1
|
Li W, Zhong X, Huang J, Bai X, Liang Y, Cheng L, Jin L, Tang HC, Lai Y, Guan BO. Wavelength-time-division multiplexed fiber-optic sensor array for wide-field photoacoustic microscopy. PHOTOACOUSTICS 2025; 43:100725. [PMID: 40331015 PMCID: PMC12051156 DOI: 10.1016/j.pacs.2025.100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025]
Abstract
Photoacoustic microscopy (PAM) faces a fundamental trade-off between detection sensitivity and field of view (FOV). While optical ultrasound sensors offer high-sensitivity unfocused detection, implementing multichannel detection remains challenging. Here, we present a wavelength-time-division multiplexed (WTDM) fiber-optic sensor array that assigns distinct wavelengths to individual sensors and employs varying-length delay fibers for temporal separation, enabling efficient multichannel detection through a single photodetector. Using a 4-element sensor array, we achieved an expanded FOV of 5 × 8 mm² while maintaining high temporal resolution (160 kHz A-line rate, 0.25 Hz frame rate) and microscopic spatial resolution (10.7 μm). The system's capabilities were validated through comparative monitoring of cerebral and intestinal hemodynamics in mice during hypercapnia challenge, revealing distinct temporal patterns with notably delayed recovery in cerebral vascular response compared to intestinal vasculature. This WTDM approach establishes a promising platform for large-field, high-speed photoacoustic imaging in biomedical applications.
Collapse
Affiliation(s)
- Wei Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Xiaoxuan Zhong
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Jie Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Xue Bai
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Yizhi Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Linghao Cheng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Long Jin
- MOE Key Laboratory of Laser Life Science, Guangdong Key Laboratory of Laser Life Science, School of Optoelectronic Science & Engineering, South China Normal University, Guangzhou, China
| | - Hao-Cheng Tang
- Department of Otorhinolaryngology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yinyan Lai
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Mondal S, Park S, Nguyen VT, Doan VHM, Choi J, Ly CD, Phan DT, Truong TT, Vo TH, Nguyen DT, Pal U, Lee B, Oh J. Precision Cancer Therapy Enabled Anti-Epidermal Growth Factor Receptor-Conjugated Manganese Core Phthalocyanine Bismuth Nanocomposite for Dual Imaging-Guided Breast Cancer Treatment. Biomater Res 2024; 2024:0092. [PMID: 39525484 PMCID: PMC11542904 DOI: 10.34133/bmr.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Cancer remains a formidable global health challenge, demanding the exploration of innovative treatment modalities with minimized side effects. One promising avenue involves the synergistic integration of targeted photothermal/photodynamic therapy (PTT/PDT), utilizing specially designed functional nanomaterials for precise cancer diagnosis and treatment. This study introduces a composite biomaterial, anti-epidermal growth factor receptor-conjugated manganese core phthalocyanine bismuth (anti-EGFR-MPB), synthesized for precise cancer imaging and treatment. The biomaterial, synthesized via a solvothermal process, effectively treats and images breast cancer in mouse models. Its biomimetic design targets cancer cells precisely, with dual imaging for real-time monitoring. The biomimetic design of the composite enables precise targeting of cancer cells, whereas the dual imaging allows for real-time visualization and monitoring of the treatment. In vivo examinations confirm substantial damage to tumor tissues with no recurrence following 808-nm laser irradiation. The composite shows strong fluorescence/photoacoustic imaging (PAI) contrast, aiding malignancy detection. Biological assays and histological analyses confirmed the efficacy of the nanocomposite in inducing apoptosis in cancer cells. The integrated targeted dual image-guided phototherapy offered by this composite substantially enhances the precision and efficacy of cancer therapy, achieving an impressive photothermal efficiency of ~33.8%. Our findings demonstrate the utility of the anti-EGFR-MPB nanocomposite for both in vitro and in vivo photoacoustic image-guided PTT and PDT. The optimal treatment strategy for triple-negative breast cancer is found to be the use of 250 μg/ml of nanocomposite irradiated with 1.0 W/cm2 808-nm laser for 7 min.
