1
|
Kavitha L, Ranganathan K. Loss of Heterozygosity in Oral Potentially Malignant Disorders and Oral Squamous Cell Carcinoma - A Scoping Review. Head Neck Pathol 2025; 19:49. [PMID: 40278970 PMCID: PMC12031714 DOI: 10.1007/s12105-025-01787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
INTRODUCTION This scoping review was conducted to ascertain the loss of heterozygosity (LOH) signatures reported in Oral Potentially Malignant Disorders (OPMD) and Oral Squamous Cell Carcinoma (OSCC), in the literature in the last fifty years. METHODS The Joanna Briggs Institute recommendations (2023) for scoping review were used to extract, analyze, and present the results. The review was reported according to the PRISMA guidelines for Scoping Reviews (PRISMA-ScR). The most commonly reported genes associated with LOH in OPMD and OSCC are discussed. The Gene Ontology functional enrichment analysis gives the significance of the protein-protein interactions (PPI) of these genes using the STRING database. RESULTS An exhaustive database search of the title, abstract, and full-text screening consistent with the eligibility criteria yielded 277 studies. LOH commonly studied in OPMD and OSCC include p53 gene, p16 gene, adenomatous polyposis coli gene, retinoblastoma (Rb) gene, fragile histidine triad (FHIT) gene and phosphatase and tensin homolog (PTEN) gene. Chromosome loci involving 17p, 9p, 5q, 13q, 3p, and 10q were frequently reported in OPMD and OSCC. PPI analysis demonstrated strong evidence of p53 interaction with p16, FHIT, and Rb. CONCLUSION Distinctive signatures of LOH are seen in OPMD and OSCC. The LOH patterns identified in this scoping review underline the significance of advanced molecular techniques and the need for long-term prospective cohorts to understand LOH pathophysiology in oral carcinogenesis to enable their usefulness as biomarkers in early diagnosis, treatment, and prognostication of oral cancer.
Collapse
Affiliation(s)
- L Kavitha
- Department of Oral and Maxillofacial Pathology, Ragas Dental Colege and Hospital (Affiliated to The Tamil Nadu Dr. M.G.R. Medical University), ECR, Uthandi, Chennai, Tamil Nadu, 600 119, India
| | - K Ranganathan
- Department of Oral and Maxillofacial Pathology, Ragas Dental Colege and Hospital (Affiliated to The Tamil Nadu Dr. M.G.R. Medical University), ECR, Uthandi, Chennai, Tamil Nadu, 600 119, India.
| |
Collapse
|
2
|
Purwaningsih NMS, Khor GH, Nik Mohd Rosdy NMM, Abdul Rahman EO. Wnt pathway in oral cancer: A review update. Saudi Dent J 2021; 33:813-818. [PMID: 34938020 PMCID: PMC8665198 DOI: 10.1016/j.sdentj.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 07/05/2021] [Accepted: 08/01/2021] [Indexed: 10/24/2022] Open
|
3
|
Genetic alterations and clinical dimensions of oral cancer: a review. Mol Biol Rep 2020; 47:9135-9148. [DOI: 10.1007/s11033-020-05927-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022]
|
4
|
Huang T, Cheng X, Chahoud J, Sarhan A, Tamboli P, Rao P, Guo M, Manyam G, Zhang L, Xiang Y, Han L, Shang X, Deng P, Luo Y, Lu X, Feng S, Ferrer MM, Alan Wang Y, DePinho RA, Pettaway CA, Lu X. Effective combinatorial immunotherapy for penile squamous cell carcinoma. Nat Commun 2020; 11:2124. [PMID: 32358507 PMCID: PMC7195486 DOI: 10.1038/s41467-020-15980-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Penile squamous cell carcinoma (PSCC) accounts for over 95% of penile malignancies and causes significant mortality and morbidity in developing countries. Molecular mechanisms and therapies of PSCC are understudied, owing to scarcity of laboratory models. Herein, we describe a genetically engineered mouse model of PSCC, by co-deletion of Smad4 and Apc in the androgen-responsive epithelium of the penis. Mouse PSCC fosters an immunosuppressive microenvironment with myeloid-derived suppressor cells (MDSCs) as a dominant population. Preclinical trials in the model demonstrate synergistic efficacy of immune checkpoint blockade with the MDSC-diminishing drugs cabozantinib or celecoxib. A critical clinical problem of PSCC is chemoresistance to cisplatin, which is induced by Pten deficiency on the backdrop of Smad4/Apc co-deletion. Drug screen studies informed by targeted proteomics identify a few potential therapeutic strategies for PSCC. Our studies have established what we believe to be essential resources for studying PSCC biology and developing therapeutic strategies.
