepe Univ, Canc Inst, Department Basic Oncol, Ankara TR-06100, Turkiye
| | - Ethan M Reich
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital and Beth Israel Deaconness Medical Center and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
8
|
Affiliation(s)
- Luke Kendall
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard G. Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|