1
|
Antoniazzi E, Cavigioli C, Tang V, Zoccola C, Todisco M, Tassorelli C, Cosentino G. Effects of Repetitive Transcranial Magnetic Stimulation Applied over the Primary Motor Cortex on the Offset Analgesia Phenomenon. Life (Basel) 2025; 15:182. [PMID: 40003592 PMCID: PMC11856385 DOI: 10.3390/life15020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
In this study, we investigate the effects of high-frequency repetitive transcranial magnetic stimulation (rTMS) applied over the left upper limb primary motor cortex (M1) on the offset analgesia (OA) phenomenon, a measure of endogenous pain modulation. In particular, we aim to determine whether rTMS influences OA differently in the forearm region, corresponding to the stimulated cortical area, compared to the trigeminal region. Twenty-two healthy volunteers underwent three experimental sessions: a baseline session without stimulation, an active rTMS session, and a sham rTMS session. Quantitative sensory testing (QST) paradigms, including warm and cold detection thresholds, heat pain threshold corresponding to a visual analogue scale (VAS) score of approximately 50-60 out of 100 (Pain50-60), and constant and offset trials, were assessed in both the forearm and trigeminal regions. The results revealed that active rTMS significantly enhanced the OA phenomenon in the forearm during the late phase, while no significant effects were observed in the trigeminal region. These findings suggest that rTMS may modulate central pain mechanisms in a body region-specific manner, potentially linked to the somatotopic organization of M1. This study points to possible mechanisms of action of rTMS for pain relief, highlighting the importance of region-specific effects in chronic pain treatment. Further research is needed to investigate the underlying mechanisms and clinical applicability of rTMS in patients with chronic pain conditions, especially when OA is compromised.
Collapse
Affiliation(s)
- Elisa Antoniazzi
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
| | - Camilla Cavigioli
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
| | - Vanessa Tang
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
| | - Clara Zoccola
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
| | - Massimiliano Todisco
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Giuseppe Cosentino
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
2
|
Wu Q, Li X, Zhang Y, Chen S, Jin R, Peng W. Analgesia of noninvasive electrical stimulation of the dorsolateral prefrontal cortex: A systematic review and meta-analysis. J Psychosom Res 2024; 185:111868. [PMID: 39142194 DOI: 10.1016/j.jpsychores.2024.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
OBJECTIVE The dorsolateral prefrontal cortex (DLPFC) is implicated in pain modulation, suggesting its potential as a therapeutic target for pain relief. However, studies on transcranial electrical stimulation (tES) over the DLPFC yielded diverse results, likely due to differences in stimulation protocols or pain assessment methods. This study aims to evaluate the analgesic effects of DLPFC-tES using a meta-analytical approach. METHODS A meta-analysis of 29 studies involving 785 participants was conducted. The effects of genuine and sham DLPFC-tES on pain perception were examined in healthy individuals and patients with clinical pain. Subgroup analyses explored the impact of stimulation parameters and pain modalities. RESULTS DLPFC-tES did not significantly affect pain outcomes in healthy populations but showed promise in reducing pain-intensity ratings in patients with clinical pain (Hedges' g = -0.78, 95% CI = [-1.33, -0.24], p = 0.005). Electrode placement significantly influenced the analgesic effect, with better results observed when the anode was at F3 and the cathode at F4. CONCLUSIONS DLPFC-tES holds potential as a cost-effective pain management option, particularly for clinical populations. Optimizing electrode placement, especially with an symmetrical configuration, may enhance therapeutic efficacy. These findings underscore the promise of DLPFC-tES for alleviating perceived pain intensity in clinical settings, emphasizing the importance of electrode placement optimization.
Collapse
Affiliation(s)
- Qiqi Wu
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yinhua Zhang
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Shengxiong Chen
- Medical Rehabilitation Center, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Richu Jin
- Tech X Academy, Shenzhen Polytechnic University, Shenzhen, China.
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Liu Y, Sun J, Wu C, Ren J, He Y, Sun N, Huang H, Chen Q, Liu D, Huang Y, Xu F, Yu L, Fitzgibbon BM, Cash RFH, Fitzgerald PB, Yan M, Che X. Characterizing the opioidergic mechanisms of repetitive transcranial magnetic stimulation-induced analgesia: a randomized controlled trial. Pain 2024; 165:2035-2043. [PMID: 38537053 PMCID: PMC11331833 DOI: 10.1097/j.pain.0000000000003220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 08/21/2024]
Abstract
ABSTRACT Repetitive transcranial magnetic stimulation (rTMS) is a promising technology to reduce chronic pain. Investigating the mechanisms of rTMS analgesia holds the potential to improve treatment efficacy. Using a double-blind and placebo-controlled design at both stimulation and pharmacologic ends, this study investigated the opioidergic mechanisms of rTMS analgesia by abolishing and recovering analgesia in 2 separate stages across brain regions and TMS doses. A group of 45 healthy participants were equally randomized to the primary motor cortex (M1), the dorsolateral prefrontal cortex (DLPFC), and the Sham group. In each session, participants received an intravenous infusion of naloxone or saline before the first rTMS session. Participants then received a second dose of rTMS session after the drugs were metabolized at 90 minutes. M1-rTMS-induced analgesia was abolished by naloxone compared with saline and was recovered by the second rTMS run when naloxone was metabolized. In the DLPFC, double but not the first TMS session induced significant pain reduction in the saline condition, resulting in less pain compared with the naloxone condition. In addition, TMS over the M1 or DLPFC selectively increased plasma concentrations of β-endorphin or encephalin, respectively. Overall, we present causal evidence that opioidergic mechanisms are involved in both M1-induced and DLPFC-rTMS-induced analgesia; however, these are shaped by rTMS dosage and the release of different endogenous opioids.
Collapse
Affiliation(s)
- Ying Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Junfeng Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chaomin Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxuan Ren
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanni He
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Na Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - QunShan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyuxin Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Xu
- Shenzhen Yingchi Technology Co, Ltd, Hangzhou, China
| | - Lina Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bernadette M. Fitzgibbon
- School of Medicine and Psychology, The Australian National University, Australian Capital Territory, Melbourne, Australia
- Monarch Research Institute, Monarch Mental Health Group, Melbourne, Australia
| | - Robin F. H. Cash
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia
| | - Paul B. Fitzgerald
- School of Medicine and Psychology, The Australian National University, Australian Capital Territory, Melbourne, Australia
| | - Min Yan
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
4
|
De Martino E, Casali A, Casarotto S, Hassan G, Couto BA, Rosanova M, Graven‐Nielsen T, de Andrade DC. Evoked oscillatory cortical activity during acute pain: Probing brain in pain by transcranial magnetic stimulation combined with electroencephalogram. Hum Brain Mapp 2024; 45:e26679. [PMID: 38647038 PMCID: PMC11034005 DOI: 10.1002/hbm.26679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/26/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Temporal dynamics of local cortical rhythms during acute pain remain largely unknown. The current study used a novel approach based on transcranial magnetic stimulation combined with electroencephalogram (TMS-EEG) to investigate evoked-oscillatory cortical activity during acute pain. Motor (M1) and dorsolateral prefrontal cortex (DLPFC) were probed by TMS, respectively, to record oscillatory power (event-related spectral perturbation and relative spectral power) and phase synchronization (inter-trial coherence) by 63 EEG channels during experimentally induced acute heat pain in 24 healthy participants. TMS-EEG was recorded before, during, and after noxious heat (acute pain condition) and non-noxious warm (Control condition), delivered in a randomized sequence. The main frequency bands (α, β1, and β2) of TMS-evoked potentials after M1 and DLPFC stimulation were recorded close to the TMS coil and remotely. Cold and heat pain thresholds were measured before TMS-EEG. Over M1, acute pain decreased α-band oscillatory power locally and α-band phase synchronization remotely in parietal-occipital clusters compared with non-noxious warm (all p < .05). The remote (parietal-occipital) decrease in α-band phase synchronization during acute pain correlated with the cold (p = .001) and heat pain thresholds (p = .023) and to local (M1) α-band oscillatory power decrease (p = .024). Over DLPFC, acute pain only decreased β1-band power locally compared with non-noxious warm (p = .015). Thus, evoked-oscillatory cortical activity to M1 stimulation is reduced by acute pain in central and parietal-occipital regions and correlated with pain sensitivity, in contrast to DLPFC, which had only local effects. This finding expands the significance of α and β band oscillations and may have relevance for pain therapies.
Collapse
Affiliation(s)
- Enrico De Martino
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of MedicineAalborg UniversityAalborgDenmark
| | - Adenauer Casali
- Institute of Science and TechnologyFederal University of São PauloSão PauloBrazil
| | - Silvia Casarotto
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
- IRCCS Fondazione Don Carlo GnocchiMilanItaly
| | - Gabriel Hassan
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| | - Bruno Andry Couto
- Institute of Science and TechnologyFederal University of São PauloSão PauloBrazil
| | - Mario Rosanova
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| | - Thomas Graven‐Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of MedicineAalborg UniversityAalborgDenmark
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of MedicineAalborg UniversityAalborgDenmark
| |
Collapse
|
5
|
Badran BW, Peng X. Transcranial focused ultrasound (tFUS): a promising noninvasive deep brain stimulation approach for pain. Neuropsychopharmacology 2024; 49:351-352. [PMID: 37563280 PMCID: PMC10700642 DOI: 10.1038/s41386-023-01699-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Affiliation(s)
- Bashar W Badran
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, USA.
| | - Xiaolong Peng
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
6
|
Wang Y, Tan B, Shi S, Ye Y, Che X. Dopamine D2 receptor antagonist modulates rTMS-induced pain experiences and corticospinal excitability dependent on stimulation targets. Int J Clin Health Psychol 2024; 24:100413. [PMID: 37954401 PMCID: PMC10632113 DOI: 10.1016/j.ijchp.2023.100413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/14/2023] [Indexed: 11/14/2023] Open
Abstract
Both the primary motor cortex (M1) and dorsolateral prefrontal cortex (DLPFC) rTMS have the potential to reduce certain chronic pain conditions. However, the analgesic mechanisms remain unclear, in which M1- and DLPFC-rTMS may have different impact on the release of dopamine receptor D2 neurotransmissions (DRD2). Using a double-blind, randomised, sham- and placebo-controlled design, this study investigated the influence of DRD2 antagonist on rTMS-induced analgesia and corticospinal excitability across the M1 and DLPFC. Healthy participants in each group (M1, DLPFC, or Sham) received an oral dose of chlorpromazine or placebo before the delivery of rTMS in two separate sessions. Heat pain and cortical excitability were assessed before drug administration and after rTMS intervention. DRD2 antagonist selectively abolished the increased heat pain threshold induced by DLPFC stimulation and increased pain unpleasantness. The absence of analgesic effects in DLPFC stimulation was not accompanied by plastic changes in the corticospinal pathway. In contrast, DRD2 antagonist increased corticospinal excitability and rebalanced excitation-inhibition relationship following motor cortex stimulation, although there were no clear changes in pain experiences. These novel findings together highlight the influence of dopaminergic neurotransmission on rTMS-induced analgesia and corticospinal excitability dependent on stimulation targets.