Collapse
Affiliation(s)
- Tianhe Huang
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
- Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, 46202, USA
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xi Cheng
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
- Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, 46202, USA
- Department of General Surgery, , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jad Chahoud
- Department of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ahmed Sarhan
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pheroze Tamboli
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Priya Rao
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ming Guo
- Department of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ganiraju Manyam
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Li Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Yu Xiang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, 77030, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, 77030, USA
| | - Xiaoying Shang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pingna Deng
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yanting Luo
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Xuemin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Shan Feng
- Mass Spectrometry Core Facility, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Magaly Martinez Ferrer
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, San Juan, PR, 00936, USA
- University of Puerto Rico Comprehensive Cancer Center, Medical Sciences Campus, San Juan, PR, 00936, USA
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Curtis A Pettaway
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
5
|
Shimomura H, Sasahira T, Nakashima C, Shimomura-Kurihara M, Kirita T. Downregulation of DHRS9 is associated with poor prognosis in oral squamous cell carcinoma. Pathology 2018; 50:642-647. [PMID: 30149992 DOI: 10.1016/j.pathol.2018.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/12/2018] [Accepted: 06/27/2018] [Indexed: 01/06/2023]
Abstract
Oral squamous cell carcinoma (OSCC) has a high potential for local invasion and nodal metastasis. Therefore, early detection and elucidation of the detailed molecular mechanisms underlying OSCC are essential. Dehydrogenase/reductase member 9 (DHRS9) is downregulated in recurrent OSCC. Although DHRS9 is reported to act as a tumour suppressor in several malignancies, its expression in OSCC cells is unknown. In this study, we examined DHRS9 expression immunohistochemically in specimens from a sample of 98 OSCC patients. Reduced DHRS9 expression was observed in 68 of 98 patients (69.4%) with OSCC. A significant association was found between low DHRS9 expression and local progression (T factor) (p = 0.0135). Furthermore, patients with low DHRS9 expression had a significantly poorer prognosis than those with high DHRS9 expression (p = 0.0443). In multivariate analysis using the Cox proportional hazards model, decreased DHRS9 expression strongly correlated with worse prognosis. The study findings suggest that DHRS9 might be a useful diagnostic and prognostic marker for OSCC.
Collapse
Affiliation(s)
- Hiroyuki Shimomura
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
| | - Tomonori Sasahira
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan.