Collapse
Affiliation(s)
- Sudip Mondal
- Digital Healthcare Research Center, Pukyong National University
| | - Sumin Park
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Van Tu Nguyen
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Vu Hoang Minh Doan
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior’s Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Cao Duong Ly
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Duc Tri Phan
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Thi Thuy Truong
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Tan Hung Vo
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Dinh Tuan Nguyen
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Umapada Pal
- Institute of Physics, Autonomous University of Puebla, Puebla, Pue. 72570, Mexico
| | - Byeongil Lee
- Digital Healthcare Research Center, Pukyong National University
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Smart Gym-Based Translational Research Center for Active Senior’s Healthcare, Pukyong National University, Busan 48513, Republic of Korea
- Department of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Junghwan Oh
- Digital Healthcare Research Center, Pukyong National University
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Smart Gym-Based Translational Research Center for Active Senior’s Healthcare, Pukyong National University, Busan 48513, Republic of Korea
- Department of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea
- Ohlabs Corp., Busan 48513, Republic of Korea
| |
Collapse
|
3
|
Cho SW, Nguyen VT, DiSpirito A, Yang J, Kim CS, Yao J. Sounding out the dynamics: a concise review of high-speed photoacoustic microscopy. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11521. [PMID: 38323297 PMCID: PMC10846286 DOI: 10.1117/1.jbo.29.s1.s11521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Significance Photoacoustic microscopy (PAM) offers advantages in high-resolution and high-contrast imaging of biomedical chromophores. The speed of imaging is critical for leveraging these benefits in both preclinical and clinical settings. Ongoing technological innovations have substantially boosted PAM's imaging speed, enabling real-time monitoring of dynamic biological processes. Aim This concise review synthesizes historical context and current advancements in high-speed PAM, with an emphasis on developments enabled by ultrafast lasers, scanning mechanisms, and advanced imaging processing methods. Approach We examine cutting-edge innovations across multiple facets of PAM, including light sources, scanning and detection systems, and computational techniques and explore their representative applications in biomedical research. Results This work delineates the challenges that persist in achieving optimal high-speed PAM performance and forecasts its prospective impact on biomedical imaging. Conclusions Recognizing the current limitations, breaking through the drawbacks, and adopting the optimal combination of each technology will lead to the realization of ultimate high-speed PAM for both fundamental research and clinical translation.
Collapse
Affiliation(s)
- Soon-Woo Cho
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
- Pusan National University, Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Busan, Republic of Korea
| | - Van Tu Nguyen
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Anthony DiSpirito
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Joseph Yang
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Chang-Seok Kim
- Pusan National University, Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Busan, Republic of Korea
| | - Junjie Yao
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| |
Collapse
|
4
|
Kim D, Ahn J, Park E, Kim JY, Kim C. In vivo quantitative photoacoustic monitoring of corticosteroid-induced vasoconstriction. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:082805. [PMID: 36844430 PMCID: PMC9951467 DOI: 10.1117/1.jbo.28.8.082805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Significance Corticosteroids-commonly prescribed medications for skin diseases-inhibit the secretion of vasodilators, such as prostaglandin, thereby exerting anti-inflammatory action by constricting capillaries in the dermis. The effectiveness of corticosteroids is determined by the degree of vasoconstriction followed by skin whitening, namely, the blanching effect. However, the current method of observing the blanching effect indirectly evaluates the effects of corticosteroids. Aim In this study, we employed optical-resolution photoacoustic (PA) microscopy (OR-PAM) to directly visualize the blood vessels and quantitatively evaluate vasoconstriction. Approach Using OR-PAM, the vascular density in mice skin was monitored for 60 min after performing each experimental procedure for four groups, and the vasoconstriction was quantified. Volumetric PA data were segmented into the papillary dermis, reticular dermis, and hypodermis based on the vascular characteristics obtained through OR-PAM. The vasoconstrictive effect of each skin layer was quantified according to the dermatological treatment method. Results In the case of corticosteroid topical application, vasoconstriction was observed in the papillary ( 56.4 ± 10.9 % ) and reticular ( 45.1 ± 4.71 % ) dermis. For corticosteroid subcutaneous injection, constriction was observed solely in the reticular ( 49.5 ± 9.35 % ) dermis. In contrast, no vasoconstrictions were observed with nonsteroidal topical application. Conclusions Our results indicate that OR-PAM can quantitatively monitor the vasoconstriction induced by corticosteroids, thereby validating OR-PAMs potential as a practical evaluation tool for predicting the effectiveness of corticosteroids in dermatology.