Collapse
Affiliation(s)
- Ying Wang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Bolin Tan
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Shuyan Shi
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yang Ye
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- TMS Centre, Deqing Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Cosentino G, Antoniazzi E, Cavigioli C, Tang V, Tammam G, Zaffina C, Tassorelli C, Todisco M. Repetitive Transcranial Magnetic Stimulation of the Human Motor Cortex Modulates Processing of Heat Pain Sensation as Assessed by the Offset Analgesia Paradigm. J Clin Med 2023; 12:7066. [PMID: 38002678 PMCID: PMC10672427 DOI: 10.3390/jcm12227066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Offset analgesia (OA), which is defined as a disproportionately large reduction in pain perception following a small decrease in a heat stimulus, quantifies temporal aspects of endogenous pain modulation. In this study on healthy subjects, we aimed to (i) determine the Heat Pain Threshold (HPT) and the response to constant and dynamic heat stimuli assessing sensitization, adaptation and OA phenomena at the thenar eminence; (ii) evaluate the effects of high-frequency repetitive Transcranial Magnetic Stimulation (rTMS) of the primary motor cortex (M1) on these measures. Twenty-four healthy subjects underwent quantitative sensory testing before and after active or sham 10 Hz rTMS (1200 stimuli) of the left M1, during separate sessions. We did not observe any rTMS-related changes in the HPT or visual analogue scale (VAS) values recorded during the constant trial. Of note, at baseline, we did not find OA at the thenar eminence. Only after active rTMS did we detect significantly reduced VAS values during dynamic heat stimuli, indicating a delayed and attenuated OA phenomenon. rTMS of the left M1 may activate remote brain areas that belong to the descending pain modulatory and reward systems involved in the OA phenomenon. Our findings provide insights into the mechanisms by which rTMS of M1 could exert its analgesic effects.
Collapse
Affiliation(s)
- Giuseppe Cosentino
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Elisa Antoniazzi
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Camilla Cavigioli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Vanessa Tang
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giulia Tammam
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Chiara Zaffina
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Massimiliano Todisco
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| |
Collapse
|
8
|
Thakkar B, Peterson CL, Acevedo EO. Prolonged continuous theta burst stimulation increases motor corticospinal excitability and intracortical inhibition in patients with neuropathic pain: An exploratory, single-blinded, randomized controlled trial. Neurophysiol Clin 2023; 53:102894. [PMID: 37659135 PMCID: PMC10592401 DOI: 10.1016/j.neucli.2023.102894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 09/04/2023] Open
Abstract
OBJECTIVES A new paradigm for Transcranial Magnetic Stimulation (TMS), referred to as prolonged continuous theta burst stimulation (pcTBS), has recently received attention in the literature because of its advantages over high frequency repetitive TMS (HF-rTMS). Clinical advantages include less time per intervention session and the effects appear to be more robust and reproducible than HF-rTMS to modulate cortical excitability. HF-rTMS targeted at the primary motor cortex (M1) has demonstrated analgesic effects in patients with neuropathic pain but their mechanisms of action are unclear and pcTBS has been studied in healthy subjects only. This study examined the neural mechanisms that have been proposed to play a role in explaining the effects of pcTBS targeted at the M1 and DLPFC brain regions in neuropathic pain (NP) patients with Type 2 diabetes. METHODS Forty-two patients with painful diabetic neuropathy were randomized to receive a single session of pcTBS targeted at the left M1 or left DLPFC. pcTBS stimulation consisted of 1,200 pulses delivered in 1 min and 44 s with a 35-45 min gap between sham and active pcTBS stimulation. Both the activity of the descending pain system which was examined using conditioned pain modulation and the activity of the ascending pain system which was assessed using temporal summation of pain were recorded using a handheld pressure algometer by measuring pressure pain thresholds. The amplitude of the motor evoked potential (MEP) was used to measure motor corticospinal excitability and GABA activity was assessed using short (SICI) and long intracortical inhibition (LICI). All these measurements were performed at baseline and post-pcTBS stimulation. RESULTS Following a single session of pcTBS targeted at M1 and DLPFC, there was no change in BPI-DN scores and on the activity of the descending (measured using conditioned pain modulation) and ascending pain systems (measured using temporal summation of pain) compared to baseline but there was a significant improvement of >13% in perception of acute pain intensity, increased motor corticospinal excitability (measured using MEP amplitude) and intracortical inhibition (measured using SICI and LICI). CONCLUSION In patients with NP, a single session of pcTBS targeted at the M1 and DLPFC modulated the neurophysiological mechanisms related to motor corticospinal excitability and neurochemical mechanisms linked to GABA activity, but it did not modulate the activity of the ascending and descending endogenous modulatory systems. In addition, although BPI-DN scores did not change, there was a 13% improvement in self-reported perception of acute pain intensity.
Collapse
Affiliation(s)
- Bhushan Thakkar
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA, United States.
| | - Carrie L Peterson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Edmund O Acevedo
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
9
|
Harmelech T, Hanlon CA, Tendler A. Transcranial Magnetic Stimulation as a Tool to Promote Smoking Cessation and Decrease Drug and Alcohol Use. Brain Sci 2023; 13:1072. [PMID: 37509004 PMCID: PMC10377606 DOI: 10.3390/brainsci13071072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive, drug-free, neural-circuit-based therapeutic tool that was recently cleared by the United States Food and Drug Associate for the treatment of smoking cessation. TMS has been investigated as a tool to reduce consumption and craving for many other substance use disorders (SUDs). This review starts with a discussion of neural networks involved in the addiction process. It then provides a framework for the therapeutic efficacy of TMS describing the role of executive control circuits, default mode, and salience circuits as putative targets for neuromodulation (via targeting the DLPFC, MPFC, cingulate, and insula bilaterally). A series of the largest studies of TMS in SUDs are listed and discussed in the context of this framework. Our review concludes with an assessment of the current state of knowledge regarding the use of rTMS as a therapeutic tool in reducing drug, alcohol, and nicotine use and identifies gaps in the literature that need to be addressed in future studies. Namely, while the presumed mechanism through which TMS exerts its effects is by modulating the functional connectivity circuits involved in executive control and salience of drug-related cues, it is also possible that TMS has direct effects on subcortical dopamine, a hypothesis that could be explored in greater detail with PET imaging.
Collapse
Affiliation(s)
| | - Colleen A Hanlon
- BrainsWay Ltd., Winston-Salem, NC 27106, USA
- Wake Forest School of Medicine, Winston-Salem, NC 27106, USA
| | - Aron Tendler
- BrainsWay Ltd., Winston-Salem, NC 27106, USA
- Department of Life Sciences, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
10
|
Motzkin JC, Kanungo I, D’Esposito M, Shirvalkar P. Network targets for therapeutic brain stimulation: towards personalized therapy for pain. FRONTIERS IN PAIN RESEARCH 2023; 4:1156108. [PMID: 37363755 PMCID: PMC10286871 DOI: 10.3389/fpain.2023.1156108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Precision neuromodulation of central brain circuits is a promising emerging therapeutic modality for a variety of neuropsychiatric disorders. Reliably identifying in whom, where, and in what context to provide brain stimulation for optimal pain relief are fundamental challenges limiting the widespread implementation of central neuromodulation treatments for chronic pain. Current approaches to brain stimulation target empirically derived regions of interest to the disorder or targets with strong connections to these regions. However, complex, multidimensional experiences like chronic pain are more closely linked to patterns of coordinated activity across distributed large-scale functional networks. Recent advances in precision network neuroscience indicate that these networks are highly variable in their neuroanatomical organization across individuals. Here we review accumulating evidence that variable central representations of pain will likely pose a major barrier to implementation of population-derived analgesic brain stimulation targets. We propose network-level estimates as a more valid, robust, and reliable way to stratify personalized candidate regions. Finally, we review key background, methods, and implications for developing network topology-informed brain stimulation targets for chronic pain.
Collapse
Affiliation(s)
- Julian C. Motzkin
- Departments of Neurology and Anesthesia and Perioperative Care (Pain Management), University of California, San Francisco, San Francisco, CA, United States
| | - Ishan Kanungo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Mark D’Esposito
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Prasad Shirvalkar
- Departments of Neurology and Anesthesia and Perioperative Care (Pain Management), University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
11
|
Cheng M, Che X, Ye Y, He C, Yu L, Lv Y, Fitzgerald PB, Cash RFH, Fitzgibbon BM. Analgesic efficacy of theta-burst stimulation for postoperative pain. Clin Neurophysiol 2023; 149:81-87. [PMID: 36933324 DOI: 10.1016/j.clinph.2023.02.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) may be a relevant method to assist postoperative pain. However, studies to date have only used conventional 10 Hz rTMS and targeted the DLPFC for postoperative pain. A more recent form of rTMS, termed intermittent Theta Burst Stimulation (iTBS), enables to increase cortical excitability in a short period of time. This preliminary double-blind, randomised, sham controlled study was designed to evaluate the efficacy of iTBS in postoperative care across two distinct stimulation targets. METHODS A group of 45 patients post laparoscopic surgery were randomised to receive a single session of iTBS over either the dorsolateral prefrontal cortex (DLPFC), primary motor cortex (M1), or Sham stimulation (1:1:1 ratio). Outcome measurements were number of pump attempts, total anaesthetic volume used, and self-rated pain experience, assessed at 1 hour, 6 hours, 24 hours, and 48 hours post stimulation. All randomised patients were analysed (n = 15 in each group). RESULTS Compared to Sham stimulation, DLPFC-iTBS reduced pump attempts at 6 (DLPFC = 0.73 ± 0.88, Sham = 2.36 ± 1.65, P = 0.031), 24 (DLPFC = 1.40 ± 1.24, Sham = 5.03 ± 3.87, P = 0.008), and 48 (DLPFC = 1.47 ± 1.41, Sham = 5.87 ± 4.34, P = 0.014) hours post-surgery, whereby M1 stimulation had no effect. No group effect was observed on total anaesthetics, which was mainly provided through the continuous administration of opioids at a set speed for each group. There was also no group or interaction effect on pain ratings. Pump attempts were positively associated with pain ratings in the DLPFC (r = 0.59, P = 0.02) and M1 (r = 0.56, P = 0.03) stimulation. CONCLUSIONS Our findings show that iTBS to the DLPFC reduces pump attempts for additional anaesthetics following a laparoscopic surgery. However, reduced pump attempts by DLPFC stimulation did not translate into a significantly smaller volume of total anaesthetic, due to the continuous administration of opioids at a set speed for each group. SIGNIFICANCE Our findings therefore provide preliminary evidence for iTBS targeting the DLPFC to be used to improve postoperative pain management.