| | - Chie Nakashima
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
| | | | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
| |
Collapse
|
6
|
Lopes CB, Magalhães LL, Teófilo CR, Alves APNN, Montenegro RC, Negrini M, Ribeiro-dos-Santos Â. Differential expression of hsa-miR-221, hsa-miR-21, hsa-miR-135b, and hsa-miR-29c suggests a field effect in oral cancer. BMC Cancer 2018; 18:721. [PMID: 29976158 PMCID: PMC6034275 DOI: 10.1186/s12885-018-4631-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/25/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The theory of field effect suggests that the tumor-adjacent area, besides histopathologically normal, undergoes genetic and epigenetic changes that can eventually affect epithelial homeostasis, predisposing the patient to cancer development. One of the many molecular changes described in cancer are microRNAs (miRNAs), which regulates the expression of important genes during carcinogenesis. Thus, the aim of this study was to investigate the field effect in oral cancer. METHODS We investigated the differential expression profile of four miRNAs (hsa-miR-221, hsa-miR-21, hsa-miR-135b, and hsa-miR-29c) in cancerous oral tissue, in tumor-adjacent tissue and and in non-cancerous tissue samples from healthy volunteers. RESULTS Our results showed significant overexpression profiles of all four studied miRNAs in cancerous oral tissue compared to non-cancerous samples, as well as in tumor-adjacent tissue compared to cancer-free tissue. No significant difference was found when comparing the expression profile of cancerous and tissue-adjacent tissue groups. We found a negative correlation between the expression of hsa-miR-21 expression and STAT3 in oral squamous cell carcinoma. CONCLUSION These results suggest that the tissue adjacent to cancer cannot be considered a normal tissue because its molecular aspects are significantly altered. Our data corroborates the hypothesis of field cancerization.
Collapse
Affiliation(s)
- Camile B. Lopes
- Laboratory of Human and Medical Genetics, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém, PA 66075-110 Brazil
| | - Leandro L. Magalhães
- Laboratory of Human and Medical Genetics, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém, PA 66075-110 Brazil
| | - Carolina R. Teófilo
- Department of Clinical Dentistry - Health Sciences Center, Federal University of Ceará, Fortaleza, CE 60020-181 Brazil
| | - Ana Paula N. N. Alves
- Department of Clinical Dentistry - Health Sciences Center, Federal University of Ceará, Fortaleza, CE 60020-181 Brazil
| | - Raquel C. Montenegro
- Center of Research and Drug Development, Federal University of Ceara, Fortaleza, CE 60430-270 Brazil
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ândrea Ribeiro-dos-Santos
- Laboratory of Human and Medical Genetics, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém, PA 66075-110 Brazil
- Research Center of Oncology, Federal University of Pará, 66, Belém, PA 073-005 Brazil
| |
Collapse
|
7
|
Strzelczyk JK, Gołąbek K, Cuber P, Krakowczyk Ł, Owczarek AJ, Fronczek M, Choręża P, Hudziec E, Ostrowska Z. Comparison of Selected Protein Levels in Tumour and Surgical Margin in a Group of Patients with Oral Cavity Cancer. Biochem Genet 2017; 55:322-334. [DOI: 10.1007/s10528-017-9799-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/03/2017] [Indexed: 12/20/2022]
|
8
|
High-resolution Melting Analysis for Gene Scanning of Adenomatous Polyposis Coli (APC) Gene With Oral Squamous Cell Carcinoma Samples. Appl Immunohistochem Mol Morphol 2016; 24:97-104. [PMID: 26447891 DOI: 10.1097/pai.0000000000000158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND There have been many different mutations reported for the large adenomatous polyposis coli (APC) tumor suppressor gene. APC mutations result in inactivation of APC tumor suppressor action, allowing the progression of tumorigenesis. The present study utilized a highly efficient method to identify APC mutations and investigated the association between the APC genetic variants Y486Y, A545A, T1493T, and D1822V and susceptibility to oral squamous cell carcinoma (OSCC). METHODS High-resolution melting (HRM) analysis was used to characterize APC mutations. Genomic DNA was extracted from 83 patient specimens of OSCC and 50 blood samples from healthy control subjects. The 14 exons and mutation cluster region of exon 15 were screened by HRM analysis. All mutations were confirmed by direct DNA sequencing. RESULTS Three mutations and 4 single nucleotide polymorphisms (SNPs) were found in this study. The mutations were c.573T>C (Y191Y) in exon 5, c.1005A>G (L335L) in exon 9, and c.1488A>T (T496T) in exon 11. Two SNPs, c.4479G>A (T1493T) and c.5465A>T (D1822V), were located in exon 15, whereas c.1458T>C (Y486Y) and c.1635G>A (A545A) were located in exon 11 and 13, respectively. There was no observed association between OSCC risk and genotype for any of the 4 APC SNPs. CONCLUSIONS The mutation of APC is rare in Taiwanese patients with OSCC. HRM analysis is a reliable, accurate, and fast screening method for APC mutations.
