1
|
Bok T, Hysi E, Kolios MC. Quantitative ultrasound and photoacoustic assessments of red blood cell aggregation in the human radial artery. PHOTOACOUSTICS 2025; 43:100711. [PMID: 40165999 PMCID: PMC11957594 DOI: 10.1016/j.pacs.2025.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/12/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
We develop concurrent US and photoacoustic (PA) imaging to characterize structural/physiological impact of in-vivo red blood cell (RBC) aggregation. PA images at 700/800/900 nm were collected from the radial arteries of 12 participants across age groups (20 s/30 s/40 s) alongside US images (21 MHz, VevoLAZR). RBC aggregate size was estimated from US-derived structure-factor-size-estimation (D SFSE) and PA-derived spectral-slope (SS), along with oxygen saturation (sO2). At peak systole (PS), D SFSE PS and SSPS approximated 1 RBC and -0.1 dB/MHz, respectively, across all ages, with sO2 PS values of 97.1 %, 94.7 %, and 93.0 % for each group. At end diastole (ED), D SFSE ED, SSED and sO2 ED values were 2.6, 3.4, and 4.7 RBCs; -0.7, -0.9, and -1.2 dB/MHz; and 98.7 %, 97.2 %, and 96.7 %, respectively. Differences between SSED and SSPS (δSS) and sO2 ED and sO2 PS (δsO2) increased with age, indicating aging-related increases in DSFSE and δSS, as well as decreases in sO2 PS and sO2 ED.
Collapse
Affiliation(s)
- Taehoon Bok
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario M5B 1T8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Toronto Metropolitan University and St. Michael’s Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Eno Hysi
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario M5B 1T8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Toronto Metropolitan University and St. Michael’s Hospital, Toronto, Ontario M5B 1T8, Canada
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Michael C. Kolios
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario M5B 1T8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Toronto Metropolitan University and St. Michael’s Hospital, Toronto, Ontario M5B 1T8, Canada
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
2
|
Langley A, Sweeney A, Shethia RT, Bednarke B, Wulandana F, Xavierselvan M, Mallidi S. In vivo, online label-free monitoring of heterogenous oxygen utilization during phototherapy with real-time ultrasound-guided photoacoustic imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625759. [PMID: 39677615 PMCID: PMC11642742 DOI: 10.1101/2024.11.27.625759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Understanding the tumor microenvironment, particularly the vascular density and the availability of oxygen, is key in individualizing treatment approaches and determining their efficacy. While there are many therapies including radiotherapy that are ineffective in hypoxic tumor microenvironments, here we demonstrate the heterogeneous oxygen consumption during photodynamic therapy (PDT), a non-invasive treatment method using localized light to activate a photosensitive drug in the presence of oxygen that has shown high effectiveness in the treatment of various types of tumors, including those presented in head and neck cancer (HNC) patients. While our previous work has demonstrated that blood oxygen saturation (StO2) mapped before and after treatment with ultrasound-guided photoacoustic imaging (US-PAI) can be used as a surrogate marker for the regionalized long-term efficacy of PDT, real-time monitoring of StO2 during PDT could provide additional insights on oxygen consumption and inform dose design for "on the spot" treatment decisions. Specifically, in this work, we integrated the US-PAI transducer probe with PDT light delivery fibers. We tested the setup on murine tumor models intravenously injected with liposomal benzoporphyrin derivative (BPD) photosensitizer at 0.5 mg/kg dose and photodynamic illumination at 100 and 400 mW/cm2 fluence rate. As expected, we observed with our US-PAI StO2 images that the rate of oxygen utilization increases when using a high fluence rate (HFR) light dose. Particularly in the higher fluence rate group, we observed StO2 reaching a minimum mid-light dose, followed by some degree of reoxygenation. US-PAI added the advantage of spatial information to StO2 monitoring, which allowed us to match regions of re-oxygenation during therapy to retained vascular function with immunohistochemistry. Overall, our results have demonstrated the potential of US-PAI for applications in online dosimetry for cancer therapies such as PDT, using oxygen changes to detect regionalized physiological vascular response in the tumor microenvironment.