Collapse
Affiliation(s)
- Ming Cheng
- Anaesthesiologic Department, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.
| | - Yang Ye
- Centre for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| | - Changlin He
- Anaesthesiologic Department, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Liang Yu
- Department of Pain, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yating Lv
- Centre for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| | - Paul B Fitzgerald
- School of Medicine and Psychology, The Australian National University, Australian Capital Territory, Australia
| | - Robin F H Cash
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Victoria, Australia; Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia
| | - Bernadette M Fitzgibbon
- School of Medicine and Psychology, The Australian National University, Australian Capital Territory, Australia; Monarch Research Institute, Monarch Mental Health Group, Australia; Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
12
|
Transcranial random noise stimulation over the left dorsolateral prefrontal cortex attenuates pain expectation and perception. Clin Neurophysiol 2023; 147:1-10. [PMID: 36608385 DOI: 10.1016/j.clinph.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The dorsolateral prefrontal cortex (DLPFC) has been increasingly used as a neuromodulatory target in pain management. Transcranial random noise stimulation (tRNS) was shown to effectively elevate cortical excitability. Hence, this study aimed to characterize how tRNS over the left DLPFC affects pain expectation and perception, as well as the efficacy of conditioned-pain modulation (CPM) that reflects the function of the endogenous pain-inhibitory pathway. METHODS Using a randomized, double-blinded, and sham-controlled design, healthy participants were randomly recruited to receive tRNS with a direct current offset or sham stimulation. Their expectations and perceptions of painful electrocutaneous stimuli, as well as CPM efficacy were assessed before, immediately after, and 30 min after tRNS. RESULTS Compared with sham stimulation, perceived-pain ratings to the painful stimuli, and expected-pain ratings before painful stimuli, attenuated immediately after tRNS, whereas this analgesic effect was ineffective 30 min after tRNS. Importantly, the immediate analgesia induced by tRNS could be accounted for by tRNS effect on attenuating expected-pain ratings before certain painful stimuli. However, CPM efficacy was not significantly affected by tRNS. CONCLUSIONS These results demonstrate analgesia immediately after applying tRNS over the left DLPFC. SIGNIFICANCE This study provides evidence for analgesia of DLPFC-tRNS on an experimental pain model.
Collapse
|
13
|
Georgopoulos V, Akin-Akinyosoye K, Smith S, McWilliams DF, Hendrick P, Walsh DA. An observational study of centrally facilitated pain in individuals with chronic low back pain. Pain Rep 2022; 7:e1003. [PMID: 35441119 PMCID: PMC9012603 DOI: 10.1097/pr9.0000000000001003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/05/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Central pain facilitation can hinder recovery in people with chronic low back pain (CLBP). Objectives The objective of this observational study was to investigate whether indices of centrally facilitated pain are associated with pain outcomes in a hospital-based cohort of individuals with CLBP undertaking a pain management programme. Methods Participants provided self-report and pain sensitivity data at baseline (n = 97) and again 3 months (n = 87) after a cognitive behavioural therapy-based group intervention including physiotherapy. Indices of centrally facilitated pain were pressure pain detection threshold, temporal summation and conditioned pain modulation at the forearm, Widespread Pain Index (WPI) classified using a body manikin, and a Central Mechanisms Trait (CMT) factor derived from 8 self-reported characteristics of anxiety, depression, neuropathic pain, fatigue, cognitive dysfunction, pain distribution, catastrophizing, and sleep. Pain severity was a composite factor derived from Numerical Rating Scales. Cross-sectional and longitudinal regression models were adjusted for age and sex. Results Baseline CMT and WPI each was associated with higher pain severity (CMT: r = 0.50, P < 0.001; WPI: r = 0.21, P = 0.04) at baseline and at 3 months (CMT: r = 0.38, P < 0.001; WPI: r = 0.24, P = 0.02). High baseline CMT remained significantly associated with pain at 3 months after additional adjustment for baseline pain (β = 2.45, P = 0.04, R 2 = 0.25, P < 0.0001). Quantitative sensory testing indices of pain hypersensitivity were not significantly associated with pain outcomes at baseline or at 3 months. Conclusion Central mechanisms beyond those captured by quantitative sensory testing are associated with poor CLBP outcome and might be targets for improved therapy.
Collapse
Affiliation(s)
- Vasileios Georgopoulos
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham BRC, University of Nottingham, Nottingham, United Kingdom
| | - Kehinde Akin-Akinyosoye
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, United Kingdom
| | - Stephanie Smith
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, United Kingdom
| | - Daniel F. McWilliams
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, United Kingdom
| | - Paul Hendrick
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, United Kingdom
- Physiotherapy, School of Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - David A. Walsh
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham BRC, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
14
|
Bazzari AH, Bazzari FH. Advances in targeting central sensitization and brain plasticity in chronic pain. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00472-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AbstractMaladaptation in sensory neural plasticity of nociceptive pathways is associated with various types of chronic pain through central sensitization and remodeling of brain connectivity. Within this context, extensive research has been conducted to evaluate the mechanisms and efficacy of certain non-pharmacological pain treatment modalities. These include neurostimulation, virtual reality, cognitive therapy and rehabilitation. Here, we summarize the involved mechanisms and review novel findings in relation to nociceptive desensitization and modulation of plasticity for the management of intractable chronic pain and prevention of acute-to-chronic pain transition.
Collapse
|
15
|
Shaping plasticity with non-invasive brain stimulation in the treatment of psychiatric disorders: Present and future. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:497-507. [PMID: 35034757 PMCID: PMC9985830 DOI: 10.1016/b978-0-12-819410-2.00028-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The final chapter of this book addresses plasticity in the setting of treating psychiatric disorders. This chapter largely focuses on the treatment of depression and reviews the established antidepressant brain stimulation treatments, focusing on plasticity and maladaptive plasticity. Depression is a unique neuropsychiatric disease in that the brain goes from a healthy state into a pathologic state, and then, with appropriate treatment, can return to health often without permanent sequelae. Depression thus differs fundamentally from neurodegenerative brain diseases like Parkinson's disease or stroke. Some have theorized that depression involves a lack of flexibility or a lack of plasticity. The proven brain stimulation methods for treating depression cause plastic changes and include acute and maintenance electroconvulsive therapy (ECT), acute and maintenance transcranial magnetic stimulation (TMS), and chronically implanted cervical vagus nerve stimulation (VNS). These treatments vary widely in their speed of onset and durability. This variability in onset speed and durability raises interesting, and so far, largely unanswered questions about the underlying neurobiological mechanisms and forms of plasticity being invoked. The chapter also covers exciting recent work with vagus nerve stimulation (VNS) that is delivered paired with behaviors to cause learning and memory and plasticity changes. Taken together these current and future brain stimulation treatments for psychiatric disorders are especially promising. They are unlocking how to shape the brain in diseases to restore balance and health, with an increasing understanding of how to effectively and precisely induce therapeutic neuroplastic changes in the brain.
Collapse
|
16
|
Lubejko ST, Graham RD, Livrizzi G, Schaefer R, Banghart MR, Creed MC. The role of endogenous opioid neuropeptides in neurostimulation-driven analgesia. Front Syst Neurosci 2022; 16:1044686. [PMID: 36591324 PMCID: PMC9794630 DOI: 10.3389/fnsys.2022.1044686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the prevalence of chronic pain worldwide, there is an urgent need to improve pain management strategies. While opioid drugs have long been used to treat chronic pain, their use is severely limited by adverse effects and abuse liability. Neurostimulation techniques have emerged as a promising option for chronic pain that is refractory to other treatments. While different neurostimulation strategies have been applied to many neural structures implicated in pain processing, there is variability in efficacy between patients, underscoring the need to optimize neurostimulation techniques for use in pain management. This optimization requires a deeper understanding of the mechanisms underlying neurostimulation-induced pain relief. Here, we discuss the most commonly used neurostimulation techniques for treating chronic pain. We present evidence that neurostimulation-induced analgesia is in part driven by the release of endogenous opioids and that this endogenous opioid release is a common endpoint between different methods of neurostimulation. Finally, we introduce technological and clinical innovations that are being explored to optimize neurostimulation techniques for the treatment of pain, including multidisciplinary efforts between neuroscience research and clinical treatment that may refine the efficacy of neurostimulation based on its underlying mechanisms.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert D. Graham
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert Schaefer
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Matthew R. Banghart,
| | - Meaghan C. Creed
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Meaghan C. Creed,
| |
Collapse
|
17
|
Badran BW, Caulfield KA, Stomberg-Firestein S, Summers PM, Dowdle LT, Savoca M, Li X, Austelle CW, Short EB, Borckardt JJ, Spivak N, Bystritsky A, George MS. Sonication of the Anterior Thalamus With MRI-Guided Transcranial Focused Ultrasound (tFUS) Alters Pain Thresholds in Healthy Adults: A Double-Blind, Sham-Controlled Study. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:90-99. [PMID: 35746940 PMCID: PMC9063607 DOI: 10.1176/appi.focus.20109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 01/03/2023]
Abstract
(Appeared originally in Brain Stimulation 2020; 13:1805-1812) Reprinted with permission from Elsevier.