Collapse
|
9
|
Tea polyphenols EGCG and TF restrict tongue and liver carcinogenesis simultaneously induced by N-nitrosodiethylamine in mice. Toxicol Appl Pharmacol 2016; 300:34-46. [PMID: 27058323 DOI: 10.1016/j.taap.2016.03.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 12/22/2022]
Abstract
The aim of this study is to understand the molecular mechanisms of N-nitrosodiethylamine (NDEA) induced multi-organ carcinogenesis in tongue and liver of the same mouse and restriction of carcinogenesis by Epigallocatechin gallate (EGCG) and Theaflavin (TF), if any. For that purpose, cellular proliferation/apoptosis, prevalence of CD44 positive stem cell population and expressions of some key regulatory genes of self renewal Wnt and Hedgehog (Hh) pathways and some of their associated genes were analyzed in the NDEA induced tongue and liver lesions in absence or presence of EGCG/TF. Chronic NDEA exposure in oral cavity could decrease mice body weights and induce tongue and liver carcinogenesis with similar histological stages (severe dysplasia up to 30thweeks of NDEA administration). Increasing mice body weights were seen in continuous and post EGCG/TF treated groups. EGCG/TF treatment could restrict both the carcinogenesis at similar histological stages showing potential chemopreventive effect in continuous treated groups (mild dysplasia) followed by pre treatment (moderate dysplasia) and therapeutic efficacy in post treated groups (mild dysplasia) up to 30thweek. The mechanism of carcinogenesis by NDEA and restriction by the EGCG/TF in both tongue and liver were similar and found to be associated with modulation in cellular proliferation/apoptosis and prevalence of CD44 positive population. The up-regulation of self renewal Wnt/β-catenin, Hh/Gli1 pathways and their associated genes Cyclin D1, cMyc and EGFR along with down regulation of E-cadherin seen during the carcinogenesis processes were found to be modulated during the restriction processes by EGCG/TF.
Collapse
|
10
|
Er TK, Wang YY, Chen CC, Herreros-Villanueva M, Liu TC, Yuan SSF. Molecular characterization of oral squamous cell carcinoma using targeted next-generation sequencing. Oral Dis 2015; 21:872-8. [PMID: 26173098 DOI: 10.1111/odi.12357] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/28/2015] [Accepted: 07/01/2015] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Many genetic factors play an important role in the development of oral squamous cell carcinoma. The aim of this study was to assess the mutational profile in oral squamous cell carcinoma using formalin-fixed, paraffin-embedded tumors from a Taiwanese population by performing targeted sequencing of 26 cancer-associated genes that are frequently mutated in solid tumors. METHODS Next-generation sequencing was performed in 50 formalin-fixed, paraffin-embedded tumor specimens obtained from patients with oral squamous cell carcinoma. Genetic alterations in the 26 cancer-associated genes were detected using a deep sequencing (>1000X) approach. RESULTS TP53, PIK3CA, MET, APC, CDH1, and FBXW7 were most frequently mutated genes. Most remarkably, TP53 mutations and PIK3CA mutations, which accounted for 68% and 18% of tumors, respectively, were more prevalent in a Taiwanese population. Other genes including MET (4%), APC (4%), CDH1 (2%), and FBXW7 (2%) were identified in our population. CONCLUSIONS In summary, our study shows the feasibility of performing targeted sequencing using formalin-fixed, paraffin-embedded samples. Additionally, this study also reports the mutational landscape of oral squamous cell carcinoma in the Taiwanese population. We believe that this study will shed new light on fundamental aspects in understanding the molecular pathogenesis of oral squamous cell carcinoma and may aid in the development of new targeted therapies.