Collapse
Affiliation(s)
- Andrew Langley
- Department of Biomedical Engineering, Tufts University, MA, USA
| | - Allison Sweeney
- Department of Biomedical Engineering, Tufts University, MA, USA
| | - Ronak T Shethia
- Department of Biomedical Engineering, Tufts University, MA, USA
| | - Brooke Bednarke
- Department of Biomedical Engineering, Tufts University, MA, USA
| | | | | | | |
Collapse
|
3
|
Wegierak D, Nittayacharn P, Cooley MB, Berg FM, Kosmides T, Durig D, Kolios MC, Exner AA. Nanobubble Contrast Enhanced Ultrasound Imaging: A Review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2007. [PMID: 39511794 PMCID: PMC11567054 DOI: 10.1002/wnan.2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/07/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024]
Abstract
Contrast-enhanced ultrasound is currently used worldwide with clinical indications in cardiology and radiology, and it continues to evolve and develop through innovative technological advancements. Clinically utilized contrast agents for ultrasound consist of hydrophobic gas microbubbles stabilized with a biocompatible shell. These agents are used commonly in echocardiography, with emerging applications in cancer diagnosis and therapy. Microbubbles are a blood pool agent with diameters between 1 and 10 μm, which precludes their use in other extravascular applications. To expand the potential use of contrast-enhanced ultrasound beyond intravascular applications, sub-micron agents, often called nanobubbles or ultra-fine bubbles, have recently emerged as a promising tool. Combining the principles of ultrasound imaging with the unique properties of nanobubbles (high concentration and small size), recent work has established their imaging potential. Contrast-enhanced ultrasound imaging using these agents continues to gain traction, with new studies establishing novel imaging applications. We highlight the recent achievements in nonlinear nanobubble contrast imaging, including a discussion on nanobubble formulations and their acoustic characteristics. Ultrasound imaging with nanobubbles is still in its early stages, but it has shown great potential in preclinical research and animal studies. We highlight unexplored areas of research where the capabilities of nanobubbles may offer new advantages. As technology advances, this technique may find applications in various areas of medicine, including cancer detection and treatment, cardiovascular imaging, and drug delivery.
Collapse
Affiliation(s)
- Dana Wegierak
- Department of Biomedical EngineeringCase Western Reserve University (CWRU)ClevelandOhioUSA
| | - Pinunta Nittayacharn
- Department of RadiologyCWRUClevelandOhioUSA
- Department of Biomedical Engineering, Faculty of EngineeringMahidol UniversityPuttamonthonNakorn PathomThailand
| | - Michaela B. Cooley
- Department of Biomedical EngineeringCase Western Reserve University (CWRU)ClevelandOhioUSA
| | - Felipe M. Berg
- Department of RadiologyCWRUClevelandOhioUSA
- Hospital Israelita Albert EinsteinSão PauloSão PauloBrazil
| | - Theresa Kosmides
- Department of Biomedical EngineeringCase Western Reserve University (CWRU)ClevelandOhioUSA
| | - Dorian Durig
- Department of Biomedical EngineeringCase Western Reserve University (CWRU)ClevelandOhioUSA
| | - Michael C. Kolios
- Department of PhysicsToronto Metropolitan UniversityTorontoOntarioCanada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a Partnership Between St. Michael's Hospital, a Site of Unity Health Toronto and Toronto Metropolitan UniversityTorontoOntarioCanada
| | - Agata A. Exner
- Department of Biomedical EngineeringCase Western Reserve University (CWRU)ClevelandOhioUSA
- Department of RadiologyCWRUClevelandOhioUSA
| |
Collapse
|
4
|
Sharma D, Petchiny TN, Czarnota GJ. A Promising Therapeutic Strategy of Combining Acoustically Stimulated Nanobubbles and Existing Cancer Treatments. Cancers (Basel) 2024; 16:3181. [PMID: 39335153 PMCID: PMC11431001 DOI: 10.3390/cancers16183181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, ultrasound-stimulated microbubbles (USMBs) have gained great attention because of their wide theranostic applications. However, due to their micro-size, reaching the targeted site remains a challenge. At present, ultrasound-stimulated nanobubbles (USNBs) have attracted particular interest, and their small size allows them to extravasate easily in the blood vessels penetrating deeper into the tumor vasculature. Incorporating USNBs with existing cancer therapies such as chemotherapy, immunotherapy, and/or radiation therapy in several preclinical models has been demonstrated to have a profound effect on solid tumors. In this review, we provide an understanding of the composition and formation of nanobubbles (NBs), followed by the recent progress of the therapeutic combinatory effect of USNBs and other cancer therapies in cancer treatment.
Collapse
Affiliation(s)
- Deepa Sharma
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada;
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Departments of Medical Biophysics, and Radiation Oncology, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Tera N. Petchiny
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada;
| | - Gregory J. Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada;
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Departments of Medical Biophysics, and Radiation Oncology, University of Toronto, Toronto, ON M4N 3M5, Canada
| |
Collapse
|
5
|
Falatah HA, Lacerda Q, Wessner CE, Lo S, Wheatley MA, Liu JB, Eisenbrey JR. Influence of Phase Change Droplet Activation and Microbubble Cavitation on the Microenvironment of Hepatocellular Carcinoma. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1387-1394. [PMID: 38876912 PMCID: PMC11298311 DOI: 10.1016/j.ultrasmedbio.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVE Both microbubble ultrasound contrast agents and acoustic phase change droplets (APCD) have been explored in hepatocellular carcinoma (HCC). This work aimed to evaluate changes to the HCC microenvironment following either microbubble or APCD destruction in a syngeneic pre-clinical model. METHODS Mouse RIL-175 HCC tumors were grown in the right flank of 64 immunocompetent mice. Pre-treatment, photoacoustic volumetric tumor oxygenation, and power Doppler measurements were obtained using a Vevo 3100 system (VisualSonics, Toronto, Canada). The experimental groups received a 0.1 mL bolus injection of either Definity ultrasound contrast agent (Lantheus Medical Imaging) or APCD fabricated by condensing Definity. Following injection, ultrasound destruction was performed using flash-replenishment sequences on a Sequoia with a 10L4 probe (Siemens) for the duration of enhancement. Tumor oxygenation and power Doppler measurements were then repeated immediately post-ultrasound treatment. Twenty-four hours post-treatment, animals were euthanized, and tumors were harvested and stained for CD31, Cleaved Caspase 3 and CD45. RESULTS Imaging biomarkers demonstrated a significant reduction in percent vascularity following either microbubble or APCD destruction in the tumor microenvironment ( p < 0.022) but no significant changes in tumor oxygenation (p = 0.12). Similarly, immunohistochemistry data demonstrated a significant decrease in CD31 expression (p < 0.042) and an increase in apoptosis (p < 0.014) in tumors treated with destroyed microbubbles or APCD relative to controls. Finally, a significant increase in CD45 expression was observed in tumors treated with APCD (p = 0.046), indicating an increase in tumor immune response. CONCLUSION Ultrasound-triggered destruction of both microbubbles and APCD reduces vascularity, increases apoptosis, and may also increase immune response in this HCC model.