Collapse
|
18
|
Arbiters of endogenous opioid analgesia: role of CNS estrogenic and glutamatergic systems. Transl Res 2021; 234:31-42. [PMID: 33567346 PMCID: PMC8217383 DOI: 10.1016/j.trsl.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/24/2022]
Abstract
Nociception and opioid antinociception in females are pliable processes, varying qualitatively and quantitatively over the reproductive cycle. Spinal estrogenic signaling via membrane estrogen receptors (mERs), in combination with multiple other signaling molecules [spinal dynorphin, kappa-opioid receptors (KOR), glutamate and metabotropic glutamate receptor 1 (mGluR1)], appears to function as a master coordinator, parsing functionality between pronociception and antinociception. This provides a window into pharmacologically accessing intrinsic opioid analgesic/anti-allodynic systems. In diestrus, membrane estrogen receptor alpha (mERα) signals via mGluR1 to suppress spinal endomorphin 2 (EM2) analgesia. Strikingly, in the absence of exogenous opioids, interfering with this suppression in a chronic pain model elicits opioid anti-allodynia, revealing contributions of endogenous opioid(s). In proestrus, robust spinal EM2 analgesia is manifest but this requires spinal dynorphin/KOR and glutamate-activated mGluR1. Furthermore, spinal mGluR1 blockade in a proestrus chronic pain animal (eliminating spinal EM2 analgesia) exacerbates mechanical allodynia, revealing tempering by endogenous opioid(s). A complex containing mu-opioid receptor, KOR, aromatase, mGluRs, and mERα are foundational to eliciting endogenous opioid anti-allodynia. Aromatase-mERα oligomers are also plentiful, in a central nervous system region-specific fashion. These can be independently regulated and allow estrogens to act intracellularly within the same signaling complex in which they are synthesized, explaining asynchronous relationships between circulating estrogens and central nervous system estrogen functionalities. Observations with EM2 highlight the translational relevance of extensively characterizing exogenous responsiveness to endogenous opioids and the neuronal circuits that mediate them along with the multiplicity of estrogenic systems that concomitantly function in phase and out-of-phase with the reproductive cycle.
Collapse
|
19
|
Tan LL, Kuner R. Neocortical circuits in pain and pain relief. Nat Rev Neurosci 2021; 22:458-471. [PMID: 34127843 DOI: 10.1038/s41583-021-00468-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
The sensory, associative and limbic neocortical structures play a critical role in shaping incoming noxious inputs to generate variable pain perceptions. Technological advances in tracing circuitry and interrogation of pathways and complex behaviours are now yielding critical knowledge of neocortical circuits, cellular contributions and causal relationships between pain perception and its abnormalities in chronic pain. Emerging insights into neocortical pain processing suggest the existence of neocortical causality and specificity for pain at the level of subdomains, circuits and cellular entities and the activity patterns they encode. These mechanisms provide opportunities for therapeutic intervention for improved pain management.
Collapse
Affiliation(s)
- Linette Liqi Tan
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
20
|
Che X, Cash RFH, Luo X, Luo H, Lu X, Xu F, Zang YF, Fitzgerald PB, Fitzgibbon BM. High-frequency rTMS over the dorsolateral prefrontal cortex on chronic and provoked pain: A systematic review and meta-analysis. Brain Stimul 2021; 14:1135-1146. [PMID: 34280583 DOI: 10.1016/j.brs.2021.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND High-frequency rTMS over the dorsolateral prefrontal cortex (DLPFC) has demonstrated mixed effects on chronic and provoked pain. OBJECTIVES/METHODS In this study, a meta-analysis was conducted to characterise the potential analgesic effects of high-frequency rTMS over the DLPFC on both chronic and provoked pain. RESULTS A total of 626 studies were identified in a systematic search. Twenty-six eligible studies were included for the quantitative review, among which 17 modulated chronic pain and the remaining investigated the influence on provoked pain. The left side DLPFC was uniformly targeted in the chronic pain studies. While our data identified no overall effect of TMS across chronic pain conditions, there was a significant short-term analgesia in neuropathic pain conditions only (SMD = -0.87). In terms of long-lasting analgesia, there was an overall pain reduction in the midterm (SMD = -0.53, 24.6 days average) and long term (SMD = -0.63, 3 months average) post DLPFC stimulation, although these effects were not observed within specific chronic pain conditions. Surprisingly, the number of sessions was demonstrated to have no impact on rTMS analgesia. In the analysis of provoked pain, our data also indicated a significant analgesic effect following HF-rTMS over the DLPFC (SMD = -0.73). Importantly, we identified a publication bias in the studies of provoked pain but not for chronic pain conditions. CONCLUSIONS Overall, our findings support that HF-DLPFC stimulation is able to induce an analgesic effect in chronic pain and in response to provoked pain. These results highlight the potential of DLPFC-rTMS in the management of certain chronic pain conditions and future directions are discussed to enhance the potential long-term analgesic effects.
Collapse
Affiliation(s)
- Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.
| | - Robin F H Cash
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Victoria, Australia; Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia
| | - Xi Luo
- Shenzhen Key Laboratory of Affective and Social Cognitive Science, School of Psychology, Shenzhen University, Shenzhen, China
| | - Hong Luo
- Children and Adolescents Mental Health Joint Clinic, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xiaodong Lu
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Feng Xu
- Shenzhen Yingchi Technology Co., Ltd, China
| | - Yu-Feng Zang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Paul B Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Victoria, Australia
| | - Bernadette M Fitzgibbon
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Australia
| |
Collapse
|
21
|
Aizawa Y, Morishita J, Kano M, Kanazawa M, Fukudo S. Modification of rectal function and emotion by repetitive transcranial magnetic stimulation in humans. Neurosci Res 2021; 168:54-63. [PMID: 34062217 DOI: 10.1016/j.neures.2021.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/02/2023]
Abstract
Gut microbiota may affect function of the dorsolateral prefrontal cortex (DLPFC). However, there have been a few studies on modification of brain-gut interactions with repetitive transcranial magnetic stimulation (rTMS) to the DLPFC. We hypothesized that stimulation of the right or left DPFC by rTMS modifies the brain-gut interactions in humans. Subjects were 25 healthy males. Viscerosensory evoked potential (VEP) with sham (0 mA) or actual (30 mA) electrical stimulation (ES) of the rectum was taken after sham, low frequency rTMS at 0.1 Hz, and high frequency rTMS at 10 Hz to the right or left DLPFC. Rectal tone was measured with a rectal barostat. Visceral perception and emotion were analyzed using ordinates scale, rectal barostat, and viscerosensory evoked potential. Low frequency rTMS to the right DLPFC significantly reduced the visceral sensation and emotion composite score evoked by ES at 30 mA (p < 0.05). Plasma ACTH was significantly increased by high frequency rTMS to the right or left DLPFC (p < 0.05). Rectal fine contractions were significantly induced by low frequency rTMS to the right or left DLPFC and high frequency rTMS to the right DLPFC (p < 0.05). These results suggest that stimulation of the right or left DPFC by rTMS modifies the brain-gut interactions in humans.
Collapse
Affiliation(s)
- Yuuichi Aizawa
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai, 980-8575, Japan
| | - Joe Morishita
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai, 980-8575, Japan
| | - Michiko Kano
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai, 980-8575, Japan
| | - Motoyori Kanazawa
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai, 980-8575, Japan
| | - Shin Fukudo
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai, 980-8575, Japan.
| |
Collapse
|
22
|
Bilir I, Askin A, Sengul I, Tosun A. Effects of High-Frequency Neuronavigated Repetitive Transcranial Magnetic Stimulation in Fibromyalgia Syndrome: A Double-Blinded, Randomized Controlled Study. Am J Phys Med Rehabil 2021; 100:138-146. [PMID: 32701637 DOI: 10.1097/phm.0000000000001536] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The primary aim of the study was to investigate the effect of 10-Hz repetitive transcranial magnetic stimulation to the left dorsolateral prefrontal cortex on pain in fibromyalgia. Secondary aims were to determine its effects on stiffness, fatigue, quality of life, depression/anxiety, and cognitive functions. DESIGN Twenty participants were randomized into two groups. Group A received 10-Hz repetitive transcranial magnetic stimulation to left dorsolateral prefrontal cortex and group B received sham stimulation. Visual analog scale for pain, visual analog scale-stiffness, Fibromyalgia Impact Questionnaire, and Fatigue Severity Scale were assessed at the baseline, 2nd, and 6th weeks, whereas Hospital Anxiety Depression Scale and Addenbrooke's cognitive examination were assessed at the baseline and 6th week. RESULTS There was no significant difference in visual analog scale-pain and Fatigue Severity Scale within and between groups over time (P > 0.05). In group A, significant improvement was found in visual analog scale-stiffness and fibromyalgia impact questionnaire at the 2nd week in comparison to the baseline (P < 0.05). However, no significant difference was detected in comparison with group B. There was no significant change in Hospital Anxiety Depression Scale scores between and within groups. All cognitive measures were similar in terms of differences from baseline between the groups (P > 0.05). CONCLUSIONS High-frequency repetitive transcranial magnetic stimulation to the left dorsolateral prefrontal cortex did not show any significant beneficial effect on pain, stiffness, fatigue, quality of life, mood, and cognitive state over sham stimulation.