Collapse
Affiliation(s)
- Tze-Kiong Er
- Division of Molecular Diagnostics, Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Yun Wang
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Chieh Chen
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Center for Lipid and Glycomedicine Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Marta Herreros-Villanueva
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad del País Vasco UPV/EHU, San Sebastián, Spain
| | - Ta-Chih Liu
- Division of Molecular Diagnostics, Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shyng-Shiou F Yuan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Center for Lipid and Glycomedicine Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Hedgehog signaling pathway mediates tongue tumorigenesis in wild-type mice but not in Gal3-deficient mice. Exp Mol Pathol 2014; 97:332-7. [DOI: 10.1016/j.yexmp.2014.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/12/2014] [Indexed: 01/10/2023]
|
12
|
Fu X, Feng Y. QKI-5 suppresses cyclin D1 expression and proliferation of oral squamous cell carcinoma cells via MAPK signalling pathway. Int J Oral Maxillofac Surg 2014; 44:562-7. [PMID: 25457822 DOI: 10.1016/j.ijom.2014.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/25/2014] [Accepted: 10/02/2014] [Indexed: 01/07/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most frequently occurring malignancies in the world. The RNA-binding protein quaking (QKI) is a newly identified tumour suppressor in multiple cancers, but its role in OSCC is currently unknown. The purpose of the present study was to clarify the relationship between QKI expression and OSCC development. We found QKI-5 expression to be significantly decreased in the oral cancer cell line CAL-27. QKI-5 overexpression also reduced the proliferation of CAL-27 cells, which correlated with cyclin D1. This regulative function of QKI-5 occurs by modulating the phosphorylation level of the mitogen-activated protein kinase (MAPK) pathway. Therefore this study shows that underexpression of tumour suppressor QKI-5 could activate the MAPK pathway and contribute to uncontrolled cyclin D1 expression, thus resulting in increased proliferation of oral cancer cells.
Collapse
Affiliation(s)
- X Fu
- Department of Orthodontics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Y Feng
- Department of Orthodontics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
Liu G, Sengupta PK, Jamal B, Yang HY, Bouchie MP, Lindner V, Varelas X, Kukuruzinska MA. N-glycosylation induces the CTHRC1 protein and drives oral cancer cell migration. J Biol Chem 2013; 288:20217-27. [PMID: 23703614 DOI: 10.1074/jbc.m113.473785] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most pernicious malignancies, but the mechanisms underlying its development and progression are poorly understood. One of the key pathways implicated in OSCC is the canonical Wnt/β-catenin signaling pathway. Previously, we reported that canonical Wnt signaling functions in a positive feedback loop with the DPAGT1 gene, a principal regulator of the metabolic pathway of protein N-glycosylation, to hyperglycosylate E-cadherin and reduce intercellular adhesion. Here, we show that in OSCC, DPAGT1 and canonical Wnt signaling converge to up-regulate CTHRC1 (collagen triple helix repeat containing 1), an N-glycoprotein implicated in tumor invasion and metastasis. We found that in human OSCC specimens, amplification of the levels of CTHRC1 was associated with its hyperglycosylation. Partial inhibition of DPAGT1 expression in OSCC CAL27 cells reduced CTHRC1 abundance by increasing protein turnover, indicating that N-glycosylation stabilizes CTHRC1. Additionally, canonical Wnt signaling promoted β-catenin/T-cell factor transcriptional activity at the CTHRC1 promoter to further elevate CTHRC1 levels. We demonstrate that DPAGT1 promotes cell migration and drives the localization of CTHRC1 to cells at the leading edge of a wound front coincident with drastic changes in cell morphology. We propose that in OSCC, dysregulation of canonical Wnt signaling and DPAGT1-dependent N-glycosylation induces CTHRC1, thereby driving OSCC cell migration and tumor spread.