Collapse
Affiliation(s)
- Hebah A Falatah
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA; College of Applied Medical Sciences King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Quezia Lacerda
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Corinne E Wessner
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Standley Lo
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Margaret A Wheatley
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Ji-Bin Liu
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Lin X, Yang C, Lv Y, Zhang B, Kan J, Li H, Tao J, Yang C, Li X, Liu Y. Preclinical multi-physiologic monitoring of immediate-early responses to diverse treatment strategies in breast cancer by optoacoustic imaging. JOURNAL OF BIOPHOTONICS 2024; 17:e202300457. [PMID: 38221652 DOI: 10.1002/jbio.202300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Optoacoustic imaging enables the measurement of tissue oxygen saturation (sO2) and blood perfusion while being utilized for detecting tumor microenvironments. Our aim was to employ multispectral optoacoustic tomography (MSOT) to assess immediate-early changes of hemoglobin level and sO2 within breast tumors during diverse treatments. Mouse breast cancer models were allocated into four groups: control, everolimus (EVE), paclitaxel (PTX), and photodynamic therapy (PDT). Hemoglobin was quantified daily, as well as sO2 and blood perfusion were verified by immunohistochemical (IHC) staining. MSOT showed a temporal window of enhanced oxygenation and improved perfusion in EVE and PTX groups, while sO2 consistently remained below baseline in PDT. The same results were obtained for the IHC. Therefore, MSOT can monitor tumor hypoxia and indirectly reflect blood perfusion in a non-invasive and non-labeled way, which has the potential to monitor breast cancer progression early and enable individualized treatment in clinical practice.
Collapse
Affiliation(s)
- Xiaoqian Lin
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Changfeng Yang
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Yijie Lv
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Bowen Zhang
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Junnan Kan
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Hao Li
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Jin Tao
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Caixia Yang
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Yan Liu
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| |
Collapse
|
7
|
Nittayacharn P, Abenojar E, Cooley MB, Berg FM, Counil C, Sojahrood AJ, Khan MS, Yang C, Berndl E, Golczak M, Kolios MC, Exner AA. Efficient ultrasound-mediated drug delivery to orthotopic liver tumors - Direct comparison of doxorubicin-loaded nanobubbles and microbubbles. J Control Release 2024; 367:135-147. [PMID: 38237687 PMCID: PMC11700473 DOI: 10.1016/j.jconrel.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Liver metastasis is a major obstacle in treating aggressive cancers, and current therapeutic options often prove insufficient. To overcome these challenges, there has been growing interest in ultrasound-mediated drug delivery using lipid-shelled microbubbles (MBs) and nanobubbles (NBs) as promising strategies for enhancing drug delivery to tumors. Our previous work demonstrated the potential of Doxorubicin-loaded C3F8 NBs (hDox-NB, 280 ± 123 nm) in improving cancer treatment in vitro using low-frequency unfocused therapeutic ultrasound (TUS). In this study, we investigated the pharmacokinetics and biodistribution of sonicated hDox-NBs in orthotopic rat liver tumors. We compared their delivery and therapeutic efficiency with size-isolated MBs (hDox-MB, 1104 ± 373 nm) made from identical shell material and core gas. Results showed a similar accumulation of hDox in tumors treated with hDox-MBs and unfocused therapeutic ultrasound (hDox-MB + TUS) and hDox-NB + TUS. However, significantly increased apoptotic cell death in the tumor and fewer off-target apoptotic cells in the normal liver were found upon the treatment with hDox-NB + TUS. The tumor-to-liver apoptotic ratio was elevated 9.4-fold following treatment with hDox-NB + TUS compared to hDox-MB + TUS, suggesting that the therapeutic efficacy and specificity are significantly increased when using hDox-NB + TUS. These findings highlight the potential of this approach as a viable treatment modality for liver tumors. By elucidating the behavior of drug-loaded bubbles in vivo, we aim to contribute to developing more effective liver cancer treatments that could ultimately improve patient outcomes and decrease off-target side effects.