Collapse
Affiliation(s)
- Ibrahim Bilir
- From the Department of Physical Medicine and Rehabilitation, Katip Çelebi University, Faculty of Medicine, Izmir, Turkey
| | | | | | | |
Collapse
|
23
|
Iwata K, Takamatsu Y, Doi N, Ikeda K. Enhancement of morphine-induced antinociception after electroconvulsive shock in mice. Mol Pain 2021; 17:1744806921992628. [PMID: 33599155 PMCID: PMC7897827 DOI: 10.1177/1744806921992628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/26/2020] [Accepted: 01/07/2021] [Indexed: 11/24/2022] Open
Abstract
Electroconvulsive therapy (ECT) has been applied for chronic pain for decades. The amounts of opioids to treat pain are sometimes reduced after a series of ECT. The effect of ECT on morphine-induced analgesia and its mechanism underlying the reduction of morphine requirement has yet to be clarified. Therefore, we administered electroconvulsive shocks (ECS) to mice and investigated the antinociceptive effect of morphine in a hot plate test. We examined the expression level of µ-opioid receptor in the thalami of mice 25 h after administration of ECS compared to the thalami of mice without ECS administration using western blotting. ECS disturbed the development of a decrease in the percentage of maximal possible effect (%MPE), which was observed 24 h after a morphine injection, when ECS was applied 25, 23, 21, and 12 h before the second administration of morphine. We also examined the effect of ECS on the dose-response curve of %MPE to morphine-antinociception. Twenty-five hours after ECS, the dose-response curve was shifted to the left, and the EC50 of morphine given to ECS-pretreated mice decreased by 30.1% compared to the mice that were not pretreated with ECS. We also found that the expression level of µ-opioid receptors was significantly increased after ECS administration. These results confirm previous clinical reports showing that ECT decreased the required dose of opioids in neuropathic pain patients and suggest the hypothesis that this effect of ECT works through the thalamus.
Collapse
Affiliation(s)
- Ken Iwata
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Neuropsychiatry, Tokyo Metropolitan Hiroo General Hospital, Tokyo, Japan
| | - Yukio Takamatsu
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Nagafumi Doi
- The former president, Ibaraki Prefectural Medical Center of Psychiatry, Ibaraki, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
24
|
Imperatore JP, McCalley DM, Borckardt JJ, Brady KT, Hanlon CA. Non-invasive brain stimulation as a tool to decrease chronic pain in current opiate users: A parametric evaluation of two promising cortical targets. Drug Alcohol Depend 2021; 218:108409. [PMID: 33250384 PMCID: PMC8562904 DOI: 10.1016/j.drugalcdep.2020.108409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Poorly controlled chronic pain can lead to non-prescription use of opiates, which is a growing crisis in our communities. Transcranial magnetic stimulation (TMS) is a non-invasive therapeutic tool which has emerged as a potential treatment option for these patients. It is still unclear, however, if the dorsolateral prefrontal cortex (DLPFC) or the motor cortex (MC) is a more effective treatment location. The purpose of this study was to directly compare the effects of DLPFC versus MC TMS on pain severity and the urge to use opiates among chronic pain patients. METHODS Twenty-two individuals with chronic pain currently using prescription opiates were randomized to receive 10, 3000 pulse sessions of 10 Hz repetitive TMS (rTMS) to the left DLPFC (110% resting motor threshold) or left MC (90% resting motor threshold). Multivariate linear models were used to evaluate the effect of TMS on pain and opiate use, including items from the Brief Pain Inventory (BPI) as well as subjective ratings of pain, distress, and the urge for opiates. RESULTS Twenty participants (91%) completed all 10 treatment sessions and follow up visits. There was a main effect of stimulation site (F7,210 = 3.742, p = 0.001), wherein MC stimulation decreased pain interference significantly more than DLPFC stimulation (F1,216 = 8.447, p = 0.004). While both sites had comparable effect sizes on stress, pain, and discomfort, MC stimulation had larger effects on pain interference (Cohen's d: 0.7) and urge to use opiates (Cohen's d: 0.5) than DLPFC stimulation. CONCLUSION These data suggest that the MC may be a promising target for decreasing opiate dependence and pain interference among chronic pain patients.
Collapse
Affiliation(s)
- Julia P Imperatore
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Daniel M McCalley
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Jeffrey J Borckardt
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Kathleen T Brady
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Colleen A Hanlon
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
25
|
Badran BW, Caulfield KA, Stomberg-Firestein S, Summers PM, Dowdle LT, Savoca M, Li X, Austelle CW, Short EB, Borckardt JJ, Spivak N, Bystritsky A, George MS. Sonication of the anterior thalamus with MRI-Guided transcranial focused ultrasound (tFUS) alters pain thresholds in healthy adults: A double-blind, sham-controlled study. Brain Stimul 2020; 13:1805-1812. [PMID: 33127579 PMCID: PMC7888561 DOI: 10.1016/j.brs.2020.10.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Transcranial focused ultrasound (tFUS) is a noninvasive brain stimulation method that may modulate deep brain structures. This study investigates whether sonication of the right anterior thalamus would modulate thermal pain thresholds in healthy individuals. Methods: We enrolled 19 healthy individuals in this three-visit, double-blind, sham-controlled, crossover trial. Participants first underwent a structural MRI scan used solely for tFUS targeting. They then attended two identical experimental tFUS visits (counterbalanced by condition) at least one week apart. Within the MRI scanner, participants received two, 10-min sessions of either active or sham tFUS spread 10 min apart targeting the right anterior thalamus [fundamental frequency: 650 kHz, Pulse repetition frequency: 10 Hz, Pulse Width: 5 ms, Duty Cycle: 5%, Sonication Duration: 30s, Inter-Sonication Interval: 30 s, Number of Sonications: 10, ISPTA.0 995 mW/cm2, ISPTA.3 719 mW/cm2, Peak rarefactional pressure 0.72 MPa]. The primary outcome measure was quantitative sensory thresholding (QST), measuring sensory, pain, and tolerance thresholds to a thermal stimulus applied to the left forearm before and after right anterior thalamic tFUS. Results: The right anterior thalamus was accurately sonicated in 17 of the 19 subjects. Thermal pain sensitivity was significantly attenuated after active tFUS. The pre-post x active-sham interaction was significant (F(1,245.95) = 4.03, p = .046). This interaction indicates that in the sham stimulation condition, thermal pain thresholds decreased 1.08 °C (SE = 0.28) pre-post session, but only decreased .51 °C (SE = 0.30) pre-post session in the active stimulation group. Conclusions: Two 10-min sessions of anterior thalamic tFUS induces antinociceptive effects in healthy individuals. Future studies should optimize the parameter space, dose and duration of this effect which may lead to multi-session tFUS interventions for pain disorders.
Collapse
Affiliation(s)
- Bashar W Badran
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Kevin A Caulfield
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Sasha Stomberg-Firestein
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Philipp M Summers
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Logan T Dowdle
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Matt Savoca
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Xingbao Li
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Christopher W Austelle
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - E Baron Short
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Jeffrey J Borckardt
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Norman Spivak
- University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Mark S George
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
26
|
Beach PA, Cowan RL, Dietrich MS, Bruehl SP, Atalla SW, Monroe TB. Thermal Psychophysics and Associated Brain Activation Patterns Along a Continuum of Healthy Aging. PAIN MEDICINE (MALDEN, MASS.) 2020; 21:1779-1792. [PMID: 31769853 PMCID: PMC7553022 DOI: 10.1093/pm/pnz281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To examine psychophysical and brain activation patterns to innocuous and painful thermal stimulation along a continuum of healthy older adults. DESIGN Single center, cross-sectional, within-subjects design. METHODS Thermal perceptual psychophysics (warmth, mild, and moderate pain) were tested in 37 healthy older adults (65-97 years, median = 73 years). Percept thresholds (oC) and unpleasantness ratings (0-20 scale) were obtained and then applied during functional magnetic resonance imaging scanning. General linear modeling assessed effects of age on psychophysical results. Multiple linear regressions were used to test the main and interaction effects of brain activation against age and psychophysical reports. Specifically, differential age effects were examined by comparing percent-signal change slopes between those above/below age 73 (a median split). RESULTS Advancing age was associated with greater thresholds for thermal perception (z = 2.09, P = 0.037), which was driven by age and warmth detection correlation (r = 0.33, P = 0.048). Greater warmth detection thresholds were associated with reduced hippocampal activation in "older" vs "younger" individuals (>/<73 years; beta < 0.40, P < 0.01). Advancing age, in general, was correlated with greater activation of the middle cingulate gyrus (beta > 0.44, P < 0.01) during mild pain. Differential age effects were found for prefrontal activation during moderate pain. In "older" individuals, higher moderate pain thresholds and greater degrees of moderate pain unpleasantness correlated with lesser prefrontal activation (anterolateral prefrontal cortex and middle-frontal operculum; beta < -0.39, P < 0.009); the opposite pattern was found in "younger" individuals. CONCLUSIONS Advancing age may lead to altered thermal sensation and (in some circumstances) altered pain perception secondary to age-related changes in attention/novelty detection and cognitive functions.
Collapse
Affiliation(s)
- Paul A Beach
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Ronald L Cowan
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mary S Dietrich
- Biostatistics, School of Medicine and School of Nursing, Vanderbilt University, Nashville, Tennessee
| | - Stephen P Bruehl
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sebastian W Atalla
- Center of Healthy Aging, The Ohio State University College of Nursing, Columbus, Ohio, USA
| | - Todd B Monroe
- Center of Healthy Aging, The Ohio State University College of Nursing, Columbus, Ohio, USA
| |
Collapse
|
27
|
Ward HB, Mosquera MJ, Suzuki J, Mariano TY. A Systematic Review of Noninvasive Brain Stimulation for Opioid Use Disorder. Neuromodulation 2020; 23:301-311. [PMID: 32059080 PMCID: PMC11528323 DOI: 10.1111/ner.13108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/20/2019] [Accepted: 01/02/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND There is a great public health need to identify novel treatment strategies for opioid use disorder (OUD) in order to reduce relapse and overdose. Noninvasive brain stimulation (NIBS) has demonstrated preliminary effectiveness for substance use, but little is known about its use in OUD. Neuromodulation may represent a potential adjunctive treatment modality for OUD, so we conducted a systematic review to understand the state of the current research in this field. METHODS We conducted a systematic review of studies using noninvasive brain stimulation to affect clinical outcomes related to substance use for adults with opioid use disorder. We searched the following online databases: PubMed, The Cochrane Library, PsycINFO (EBSCOhost, 1872-present), and Science Citation Index Expanded (ISI Web of Science, 1945-present). All studies that measured clinical outcomes related to substance use, including cue-induced craving, were included. We assessed risk of bias using the Cochrane Handbook. RESULTS The initial search yielded 5590 studies after duplicates were removed. After screening titles and abstracts, 14 full-text studies were assessed for eligibility. Five studies were determined to meet inclusion criteria with a combined total subjects of N = 150. Given the paucity of studies and small number of total subjects, no quantitative analysis was performed. These studies used TMS (n = 3), tDCS (n = 1), and the BRIDGE device (n = 1), a noninvasive percutaneous electrical nerve field stimulator, to reduce cue-induced craving (n = 3), reduce clinical withdrawal symptoms (n = 1), or measure substance-use-related cortical plasticity (n = 1). CONCLUSIONS There is a dearth of research in the area of noninvasive brain stimulation for OUD. NIBS represents a novel treatment modality that should be further investigated for OUD.