Collapse
Affiliation(s)
- Gangli Liu
- School of Stomatology, Shandong University, Shandong 250100, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Adenomatous polyposis coli (APC) is best known for its crucial role in colorectal cancer suppression. Rodent models with various Apc mutations have enabled experimental validation of different Apc functions in tumors and normal tissues. Since the development of the first mouse model with a germline Apc mutation in the early 1990s, 20 other Apc mouse and rat models have been generated. This article compares and contrasts currently available Apc rodent models with particular emphasis on providing potential explanations for their reported variation in three areas: (i) intestinal polyp multiplicity, (ii) intestinal polyp distribution, and (iii) extraintestinal phenotypes.
Collapse
Affiliation(s)
- Maged Zeineldin
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave. Lawrence, KS 66045 USA
| | - Kristi L. Neufeld
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave. Lawrence, KS 66045 USA
| |
Collapse
|
15
|
Zhang B, Li KY, Chen HY, Pan SD, Chen SF, Zhang WF, Xia CP, Jiang LC, Liu XB, Zhao FJ, Yuan DY, Wang LX, Wu YP, Liu SW. Lentivirus-based RNA silencing of Nemo-like kinase (NLK) inhibits the CAL 27 human adenosquamos carcinoma cells proliferation and blocks G0/G1 phase to S phase. Int J Med Sci 2013; 10:1301-6. [PMID: 23983589 PMCID: PMC3753414 DOI: 10.7150/ijms.6607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/29/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The Nemo-like kinase (NLK) is a serine/threonine-protein kinase that involved in a number of signaling pathways regulating cell fate. Variation of NLK has been shown to be associated with the risk of cancer. However, the function of NLK in oral adenosquamous carcinoma cells line CAL-27 is unknown. METHODS In this study, we evaluated the function of NLK in CAL-27 cells by using lentivirus-mediated RNA silence. The targeted gene expression, cell proliferation and cell cycle are investigated by RT-PCR, western-blot, MTT method, colony forming assay and flow cytometry analysis respectively. RESULTS After NLK silencing, the number of colonies was significantly reduced (54 ± 5 colonies/well compared with 262 ± 18 colonies/well in non-infected or 226 ± 4 colonies/well in negative control group (sequence not related to NLK sequence with mismatched bases). Using crystal violet staining, we also found that the cell number per colony was dramatically reduced. The RNA silencing of NLK blocks the G0/G1 phase to S phase progression during the cell cycle. CONCLUSIONS These results suggest that NLK silencing by lentivirus-mediated RNA interference would be a potential therapeutic method to control oral squamous carcinoma growth.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Anatomy Shandong University, School of Medicine, Jinan Shandong, 250012, P R China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Towle R, Garnis C. Methylation-mediated molecular dysregulation in clinical oral malignancy. JOURNAL OF ONCOLOGY 2012; 2012:170172. [PMID: 22645611 PMCID: PMC3356707 DOI: 10.1155/2012/170172] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 02/18/2012] [Accepted: 02/19/2012] [Indexed: 12/11/2022]
Abstract
Herein we provide a concise review of the state of methylation research as it pertains to clinical oral cancerous and precancerous tissues. We provide context for ongoing research efforts in this field and describe technologies that are presently being applied to analyze clinical specimens. We also discuss the various recurrent methylation changes that have been reported for oral malignancy (including those genes frequently silenced by promoter methylation and the small RNAs with activity modulated by methylation changes) and describe surrogate disease markers identified via epigenetic analysis of saliva and blood specimens from patients with oral cancer.
Collapse
Affiliation(s)
- Rebecca Towle
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| | - Cathie Garnis
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
- Division of Otolaryngology, Department of Surgery, Faculty of Medicine, University of British Columbia, 910 West 10th Avenue, Vancouver, BC, Canada V5Z 4E3
| |
Collapse
|