Collapse
Affiliation(s)
- Pinunta Nittayacharn
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Puttamonthon, Nakorn Pathom, Thailand
| | - Eric Abenojar
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Michaela B Cooley
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Felipe M Berg
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Claire Counil
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Amin Jafari Sojahrood
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Muhammad Saad Khan
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Celina Yang
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Elizabeth Berndl
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
8
|
Shah R, Phatak N, Choudhary A, Gadewar S, Ajazuddin, Bhattacharya S. Exploring the Theranostic Applications and Prospects of Nanobubbles. Curr Pharm Biotechnol 2024; 25:1167-1181. [PMID: 37861011 DOI: 10.2174/0113892010248189231010085827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023]
Abstract
Anticancer medications as well as additional therapeutic compounds, have poor clinical effectiveness due to their diverse distribution, non-selectivity for malignant cells, and undesirable off-target side effects. As a result, ultrasound-based targeted delivery of therapeutic compounds carried in sophisticated nanocarriers has grown in favor of cancer therapy and control. Nanobubbles are nanoscale bubbles that exhibit unique physiochemical properties in both their inner core and outer shell. Manufacturing nanobubbles primarily aims to enhance therapeutic agents' bioavailability, stability, and targeted delivery. The small size of nanobubbles allows for their extravasation from blood vessels into surrounding tissues and site-specific release through ultrasound targeting. Ultrasound technology is widely utilized for therapy due to its speed, safety, and cost-effectiveness, and micro/nanobubbles, as ultrasound contrast agents, have numerous potential applications in disease treatment. Thus, combining ultrasound applications with NBs has recently demonstrated increased localization of anticancer molecules in tumor tissues with triggered release behavior. Consequently, an effective therapeutic concentration of drugs/genes is achieved in target tumor tissues with ultimately increased therapeutic efficacy and minimal side effects on other non-cancerous tissues. This paper provides a brief overview of the production processes for nanobubbles, along with their key characteristics and potential therapeutic uses.
Collapse
Affiliation(s)
- Rahul Shah
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Niraj Phatak
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Ashok Choudhary
- Department of Quality Assurance, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Sakshi Gadewar
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences & Research, Khoka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| |
Collapse
|
9
|
Sharma D, Xuan Leong K, Palhares D, Czarnota GJ. Radiation combined with ultrasound and microbubbles: A potential novel strategy for cancer treatment. Z Med Phys 2023; 33:407-426. [PMID: 37586962 PMCID: PMC10517408 DOI: 10.1016/j.zemedi.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 08/18/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Several emerging technologies are helping to battle cancer. Cancer therapies have been effective at killing cancer cells, but a large portion of patients still die to this disease every year. As such, more aggressive treatments of primary cancers are employed and have been shown to be capable of saving a greater number of lives. Recent research advances the field of cancer therapy by employing the use of physical methods to alter tumor biology. It uses microbubbles to enhance radiation effect by damaging tumor vasculature followed by tumor cell death. The technique can specifically target tumor volumes by conforming ultrasound fields capable of microbubbles stimulation and localizing it to avoid vascular damage in surrounding tissues. Thus, this new application of ultrasound-stimulated microbubbles (USMB) can be utilized as a novel approach to cancer therapy by inducing vascular disruption resulting in tumor cell death. Using USMB alongside radiation has showed to augment the anti-vascular effect of radiation, resulting in enhanced tumor response. Recent work with nanobubbles has shown vascular permeation into intracellular space, extending the use of this new treatment method to potentially further improve the therapeutic effect of the ultrasound-based therapy. The significant enhancement of localized tumor cell kill means that radiation-based treatments can be made more potent with lower doses of radiation. This technique can manifest a greater impact on radiation oncology practice by increasing treatment effectiveness significantly while reducing normal tissue toxicity. This review article summarizes the past and recent advances in USMB enhancement of radiation treatments. The review mainly focuses on preclinical findings but also highlights some clinical findings that use USMB as a therapeutic modality in cancer therapy.
Collapse
Affiliation(s)
- Deepa Sharma
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Departments of Radiation Oncology, and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kai Xuan Leong
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Daniel Palhares
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Departments of Radiation Oncology, and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Departments of Radiation Oncology, and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Krzykawska-Serda M, Szczygieł D, Gaweł S, Drzał A, Szczygieł M, Kmieć MM, Mackiewicz A, Kieda C, Elas M. Oxygen therapeutic window induced by myo-inositol trispyrophosphate (ITPP)-Local pO2 study in murine tumors. PLoS One 2023; 18:e0285318. [PMID: 37167239 PMCID: PMC10174508 DOI: 10.1371/journal.pone.0285318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Hypoxia, an inevitable feature of locally advanced solid tumors, has been known as an adverse prognostic factor, a driver of an aggressive phenotype, and an unfavorable factor in therapies. Myo-inositol trispyrophosphate (ITPP) is a hemoglobin modifier known to both increase O2 release and normalize microvasculature. Our goal was to measure the tumor oxygen partial pressure dynamic changes and timing of the therapeutic window after ITPP systemic administration. Two syngeneic tumor models in mice, B16 melanoma and 4T1 breast carcinoma, were used, with varying ITPP dose schedules. Tissue oxygenation level was measured over several days in situ in live animals by Electron Paramagnetic Resonance oximetry with implanted OxyChip used as a constant sensor of the local pO2 value. Both B16 and 4T1 tumors became more normoxic after ITPP treatment, with pO2 levels elevated by 10-20 mm Hg compared to the control. The increase in pO2 was either transient or sustained, and the underlying mechanism relied on shifting hypoxic tumor areas to normoxia. The effect depended on ITPP delivery intervals regarding the tumor type and growth rate. Moreover, hypoxic tumors before treatment responded better than normoxic ones. In conclusion, the ITPP-generated oxygen therapeutic window may be valuable for anti-tumor therapies requiring oxygen, such as radio-, photo- or immunotherapy. Furthermore, such a combinatory treatment can be especially beneficial for hypoxic tumors.