Collapse
Affiliation(s)
- Heather B. Ward
- Department of Psychiatry, Brigham & Women’s Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Matthew J. Mosquera
- Department of Psychiatry, Brigham & Women’s Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Joji Suzuki
- Department of Psychiatry, Brigham & Women’s Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Timothy Y. Mariano
- Department of Psychiatry, Brigham & Women’s Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Butler Hospital, Providence, RI, USA
- Center for Neurorestoration and Neurotechnology, Providence Veterans Affairs Medical Center, Providence, RI, USA
| |
Collapse
|
28
|
Leung A, Shirvalkar P, Chen R, Kuluva J, Vaninetti M, Bermudes R, Poree L, Wassermann EM, Kopell B, Levy R. Transcranial Magnetic Stimulation for Pain, Headache, and Comorbid Depression: INS-NANS Expert Consensus Panel Review and Recommendation. Neuromodulation 2020; 23:267-290. [PMID: 32212288 DOI: 10.1111/ner.13094] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/27/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND While transcranial magnetic stimulation (TMS) has been studied for the treatment of psychiatric disorders, emerging evidence supports its use for pain and headache by stimulating either motor cortex (M1) or dorsolateral prefrontal cortex (DLPFC). However, its clinical implementation is hindered due to a lack of consensus in the quality of clinical evidence and treatment recommendation/guideline(s). Thus, working collaboratively, this multinational multidisciplinary expert panel aims to: 1) assess and rate the existing outcome evidence of TMS in various pain/headache conditions; 2) provide TMS treatment recommendation/guidelines for the evaluated conditions and comorbid depression; and 3) assess the cost-effectiveness and technical issues relevant to the long-term clinical implementation of TMS for pain and headache. METHODS Seven task groups were formed under the guidance of a 5-member steering committee with four task groups assessing the utilization of TMS in the treatment of Neuropathic Pain (NP), Acute Pain, Primary Headache Disorders, and Posttraumatic Brain Injury related Headaches (PTBI-HA), and remaining three assessing the treatment for both pain and comorbid depression, and the cost-effectiveness and technological issues relevant to the treatment. RESULTS The panel rated the overall level of evidence and recommendability for clinical implementation of TMS as: 1) high and extremely/strongly for both NP and PTBI-HA respectively; 2) moderate for postoperative pain and migraine prevention, and recommendable for migraine prevention. While the use of TMS for treating both pain and depression in one setting is clinically and financially sound, more studies are required to fully assess the long-term benefit of the treatment for the two highly comorbid conditions, especially with neuronavigation. CONCLUSIONS After extensive literature review, the panel provided recommendations and treatment guidelines for TMS in managing neuropathic pain and headaches. In addition, the panel also recommended more outcome and cost-effectiveness studies to assess the feasibility of the long-term clinical implementation of the treatment.
Collapse
Affiliation(s)
- Albert Leung
- Professor of Anesthesiology and Pain Medicine, Department of Anesthesiology, Center for Pain Medicine, University of California, San Diego, School of Medicine, La Jolla, CA, USA.,Director, Center for Pain and Headache Research, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Prasad Shirvalkar
- Assistant Professor, Departments of Anesthesiology (Pain Management), Neurology, and Neurosurgery, UCSF School of Medicine, USA
| | - Robert Chen
- Catherine Manson Chair in Movement Disorders, Professor of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada
| | - Joshua Kuluva
- Neurologist and Psychiatrist, TMS Health Solution, San Francisco, CA, USA
| | - Michael Vaninetti
- Assistant Clinical Professor, Anesthesiology and Pain Medicine, UCSD School of Medicine, La Jolla, CA, USA
| | - Richard Bermudes
- Chief Medical Officer, TMS Health Solutions, Assistant Clinical Professor- Volunteer, Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Lawrence Poree
- Professor of Anesthesiology, Director, Neuromodulation Service, Division of Pain Medicine, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | - Eric M Wassermann
- Director, Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Brian Kopell
- Professor of Neurosurgery, Mount Sinai Center for Neuromodulation, New York, NY, USA
| | - Robert Levy
- President of International Neuromodulation Society, Editor-in-Chief, Neuromodulation, Boca Raton, FL, USA
| | -
- See Appendix for Complete List of Task Group Members
| |
Collapse
|
29
|
Young JR, Smani SA, Mischel NA, Kritzer MD, Appelbaum LG, Patkar AA. Non-invasive brain stimulation modalities for the treatment and prevention of opioid use disorder: a systematic review of the literature. J Addict Dis 2020; 38:186-199. [PMID: 32469286 DOI: 10.1080/10550887.2020.1736756] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The U.S. is currently facing an unprecedented epidemic of opioid-related deaths. Despite the efficacy of the current treatments for opioid use disorder (OUD), including psychosocial interventions and medication-assisted therapy (MAT), many patients remain treatment-resistant and at high risk for overdose. A potential augmentation strategy includes the use of non-invasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and auricular vagus nerve stimulation (aVNS). These approaches may have therapeutic benefits by directly or indirectly modulating the neurocircuitry affected in OUD. In this review, we evaluate the available studies on NIBS in the context of OUD withdrawal and detoxification, maintenance, and cravings, while also considering analgesia and safety concerns. In the context of opioid withdrawal and detoxification, a percutaneous form of aVNS has positive results in open-label trials, but has not yet been tested against sham. No randomized studies have reported on the safety and efficacy of NIBS specifically for maintenance treatment in OUD. TMS and tDCS have demonstrated effects on cravings, although published studies were limited by small sample sizes. NIBS may play a role in reducing exposure to opioids and the risk of developing OUD, as demonstrated by studies using tDCS in an experimental pain condition and TMS in a post-operative setting. Overall, while the preliminary evidence and safety for NIBS in the prevention and treatment of OUD appears promising, further research is needed with larger sample sizes, placebo control, and objective biomarkers as outcome measures before strong conclusions can be drawn.
Collapse
Affiliation(s)
- Jonathan R Young
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Shayan A Smani
- Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Nicholas A Mischel
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael D Kritzer
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lawrence G Appelbaum
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Ashwin A Patkar
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
30
|
Attenuation of antidepressant and antisuicidal effects of ketamine by opioid receptor antagonism. Mol Psychiatry 2019; 24:1779-1786. [PMID: 31467392 DOI: 10.1038/s41380-019-0503-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/30/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
We recently reported that naltrexone blocks antidepressant effects of ketamine in humans, indicating that antidepressant effects of ketamine require opioid receptor activation. However, it is unknown if opioid receptors are also involved in ketamine's antisuicidality effects. Here, in a secondary analysis of our recent clinical trial, we test whether naltrexone attenuates antisuicidality effects of ketamine. Participants were pretreated with naltrexone or placebo prior to intravenous ketamine in a double-blinded crossover design. Suicidality was measured with the Hamilton Depression Rating Scale item 3, Montgomery-Åsberg Depression Rating Scale item 10, and Columbia Suicide Severity Rating Scale. In the 12 participants who completed naltrexone and placebo conditions, naltrexone attenuated the antisuicidality effects of ketamine on all three suicidality scales/subscales (linear mixed model, fixed pretreatment effect, p < 0.01). Results indicate that opioid receptor activation plays a significant role in the antisuicidality effects of ketamine.
Collapse
|
31
|
Sessions of Prolonged Continuous Theta Burst Stimulation or High-frequency 10 Hz Stimulation to Left Dorsolateral Prefrontal Cortex for 3 Days Decreased Pain Sensitivity by Modulation of the Efficacy of Conditioned Pain Modulation. THE JOURNAL OF PAIN 2019; 20:1459-1469. [DOI: 10.1016/j.jpain.2019.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/29/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022]
|
32
|
Abstract
Psychiatry has been at the forefront of advancing clinical transcranial magnetic stimulation (TMS) since the mid-1990s, shortly after the invention of modern TMS in 1985 by Barker. Clinical TMS for psychiatric applications is advancing rapidly, with novel methods and innovations for treating depression, as well as a new clinical indication in obsessive-compulsive disorder. This review summarizes the recent findings and peers into the near future of this fertile and rapidly changing field. It is possible that many, perhaps even most, psychiatrists will be incorporating some form of brain stimulation into their practice within the next decade. The author summarizes the reasons for this optimistic view.
Collapse
Affiliation(s)
- Mark S George
- Department of Psychiatry and Behavioral Sciences and Institute of Psychiatry, Medical University of South Carolina, Charleston; and Ralph H. Johnson VA Medical Center, Charleston
| |
Collapse
|
33
|
Bechara A, Berridge KC, Bickel WK, Morón JA, Williams SB, Stein JS. A Neurobehavioral Approach to Addiction: Implications for the Opioid Epidemic and the Psychology of Addiction. Psychol Sci Public Interest 2019; 20:96-127. [PMID: 31591935 PMCID: PMC7001788 DOI: 10.1177/1529100619860513] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two major questions about addictive behaviors need to be explained by any worthwhile neurobiological theory. First, why do people seek drugs in the first place? Second, why do some people who use drugs seem to eventually become unable to resist drug temptation and so become "addicted"? We will review the theories of addiction that address negative-reinforcement views of drug use (i.e., taking opioids to alleviate distress or withdrawal), positive-reinforcement views (i.e., taking drugs for euphoria), habit views (i.e., growth of automatic drug-use routines), incentive-sensitization views (i.e., growth of excessive "wanting" to take drugs as a result of dopamine-related sensitization), and cognitive-dysfunction views (i.e., impaired prefrontal top-down control), including those involving competing neurobehavioral decision systems (CNDS), and the role of the insula in modulating addictive drug craving. In the special case of opioids, particular attention is paid to whether their analgesic effects overlap with their reinforcing effects and whether the perceived low risk of taking legal medicinal opioids, which are often prescribed by a health professional, could play a role in the decision to use. Specifically, we will address the issue of predisposition or vulnerability to becoming addicted to drugs (i.e., the question of why some people who experiment with drugs develop an addiction, while others do not). Finally, we review attempts to develop novel therapeutic strategies and policy ideas that could help prevent opioid and other substance abuse.