Collapse
Affiliation(s)
- Donggyu Kim
- Pohang University of Science and Technology, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and Medical Device Innovation Center Group, Pohang, Republic of Korea
| | - Joongho Ahn
- Pohang University of Science and Technology, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and Medical Device Innovation Center Group, Pohang, Republic of Korea
| | - Eunwoo Park
- Pohang University of Science and Technology, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and Medical Device Innovation Center Group, Pohang, Republic of Korea
| | - Jin Young Kim
- Pohang University of Science and Technology, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and Medical Device Innovation Center Group, Pohang, Republic of Korea
| | - Chulhong Kim
- Pohang University of Science and Technology, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and Medical Device Innovation Center Group, Pohang, Republic of Korea
| |
Collapse
|
5
|
Cho SW, Phan TTV, Nguyen VT, Park SM, Lee H, Oh J, Kim CS. Efficient label-free in vivo photoacoustic imaging of melanoma cells using a condensed NIR-I spectral window. PHOTOACOUSTICS 2023; 29:100456. [PMID: 36785577 PMCID: PMC9918423 DOI: 10.1016/j.pacs.2023.100456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
In this paper, we propose an efficient label-free in vivo photoacoustic (PA) imaging of melanoma using a condensed near infrared-I (NIR-I) supercontinuum light source. Although NIR-II spectral window is advantageous such as longer penetration depth compared to the NIR-I region, supercontinuum light sources emitting both NIR-I and NIR-II region could lower the efficiency to target melanoma because of low optical power density in the melanoma's absorption spectra. To exploit efficient in vivo PA imaging of melanoma, we demonstrated the light source emitting from visible (532-600 nm) to NIR-I (600-1000 nm) by optimizing stimulated Raman scattering induced supercontinuum generation. The melanoma's structure is successfully differentiated from blood vessels at a high pulse energy of 2.5 µJ and a flexible pulse repetition rate (PRR) of 5-50 kHz. The proposed light source with the microjoules energies and tens of kHz of PRR can potentially accelerate clinical trials such as early diagnosis of melanoma.
Collapse
Affiliation(s)
- Soon-Woo Cho
- Engineering Research Center for Color-modulated Extra-sensory Perception Technology, Pusan National University, Busan 46241, the Republic of Korea
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Danang 550000, Viet Nam
- Department of Environmental and Chemical Engineering, Duy Tan University, Danang 550000, Viet Nam
| | - Van Tu Nguyen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Sang Min Park
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, the Republic of Korea
| | - Hwidon Lee
- Harvard Medical School, Boston, Massachusetts MA 02115, USA
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA
| | - Junghwan Oh
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, the Republic of Korea
- Ohlabs Corporation, Busan 48513, the Republic of Korea
| | - Chang-Seok Kim
- Engineering Research Center for Color-modulated Extra-sensory Perception Technology, Pusan National University, Busan 46241, the Republic of Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, the Republic of Korea
| |
Collapse
|
6
|
Nguyen TP, Choi J, Nguyen VT, Mondal S, Bui NT, Vu DD, Park S, Oh J. Design and Micro-Fabrication of Focused High-Frequency Needle Transducers for Medical Imaging. SENSORS (BASEL, SWITZERLAND) 2022; 22:3763. [PMID: 35632172 PMCID: PMC9143298 DOI: 10.3390/s22103763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 01/25/2023]
Abstract
In this study, we report an advanced fabrication technique to develop a miniature focused needle transducer. Two different types of high-frequency (100 MHz) transducers were fabricated using the lead magnesium niobate-lead titanate (PMN-0.3PT) and lithium niobate (LiNbO3) single crystals. In order to enhance the transducer's performance, a unique mass-spring matching layer technique was adopted, in which gold and parylene play the roles of the mass layer and spring layer, respectively. The PMN-0.3PT transducer had a 103 MHz center frequency with a -6 dB bandwidth of 52%, and a signal-to-noise ratio (SNR) of 42 dB. The center frequency, -6 dB bandwidth, and SNR of the LiNbO3 transducer were 105 MHz, 66%, and 44 dB, respectively. In order to compare and evaluate the transducers' performances, an ultrasonic biomicroscopy (UBM) imaging on the fish eye was performed. The results showed that the LiNbO3 transducer had a better contrast resolution compared to the PMN-0.3PT transducer. The fabricated transducer showed an excellent performance with high-resolution corneal epithelium imaging of the experimental fish eye. These interesting findings are useful for the future biomedical implementation of the fabricated transducers in the field of high-resolution ultrasound imaging and diagnosis purpose.