Collapse
Affiliation(s)
- Martyna Krzykawska-Serda
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, Kraków, Poland
| | - Dariusz Szczygieł
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, Kraków, Poland
| | - Szymon Gaweł
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Drzał
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, Kraków, Poland
| | - Małgorzata Szczygieł
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, Kraków, Poland
| | - Maciej M Kmieć
- Department of Radiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Greater Poland Cancer Centre, Poznan University of Medical Sciences, Chair of Medical Biotechnology, Poznan, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine -National Research Institute, Warsaw, Poland
- Center for Molecular Biophysics UPR 4301 CNRS, 45071, Orleans, France
- Department of Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Martyna Elas
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
11
|
Koushki E, Ghasedi A, Tayebee R. Origins of photoacoustic effect in solutions with a single non-pulsed continue wave laser beam; study on the CrTPP solutions. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Orlova A, Pavlova K, Kurnikov A, Maslennikova A, Myagcheva M, Zakharov E, Skamnitskiy D, Perekatova V, Khilov A, Kovalchuk A, Moiseev A, Turchin I, Razansky D, Subochev P. Noninvasive optoacoustic microangiography reveals dose and size dependency of radiation-induced deep tumor vasculature remodeling. Neoplasia 2022; 26:100778. [PMID: 35220045 PMCID: PMC8889238 DOI: 10.1016/j.neo.2022.100778] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 01/07/2023]
Abstract
Tumor microvascular responses may provide a sensitive readout indicative of radiation therapy efficacy, its time course and dose dependencies. However, direct high-resolution observation and longitudinal monitoring of large-scale microvascular remodeling in deep tissues remained challenging with the conventional microscopy approaches. We report on a non-invasive longitudinal study of morphological and functional neovascular responses by means of scanning optoacoustic (ОА) microangiography. In vivo imaging of CT26 tumor response to a single irradiation at varying dose (6, 12, and 18 Gy) has been performed over ten days following treatment. Tumor oxygenation levels were further estimated using diffuse optical spectroscopy (DOS) with a contact fiber probe. OA revealed the formation of extended vascular structures on the whole tumor scale during its proliferation, whereas only short fragmented vascular regions were identified following irradiation. On the first day post treatment, a decrease in the density of small (capillary-sized) and medium-sized vessels was revealed, accompanied by an increase in their fragmentation. Larger vessels exhibited an increase in their density accompanied by a decline in the number of vascular segments. Short-lasting response has been observed after 6 and 12 Gy irradiations, whereas 18 Gy treatment resulted in prolonged responses, up to the tenth day after irradiation. DOS measurements further revealed a delayed increase of tumor oxygenation levels for 18 Gy irradiations, commencing on the sixth day post treatment. The ameliorated oxygenation is attributed to diminished oxygen consumption by inhibited tumor cells but not to the elevation of oxygen supply. This work is the first to demonstrate the differential (size-dependent) nature of vascular responses to radiation treatments at varying doses in vivo. The OA approach thus facilitates the study of radiation-induced vascular changes in an unperturbed in vivo environment while enabling deep tissue high-resolution observations at the whole tumor scale.
Collapse
|
13
|
Lefebvre TL, Brown E, Hacker L, Else T, Oraiopoulou ME, Tomaszewski MR, Jena R, Bohndiek SE. The Potential of Photoacoustic Imaging in Radiation Oncology. Front Oncol 2022; 12:803777. [PMID: 35311156 PMCID: PMC8928467 DOI: 10.3389/fonc.2022.803777] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Radiotherapy is recognized globally as a mainstay of treatment in most solid tumors and is essential in both curative and palliative settings. Ionizing radiation is frequently combined with surgery, either preoperatively or postoperatively, and with systemic chemotherapy. Recent advances in imaging have enabled precise targeting of solid lesions yet substantial intratumoral heterogeneity means that treatment planning and monitoring remains a clinical challenge as therapy response can take weeks to manifest on conventional imaging and early indications of progression can be misleading. Photoacoustic imaging (PAI) is an emerging modality for molecular imaging of cancer, enabling non-invasive assessment of endogenous tissue chromophores with optical contrast at unprecedented spatio-temporal resolution. Preclinical studies in mouse models have shown that PAI could be used to assess response to radiotherapy and chemoradiotherapy based on changes in the tumor vascular architecture and blood oxygen saturation, which are closely linked to tumor hypoxia. Given the strong relationship between hypoxia and radio-resistance, PAI assessment of the tumor microenvironment has the potential to be applied longitudinally during radiotherapy to detect resistance at much earlier time-points than currently achieved by size measurements and tailor treatments based on tumor oxygen availability and vascular heterogeneity. Here, we review the current state-of-the-art in PAI in the context of radiotherapy research. Based on these studies, we identify promising applications of PAI in radiation oncology and discuss the future potential and outstanding challenges in the development of translational PAI biomarkers of early response to radiotherapy.