Collapse
Affiliation(s)
- Antoine Bechara
- Department of Psychology, University of Southern California
- Brain and Creativity Institute, University of Southern California
| | | | - Warren K. Bickel
- Addiction Recovery Research Center & Center for Transformational Research on Health Behaviors, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - Jose A. Morón
- Department of Anesthesiology, Washington University School of Medicine
- Washington University Pain Center, Washington University School of Medicine
| | - Sidney B. Williams
- Department of Anesthesiology, Washington University School of Medicine
- Washington University Pain Center, Washington University School of Medicine
| | - Jeffrey S. Stein
- Addiction Recovery Research Center & Center for Transformational Research on Health Behaviors, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| |
Collapse
|
34
|
Huang J, Gadotti VM, Chen L, Souza IA, Huang S, Wang D, Ramakrishnan C, Deisseroth K, Zhang Z, Zamponi GW. A neuronal circuit for activating descending modulation of neuropathic pain. Nat Neurosci 2019; 22:1659-1668. [DOI: 10.1038/s41593-019-0481-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/25/2019] [Indexed: 11/09/2022]
|
35
|
Cheng CM, Wang SJ, Su TP, Chen MH, Hsieh JC, Ho ST, Bai YM, Kao NT, Chang WH, Li CT. Analgesic effects of repetitive transcranial magnetic stimulation on modified 2010 criteria-diagnosed fibromyalgia: Pilot study. Psychiatry Clin Neurosci 2019; 73:187-193. [PMID: 30588705 DOI: 10.1111/pcn.12812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/27/2018] [Accepted: 12/20/2018] [Indexed: 12/29/2022]
Abstract
AIM Fibromyalgia is often comorbid with depression, and less than half those patients achieve satisfactory improvement after adequate pharmacological intervention. The investigation of repetitive transcranial magnetic stimulation (rTMS) at left dorsolateral prefrontal cortex for modified-2010 American College of Rheumatology (ACR) fibromyalgia and major depressive disorder (MDD) is still in its infancy. METHODS In this double-blind, randomized, sham-control study, subjects diagnosed with ACR-2010 fibromyalgia and DSM-IV-TR MDD were recruited and received either active or sham interventions for 2 weeks. Hamilton Depression Rating Scale (HDRS) and the 10-cm visual analogue pain scale were evaluated at baseline, week 1, and week 2. Multivariable generalized estimating equations analysis was performed for the association between depression and pain scores at each checkpoint. RESULTS Twenty subjects were recruited. There was a significant difference over the 2 weeks between the rTMS and sham stimulation groups (P = 0.029), but subgroup analyses were further performed due to significant interaction of group and HDRS on pain outcomes (P = 0.020). The active group had significant improvement in pain at week 2 compared with week 1 (P = 0.021), but the control group did not have any improvement in pain (P = 0.585). Of the mild-moderate depression patients, the pain score in the active group was significantly lower than in the sham group at week 1 (P = 0.001) and at week 2 (P < 0.001). For the severe depression group, there was significantly lower pain over the 2 weeks in the active group (P = 0.045) but the sham group had significantly relapsing pain at week 2 (P < 0.001). CONCLUSION Left prefrontal rTMS has an analgesic effect in modified-ACR 2010-defined fibromyalgia and MDD patients. Further investigation is required, however, in order to determine how to regulate the different rTMS treatment protocols according to individual baseline depression severity in patients with MDD and fibromyalgia.
Collapse
Affiliation(s)
- Chih-Ming Cheng
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Department of Psychiatry, Taipei Veterans General Hospital, Yuanshan Branch, Yilan, Taiwan
| | - Shuu-Jiun Wang
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Jen-Chuen Hsieh
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Shung-Tai Ho
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Nien-Tzu Kao
- Physical Medicine and Rehabilitation Department, Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan
| | - Wen-Han Chang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Graduate Institute of Statistics, National Central University, Taoyuan, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
36
|
De Martino E, Seminowicz DA, Schabrun SM, Petrini L, Graven-Nielsen T. High frequency repetitive transcranial magnetic stimulation to the left dorsolateral prefrontal cortex modulates sensorimotor cortex function in the transition to sustained muscle pain. Neuroimage 2019; 186:93-102. [DOI: 10.1016/j.neuroimage.2018.10.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/08/2018] [Accepted: 10/29/2018] [Indexed: 10/28/2022] Open
|
37
|
Gintzler AR, Liu NJ, Storman EM, Wessendorf MW. Exploiting endogenous opioids: Lessons learned from endomorphin 2 in the female rat. Peptides 2019; 112:133-138. [PMID: 30557590 PMCID: PMC7173356 DOI: 10.1016/j.peptides.2018.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
Effective management of chronic pain is demanded by ethical as well as medical considerations. Although opioid analgesics remain among the most effective pharmacotherapies for ameliorating many types of pain, their use is clouded by concerns regarding their addictive properties, underscored by the current epidemic of prescription opioid abuse and attendant deaths. Medicinal harnessing of endogenous opioid antinociception could provide a strategy for continuing to take advantage of the powerful antinociceptive properties of opioids while avoiding their abuse potential. Based on our studies of endogenous mechanism that suppress and facilitate spinal endomorphin 2 antinociception over the rat reproductive cycle, we identified multiple signaling molecules that could serve as targets for activating endogenous opioid analgesia for chronic pain management in women. Our findings emphasize the need for a precision medicine approach that includes stage of menstrual cycle as an important determinant of drug targets for (activating/harnessing) endogenous opioid antinociceptive systems/ capabilities. Utilization of drugs that harness endogenous opioid antinociception in accordance with varying physiological states represents a novel approach for effective pain management.
Collapse
Affiliation(s)
- Alan R Gintzler
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY, 11203, USA.
| | - Nai-Jiang Liu
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY, 11203, USA
| | - Emiliya M Storman
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY, 11203, USA
| | - Martin W Wessendorf
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
38
|
Gintzler AR, Liu NJ. Harnessing endogenous opioids for pain relief: Fantasy vs reality. J Opioid Manag 2019; 16:67-72. [PMID: 32091619 PMCID: PMC8244826 DOI: 10.5055/jom.2020.0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To review evidence demonstrating efficacy and feasibility of harnessing the activity of endogenous opioid analgesic systems for pain management. METHODS The authors sought to summarize a wealth of data that establish proof of concept that the analgesic activity of endogenous opioids can be exploited to clinically benefit from the enormous pain-relieving abilities of these peptides without contributing to the current crisis of death by synthetic opioid overdose. RESULTS There is a plethora of studies demonstrating that not only can endogenous opioids mediate placebo-induced antinociception but they are also active in modulating clinical pain. Earlier studies convincingly demonstrate the effec-tiveness of psychological strategies to coopt endogenous opioid analgesic systems to produce pain relief. The challenge is to define pharmacological targets for activating endogenous opioid analgesia reliably in a clinical setting. Based on insights gleaned from mechanisms underlying the ebb and flow of analgesic responsiveness to the spinal application of endomorphin 2, multiple signaling proteins were identified that activate endogenous spinal opioid analgesia. Notably, this was achieved in the absence of any exogenous synthetic opioid. CONCLUSIONS Utilization of drugs that harness endogenous opioid antinociception in accordance with varying physiological states represents a novel approach for effective pain management while mitigating the present epidemic of death by synthetic opioid overdose.
Collapse
Affiliation(s)
- Alan R Gintzler
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Nai-Jiang Liu
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York
| |
Collapse
|
39
|
The Contribution of Endogenous Modulatory Systems to TMS- and tDCS-Induced Analgesia: Evidence from PET Studies. Pain Res Manag 2018; 2018:2368386. [PMID: 30538794 PMCID: PMC6257907 DOI: 10.1155/2018/2368386] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/23/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
Chronic pain is an important public health issue. Moreover, its adequate management is still considered a major clinical problem, mainly due to its incredible complexity and still poorly understood pathophysiology. Recent scientific evidence coming from neuroimaging research, particularly functional magnetic resonance (fMRI) and positron emission tomography (PET) studies, indicates that chronic pain is associated with structural and functional changes in several brain structures that integrate antinociceptive pathways and endogenous modulatory systems. Furthermore, the last two decades have witnessed a huge increase in the number of studies evaluating the clinical effects of noninvasive neuromodulatory methods, especially transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), which have been proved to effectively modulate the cortical excitability, resulting in satisfactory analgesic effects with minimal adverse events. Nevertheless, the precise neuromechanisms whereby such methods provide pain control are still largely unexplored. Recent studies have brought valuable information regarding the recruitment of different modulatory systems and related neurotransmitters, including glutamate, dopamine, and endogenous opioids. However, the specific neurocircuits involved in the analgesia produced by those therapies have not been fully elucidated. This review focuses on the current literature correlating the clinical effects of noninvasive methods of brain stimulation to the changes in the activity of endogenous modulatory systems.
Collapse
|
40
|
Liu NJ, Storman EM, Gintzler AR. Pharmacological Modulation of Endogenous Opioid Activity to Attenuate Neuropathic Pain in Rats. THE JOURNAL OF PAIN 2018; 20:235-243. [PMID: 30366152 DOI: 10.1016/j.jpain.2018.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/12/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022]
Abstract
We showed previously that spinal metabotropic glutamate receptor 1 (mGluR1) signaling suppresses or facilitates (depending on the stage of estrous cycle) analgesic responsiveness to intrathecal endomorphin 2, a highly mu-opioid receptor-selective endogenous opioid. Spinal endomorphin 2 antinociception is suppressed during diestrus by mGluR1 when it is activated by membrane estrogen receptor alpha (mERα) and is facilitated during proestrus when mGluR1 is activated by glutamate. In the current study, we tested the hypothesis that in female rats subjected to spinal nerve ligation (SNL), the inhibition of spinal estrogen synthesis or blockade of spinal mERα/mGluR1 would be antiallodynic during diestrus, whereas during proestrus, mGluR1 blockade would worsen the mechanical allodynia. As postulated, following SNL, aromatase inhibition or mERα/mGluR1 blockade during diestrus markedly lessened the mechanical allodynia. This was observed only on the paw ipsilateral to SNL and was eliminated by naloxone, implicating endogenous opioid mediation. In contrast, during proestrus, mGluR1 blockade worsened the SNL-induced mechanical allodynia of the ipsilateral paw. Findings suggest menstrual cycle stage-specific drug targets for and the putative clinical utility of harnessing endogenous opioids for chronic pain management in women, as well as the value of, if not the necessity for, considering menstrual cycle stage in clinical trials thereof. PERSPECTIVE: Intrathecal treatments that enhance spinal endomorphin 2 analgesic responsiveness under basal conditions lessen mechanical allodynia in a chronic pain model. Findings provide a foundation for developing drugs that harness endogenous opioid antinociception for chronic pain relief, lessening the need for exogenous opioids and thus prescription opioid abuse.