Collapse
Affiliation(s)
- Thanh Phuoc Nguyen
- Department of Mechatronics, Cao Thang Technical College, Ho Chi Minh City 700000, Vietnam
| | - Jaeyeop Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea; (J.C.); (V.T.N.); (D.D.V.); (S.P.); (J.O.)
| | - Van Tu Nguyen
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea; (J.C.); (V.T.N.); (D.D.V.); (S.P.); (J.O.)
| | - Sudip Mondal
- New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea;
| | - Ngoc Thang Bui
- Institute of Engineering, HUTECH University, Ho Chi Minh City 700000, Vietnam;
| | - Dinh Dat Vu
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea; (J.C.); (V.T.N.); (D.D.V.); (S.P.); (J.O.)
| | - Sumin Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea; (J.C.); (V.T.N.); (D.D.V.); (S.P.); (J.O.)
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea; (J.C.); (V.T.N.); (D.D.V.); (S.P.); (J.O.)
- New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea;
- Ohlabs Corporation, Busan 48513, Korea
| |
Collapse
|
7
|
Ly CD, Nguyen VT, Vo TH, Mondal S, Park S, Choi J, Vu TTH, Kim CS, Oh J. Full-view in vivo skin and blood vessels profile segmentation in photoacoustic imaging based on deep learning. PHOTOACOUSTICS 2022; 25:100310. [PMID: 34824975 PMCID: PMC8603312 DOI: 10.1016/j.pacs.2021.100310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 05/08/2023]
Abstract
Photoacoustic (PA) microscopy allows imaging of the soft biological tissue based on optical absorption contrast and spatial ultrasound resolution. One of the major applications of PA imaging is its characterization of microvasculature. However, the strong PA signal from skin layer overshadowed the subcutaneous blood vessels leading to indirectly reconstruct the PA images in human study. Addressing the present situation, we examined a deep learning (DL) automatic algorithm to achieve high-resolution and high-contrast segmentation for widening PA imaging applications. In this research, we propose a DL model based on modified U-Net for extracting the relationship features between amplitudes of the generated PA signal from skin and underlying vessels. This study illustrates the broader potential of hybrid complex network as an automatic segmentation tool for the in vivo PA imaging. With DL-infused solution, our result outperforms the previous studies with achieved real-time semantic segmentation on large-size high-resolution PA images.
Collapse
Affiliation(s)
- Cao Duong Ly
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Republic of Korea
| | - Van Tu Nguyen
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Republic of Korea
| | - Tan Hung Vo
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Republic of Korea
| | - Sudip Mondal
- New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Sumin Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Republic of Korea
| | - Jaeyeop Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Republic of Korea
- Ohlabs Corp, Busan 48513, Republic of Korea
| | - Thi Thu Ha Vu
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Republic of Korea
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Ohlabs Corp, Busan 48513, Republic of Korea
- New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
8
|
Ma X, Fan M, Cai Y, Xu L, Ma J. A Fabry–Perot Fiber-Optic Array for Photoacoustic Imaging. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2022; 71:1-8. [DOI: 10.1109/tim.2022.3147884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
|
9
|
Cho SW, Park SM, Park B, Kim DY, Lee TG, Kim BM, Kim C, Kim J, Lee SW, Kim CS. High-speed photoacoustic microscopy: A review dedicated on light sources. PHOTOACOUSTICS 2021; 24:100291. [PMID: 34485074 PMCID: PMC8403586 DOI: 10.1016/j.pacs.2021.100291] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/18/2021] [Accepted: 08/03/2021] [Indexed: 05/05/2023]
Abstract
In recent years, many methods have been investigated to improve imaging speed in photoacoustic microscopy (PAM). These methods mainly focused upon three critical factors contributing to fast PAM: laser pulse repetition rate, scanning speed, and computing power of the microprocessors. A high laser repetition rate is fundamentally the most crucial factor to increase the PAM speed. In this paper, we review methods adopted for fast PAM systems in detail, specifically with respect to light sources. To the best of our knowledge, ours is the first review article analyzing the fundamental requirements for developing high-speed PAM and their limitations from the perspective of light sources.
Collapse
Affiliation(s)
- Soon-Woo Cho
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Sang Min Park
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Byullee Park
- Department of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Do Yeon Kim
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
- Department of Bio-Convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Tae Geol Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Beop-Min Kim
- Department of Bio-Convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02481, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jeesu Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Sang-Won Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
- Department of Medical Physics, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|