Collapse
Affiliation(s)
- Thierry L. Lefebvre
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Emma Brown
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Lina Hacker
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Thomas Else
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Mariam-Eleni Oraiopoulou
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Michal R. Tomaszewski
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Rajesh Jena
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Sarah E. Bohndiek
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Yan Y, Chen Y, Liu Z, Cai F, Niu W, Song L, Liang H, Su Z, Yu B, Yan F. Brain Delivery of Curcumin Through Low-Intensity Ultrasound-Induced Blood-Brain Barrier Opening via Lipid-PLGA Nanobubbles. Int J Nanomedicine 2021; 16:7433-7447. [PMID: 34764649 PMCID: PMC8575349 DOI: 10.2147/ijn.s327737] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Parkinson's disease (PD) is a progressive neurodegenerative disorder. Owing to the presence of blood-brain barrier (BBB), conventional pharmaceutical agents are difficult to the diseased nuclei and exert their action to inhibit or delay the progress of PD. Recent literatures have demonstrated that curcumin shows the great potential to treat PD. However, its applications are still difficult in vivo due to its poor druggability and low bioavailability through the BBB. Methods Melt-crystallization methods were used to improve the solubility of curcumin, and curcumin-loaded lipid-PLGA nanobubbles (Cur-NBs) were fabricated through encapsulating the curcumin into the cavity of lipid-PLGA nanobubbles. The bubble size, zeta potentials, ultrasound imaging capability and drug encapsulation efficiency of the Cur-NBs were characterized by a series of analytical methods. Low-intensity focused ultrasound (LIFU) combined with Cur-NB was used to open the BBB to facilitate curcumin delivery into the deep brain of PD mice, followed by behavioral evaluation for the treatment efficacy. Results The solubility of curcumin was improved by melt-crystallization methods, with 2627-fold higher than pure curcumin. The resulting Cur-NBs have a nanoscale size about 400 nm and show excellent contrast imaging performance. Curcumin drugs encapsulated into Cur-NBs could be effectively released when Cur-NBs were irradiated by LIFU at the optimized acoustic pressure, achieving 30% cumulative release rate within 6 h. Importantly, Cur-NBs combined with LIFU can open the BBB and locally deliver the curcumin into the deep-seated brain nuclei, significantly enhancing efficacy of curcumin in the Parkinson C57BL/6J mice model in comparison with only Cur-NBs and LIFU groups. Conclusion In this work, we greatly improved the solubility of curcumin and developed Cur-NBs for brain delivery of curcumin against PD through combining with LIFU-mediating BBB. Cur-NBs provide a platform for these potential drugs which are difficult to cross the BBB to treat PD disease or other central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Yiran Yan
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Yan Chen
- Department of Ultrasonic Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhongxun Liu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Feiyan Cai
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, People's Republic of China
| | - Wanting Niu
- VA Boston Healthcare System, Boston, MA, 02130, USA.,Department of Orthopedics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Liming Song
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Haifeng Liang
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhiwen Su
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Bo Yu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, People's Republic of China
| |
Collapse
|
15
|
Multi-Scale Photoacoustic Assessment of Wound Healing Using Chitosan-Graphene Oxide Hemostatic Sponge. NANOMATERIALS 2021; 11:nano11112879. [PMID: 34835644 PMCID: PMC8623563 DOI: 10.3390/nano11112879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
Hemostasis is vital to save lives, reducing risks of organ failure and hemorrhagic shock. Exploring novel hemostatic materials and precise monitoring of the hemostatic status is of great importance for efficient hemostasis. We present the development of chitosan-graphene oxide-based hemostatic composite and multi-scale photoacoustic evaluation of the hemostatic performance. The hemostatic sponge can quickly and efficiently absorb the blood with its porous cavity and specific surficial property. We inspect the hemostatic performance via an in vitro blood absorption test and in vivo mouse bleeding injury experiments. Results show that the synthesized hemostatic sponge can not only absorb plasma in blood fast with its interior porous structure but also stimulate the interfacial reaction with erythrocytes and platelets. The superiority of multi-scale photoacoustic imaging for guiding, monitoring, and evaluating the hemostatic stages of sponges is demonstrated with high spatial resolution and great sensitivity at depths. Photoacoustic evaluation of a chitosan-graphene oxide-based hemostatic sponge has the potential to be transferred toward the clinical assessment of wound healing.
Collapse
|
16
|
Exner AA, Kolios MC. Bursting Microbubbles: How Nanobubble Contrast Agents Can Enable the Future of Medical Ultrasound Molecular Imaging and Image-Guided Therapy. Curr Opin Colloid Interface Sci 2021; 54:101463. [PMID: 34393610 PMCID: PMC8356903 DOI: 10.1016/j.cocis.2021.101463] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The field of medical ultrasound has undergone a significant evolution since the development of microbubbles as contrast agents. However, due to their size, microbubbles remain in the vasculature, and therefore have limited clinical applications. Building a better - and smaller - bubble can expand the applications of contrast-enhanced ultrasound by allowing bubbles to extravasate from blood vessels - creating new opportunities. In this review, we summarize recent research on the formulation and use of NBs as imaging agents and as therapeutic vehicles. We discuss the ongoing debates in the field and reluctance to accepting NBs as an acoustically active construct and a potentially impactful clinical tool that can help shape the future of medical ultrasound. We hope that the overview of key experimental and theoretical findings in the NB field presented in this paper provides a fundamental framework that will help clarify NB-ultrasound interactions and inspire engagement in the field.
Collapse
Affiliation(s)
- Agata A. Exner
- Departments of Radiology and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
17
|
Lacerda Q, Tantawi M, Leeper DB, Wheatley MA, Eisenbrey JR. Emerging Applications of Ultrasound-Contrast Agents in Radiation Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1465-1474. [PMID: 33653626 PMCID: PMC8044052 DOI: 10.1016/j.ultrasmedbio.2021.01.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 05/29/2023]
Abstract
Radiation therapy (RT) causes DNA damage through ionization, leading to double-strand breaks. In addition, it generates reactive oxygen species (ROS), which are toxic to tumor cells and the vasculature. However, hypoxic regions in the tumor have been shown to not only decrease treatment response but also increase the likelihood of recurrence and metastasis. Ultrasound-sensitive micro-bubbles are emerging as a useful diagnostic and therapeutic tool within RT. Contrast-enhanced ultrasound (CEUS) has shown great promise in early prediction of tumor response to RT. Ultrasound-triggered micro-bubble cavitation has also been shown to induce bio-effects that can sensitize angiogenic tumor vessels to RT. Additionally, ultrasound can trigger the release of drugs from micro-bubble carriers via localized micro-bubble destruction. This approach has numerous applications in RT, including targeted oxygen delivery before radiotherapy. Furthermore, micro-bubbles can be used to locally create ROS without radiation. Sonodynamic therapy uses focused ultrasound and a sonosensitizer to selectively produce ROS in the tumor region and has been explored as a treatment option for cancer. This review summarizes emerging applications of ultrasound contrast agents in RT and ROS augmentation.
Collapse
Affiliation(s)
- Quezia Lacerda
- School of Biomedical Engineering and Health Sciences, Drexel University, Philadelphia, Pennsylvania, USA; Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mohamed Tantawi
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Dennis B Leeper
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Margaret A Wheatley
- School of Biomedical Engineering and Health Sciences, Drexel University, Philadelphia, Pennsylvania, USA
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
18
|
Wang Y, Pasternak M, Sathiyamoorthy K, Kolios MC. Anti-HER2 PLGA-PEG polymer nanoparticle containing gold nanorods and paclitaxel for laser-activated breast cancer detection and therapy. BIOMEDICAL OPTICS EXPRESS 2021; 12:2171-2185. [PMID: 33996222 PMCID: PMC8086443 DOI: 10.1364/boe.419252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/07/2021] [Accepted: 03/07/2021] [Indexed: 05/04/2023]
Abstract
Phase-transition nanoparticles have been identified as effective theragnostic, anti-cancer agents. However, non-selective delivery of these agents results in inaccurate diagnosis and insufficient treatment. In this study, we report on the development of targeted phase-transition polymeric nanoparticles (NPs) for the imaging and treatment of breast cancer cell lines over-expressing human epidermal growth factor receptor 2 (HER2). These NPs contain a perfluorohexane liquid interior and gold nanorods (GNRs) stabilized by biodegradable and biocompatible copolymer PLGA-PEG. Water-insoluble therapeutic drug Paclitaxel (PAC) and fluorescent dye were encapsulated into the PLGA shell. The NP surfaces were conjugated to HER2-binding agent, Herceptin, to actively target HER2-positive cancer cells. We evaluated the potential of using these NPs as a photoacoustic contrast agent. The efficacy of cancer cell treatment by laser-induced vaporization and stimulated drug release were also investigated. The results showed that our synthesized PLGA-PEG-GNRs (mean diameter 285 ± 29 nm) actively targeted HER2 positive cells with high efficacy. The laser-induced vaporization caused more damage to the targeted cells versus PAC-only and negative controls. This agent may provide better diagnostic imaging and therapeutic potential than current methods for treating HER2-positive breast cancer.
Collapse
Affiliation(s)
- Yanjie Wang
- Physics Department, Ryerson University, 350 Victoria St., Toronto, Ontario M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael’s Hospital, 30 Bond St., Toronto, Ontario, M5B 1T8, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, 30 Bond St., Toronto, Ontario, M5B 1T8, Canada
| | - Maurice Pasternak
- Biological Sciences Department, Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, Ontario, M4N 3M5, Canada
| | - Krishnan Sathiyamoorthy
- Physics Department, Ryerson University, 350 Victoria St., Toronto, Ontario M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael’s Hospital, 30 Bond St., Toronto, Ontario, M5B 1T8, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, 30 Bond St., Toronto, Ontario, M5B 1T8, Canada
| | - Michael C. Kolios
- Physics Department, Ryerson University, 350 Victoria St., Toronto, Ontario M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael’s Hospital, 30 Bond St., Toronto, Ontario, M5B 1T8, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, 30 Bond St., Toronto, Ontario, M5B 1T8, Canada
| |
Collapse
|
19
|
Nittayacharn P, Abenojar E, La Deda M, Ricciardi L, Strangi G, Exner AA. Iridium(III) Complex-Loaded Perfluoropropane Nanobubbles for Enhanced Sonodynamic Therapy. Bioconjug Chem 2021; 33:1057-1068. [PMID: 33677967 PMCID: PMC10108504 DOI: 10.1021/acs.bioconjchem.1c00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sonodynamic therapy (SDT) is a novel promising approach for the minimally invasive treatment of cancer derived from photodynamic therapy (PDT). In this study, we have explored an effective sonosensitizer for SDT by loading the iridium(III) complex [Ir(ppy)2(en)] OOCCH3, where ppy = 2-phenylpyridine and en = ethylenediamine], from now on referred to as Ir, with high photosensitizing ability, into echogenic nanobubbles (Ir-NBs). Akin to photosensitizers, sonosensitizers are acoustically activated by deep-tissue-penetrating low-frequency ultrasound (US) resulting in a localized therapeutic effect attributed to an excessive generation of reactive oxygen species (ROS). The Ir-NB formulation was optimized, and the in vitro characterizations were carried out, including physical properties, acoustic performance, intracellular ROS generation, and cytotoxicity against two human cancer cell lines. Ir-NBs had an average size of 303.3 ± 91.7 nm with a bubble concentration of 9.28 × 1010 particles/mL immediately following production. We found that the initial Ir feeding concentration had a negligible effect on the NB size, but affected the bubble concentration as well as the acoustic performance of the NBs. Through a combination of sonication and Ir-NBs treatment, an increase of 68.8% and 69.6% cytotoxicity in human ovarian cancer cells (OVCAR-3) and human breast cancer cells (MCF-7), respectively, was observed compared to the application of Ir-NBs alone. Furthermore, Ir-NBs exposed to the US also induced the highest levels of intracellular ROS generation compared to free Ir and free Ir with empty NBs. The combination of these results suggests that the differences in treatment efficacy is a direct result of acoustic cavitation. These results provide evidence that US activated Ir-loaded NBs have the potential to become an effective sonosensitizer for SDT.
Collapse
Affiliation(s)
- Pinunta Nittayacharn
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Eric Abenojar
- Department of Radiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Massimo La Deda
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Cosenza, Italy.,CNR NANOTEC - Institute of Nanotechnology, UOS Cosenza, 87036 Rende, Cosenza, Italy
| | - Loredana Ricciardi
- CNR NANOTEC - Institute of Nanotechnology, UOS Cosenza, 87036 Rende, Cosenza, Italy
| | - Giuseppe Strangi
- CNR NANOTEC - Institute of Nanotechnology, UOS Cosenza, 87036 Rende, Cosenza, Italy.,Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Agata A Exner
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States.,Department of Radiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
20
|
Mabrouk M, Das DB, Salem ZA, Beherei HH. Nanomaterials for Biomedical Applications: Production, Characterisations, Recent Trends and Difficulties. Molecules 2021; 26:1077. [PMID: 33670668 PMCID: PMC7922738 DOI: 10.3390/molecules26041077] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Designing of nanomaterials has now become a top-priority research goal with a view to developing specific applications in the biomedical fields. In fact, the recent trends in the literature show that there is a lack of in-depth reviews that specifically highlight the current knowledge based on the design and production of nanomaterials. Considerations of size, shape, surface charge and microstructures are important factors in this regard as they affect the performance of nanoparticles (NPs). These parameters are also found to be dependent on their synthesis methods. The characterisation techniques that have been used for the investigation of these nanomaterials are relatively different in their concepts, sample preparation methods and obtained results. Consequently, this review article aims to carry out an in-depth discussion on the recent trends on nanomaterials for biomedical engineering, with a particular emphasis on the choices of the nanomaterials, preparation methods/instruments and characterisations techniques used for designing of nanomaterials. Key applications of these nanomaterials, such as tissue regeneration, medication delivery and wound healing, are also discussed briefly. Covering this knowledge gap will result in a better understanding of the role of nanomaterial design and subsequent larger-scale applications in terms of both its potential and difficulties.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33El Bohouth St (former EL Tahrir St), Dokki, Giza P.O. 12622, Egypt;
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, Leicestershire, UK
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, Leicestershire, UK
| | - Zeinab A. Salem
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Giza P.O. 12613, Egypt;
- Faculty of Oral and Dental Medicine, Ahram Canadian University, 6 October City P.O. 12573, Egypt
| | - Hanan H. Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33El Bohouth St (former EL Tahrir St), Dokki, Giza P.O. 12622, Egypt;
| |
Collapse
|