Collapse
Affiliation(s)
- Nai-Jiang Liu
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Emiliya M Storman
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Alan R Gintzler
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York..
| |
Collapse
|
41
|
Lenoir C, Algoet M, Mouraux A. Deep continuous theta burst stimulation of the operculo-insular cortex selectively affects Aδ-fibre heat pain. J Physiol 2018; 596:4767-4787. [PMID: 30085357 PMCID: PMC6166055 DOI: 10.1113/jp276359] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/06/2018] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Deep continuous theta burst stimulation (cTBS) of the right operculo-insular cortex delivered with a double cone coil selectively impairs the ability to perceive thermonociceptive input conveyed by Aδ-fibre thermonociceptors without concomitantly affecting the ability to perceive innocuous warm, cold or vibrotactile sensations. Unlike deep cTBS, superficial cTBS of the right operculum delivered with a figure-of-eight coil does not affect the ability to perceive thermonociceptive input conveyed by Aδ-fibre thermonociceptors. The effect of deep operculo-insular cTBS on the perception of Aδ-fibre input was present at both the contralateral and the ipsilateral hand. The magnitude of the increase in Aδ-heat detection threshold induced by the deep cTBS was significantly correlated with the intensity of the cTBS pulses. Deep cTBS delivered over the operculo-insular cortex is associated with a risk of transcranial magnetic stimulation-induced seizure. ABSTRACT Previous studies have suggested a pivotal role of the insular cortex in nociception and pain perception. Using a double-cone coil designed for deep transcranial magnetic stimulation, our objective was to assess (1) whether continuous theta burst stimulation (cTBS) of the operculo-insular cortex affects differentially the perception of different types of thermal and mechanical somatosensory inputs, (2) whether the induced after-effects are lateralized relative to the stimulated hemisphere, and (3) whether the after-effects are due to neuromodulation of the insula or neuromodulation of the more superficial opercular cortex. Seventeen participants took part in two experiments. In Experiment 1, thresholds and perceived intensity of Aδ- and C-fibre heat pain elicited by laser stimulation, non-painful cool sensations elicited by contact cold stimulation and mechanical vibrotactile sensations were assessed at the left hand before, immediately after and 20 min after deep cTBS delivered over the right operculo-insular cortex. In Experiment 2, Aδ-fibre heat pain and vibrotactile sensations elicited by stimulating the contralateral and ipsilateral hands were evaluated before and after deep cTBS or superficial cTBS delivered using a flat figure-of-eight coil. Only the threshold to detect Aδ-fibre heat pain was significantly increased 20 min after deep cTBS. This effect was present at both hands. No effect was observed after superficial cTBS. Neuromodulation of the operculo-insular cortex using deep cTBS induces a bilateral reduction of the ability to perceive Aδ-fibre heat pain, without concomitantly affecting the ability to perceive innocuous warm, cold or vibrotactile sensations.
Collapse
Affiliation(s)
- Cédric Lenoir
- Institute of Neuroscience (IONS) Université catholique de Louvain (UCL)BrusselsBelgium
| | - Maxime Algoet
- Institute of Neuroscience (IONS) Université catholique de Louvain (UCL)BrusselsBelgium
| | - André Mouraux
- Institute of Neuroscience (IONS) Université catholique de Louvain (UCL)BrusselsBelgium
| |
Collapse
|
42
|
Holbrook C, Gordon CL, Iacoboni M. Continuous Theta Burst Stimulation of the Posterior Medial Frontal Cortex to Experimentally Reduce Ideological Threat Responses. J Vis Exp 2018. [PMID: 30320754 PMCID: PMC6235344 DOI: 10.3791/58204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Decades of behavioral science research have documented functional shifts in attitudes and ideological adherence in response to various challenges, but little work to date has illuminated the neural mechanisms underlying these dynamics. This paper describes how continuous theta burst transcranial magnetic stimulation may be employed to experimentally assess the causal contribution of cortical regions to threat-related ideological shifts. In the example protocol provided here, participants are exposed to a threat prime-an explicit reminder of their own inevitable death and bodily decomposition-following a downregulation of the posterior medial frontal cortex (pMFC) or a sham stimulation. Next, disguised within a series of distracter tasks, participants' relative degree of ideological adherence is assessed-in the present example, with regard to coalitional prejudice and religious belief. Participants for whom the pMFC has been downregulated exhibit less coalitionally biased responses to an immigrant critical of the participants' national in-group, and less conviction in positive afterlife beliefs (i.e., God, angels, and heaven), despite having recently been reminded of death. These results complement prior findings that continuous theta burst stimulation of the pMFC influences social conformity and sharing and illustrate the feasibility of investigating the neural basis of high-level social cognitive shifts using transcranial magnetic stimulation.
Collapse
Affiliation(s)
- Colin Holbrook
- Department of Cognitive and Information Sciences, University of California, Merced;
| | - Chelsea L Gordon
- Department of Cognitive and Information Sciences, University of California, Merced
| | - Marco Iacoboni
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| |
Collapse
|
43
|
Seminowicz DA, de Martino E, Schabrun SM, Graven-Nielsen T. Left dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation reduces the development of long-term muscle pain. Pain 2018; 159:2486-2492. [DOI: 10.1097/j.pain.0000000000001350] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Targeted neural network interventions for auditory hallucinations: Can TMS inform DBS? Schizophr Res 2018; 195:455-462. [PMID: 28969932 PMCID: PMC8141945 DOI: 10.1016/j.schres.2017.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/30/2017] [Accepted: 09/14/2017] [Indexed: 12/30/2022]
Abstract
The debilitating and refractory nature of auditory hallucinations (AH) in schizophrenia and other psychiatric disorders has stimulated investigations into neuromodulatory interventions that target the aberrant neural networks associated with them. Internal or invasive forms of brain stimulation such as deep brain stimulation (DBS) are currently being explored for treatment-refractory schizophrenia. The process of developing and implementing DBS is limited by symptom clustering within psychiatric constructs as well as a scarcity of causal tools with which to predict response, refine targeting or guide clinical decisions. Transcranial magnetic stimulation (TMS), an external or non-invasive form of brain stimulation, has shown some promise as a therapeutic intervention for AH but remains relatively underutilized as an investigational probe of clinically relevant neural networks. In this editorial, we propose that TMS has the potential to inform DBS by adding individualized causal evidence to an evaluation processes otherwise devoid of it in patients. Although there are significant limitations and safety concerns regarding DBS, the combination of TMS with computational modeling of neuroimaging and neurophysiological data could provide critical insights into more robust and adaptable network modulation.
Collapse
|
45
|
McClintock SM, Reti IM, Carpenter LL, McDonald WM, Dubin M, Taylor SF, Cook IA, O’Reardon J, Husain MM, Wall C, Krystal AD, Sampson SM, Morales O, Nelson BG, Latoussakis V, George MS, Lisanby SH. Consensus Recommendations for the Clinical Application of Repetitive Transcranial Magnetic Stimulation (rTMS) in the Treatment of Depression. J Clin Psychiatry 2018; 79:16cs10905. [PMID: 28541649 PMCID: PMC5846193 DOI: 10.4088/jcp.16cs10905] [Citation(s) in RCA: 380] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/20/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To provide expert recommendations for the safe and effective application of repetitive transcranial magnetic stimulation (rTMS) in the treatment of major depressive disorder (MDD). PARTICIPANTS Participants included a group of 17 expert clinicians and researchers with expertise in the clinical application of rTMS, representing both the National Network of Depression Centers (NNDC) rTMS Task Group and the American Psychiatric Association Council on Research (APA CoR) Task Force on Novel Biomarkers and Treatments. EVIDENCE The consensus statement is based on a review of extensive literature from 2 databases (OvidSP MEDLINE and PsycINFO) searched from 1990 through 2016. The search terms included variants of major depressive disorder and transcranial magnetic stimulation. The results were limited to articles written in English that focused on adult populations. Of the approximately 1,500 retrieved studies, a total of 118 publications were included in the consensus statement and were supplemented with expert opinion to achieve consensus recommendations on key issues surrounding the administration of rTMS for MDD in clinical practice settings. CONSENSUS PROCESS In cases in which the research evidence was equivocal or unclear, a consensus decision on how rTMS should be administered was reached by the authors of this article and is denoted in the article as "expert opinion." CONCLUSIONS Multiple randomized controlled trials and published literature have supported the safety and efficacy of rTMS antidepressant therapy. These consensus recommendations, developed by the NNDC rTMS Task Group and APA CoR Task Force on Novel Biomarkers and Treatments, provide comprehensive information for the safe and effective clinical application of rTMS in the treatment of MDD.
Collapse
Affiliation(s)
- Shawn M. McClintock
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas,Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina,Corresponding author: Shawn M. McClintock, PhD, Department of Psychiatry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8898 ()
| | - Irving M. Reti
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Linda L. Carpenter
- Butler Hospital, Brown Department of Psychiatry and Human Behavior, Providence, Rhode Island
| | - William M. McDonald
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Marc Dubin
- Department of Psychiatry, Weill Cornell Medical College, White Plains, New York
| | | | - Ian A. Cook
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Behavioral Sciences and of Bioengineering, University of California at Los Angeles, Los Angeles
| | - John O’Reardon
- Department of Psychiatry and Behavioral Sciences, Rowan University School of Medicine, Stratford, New Jersey
| | - Mustafa M. Husain
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas,Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina
| | | | - Andrew D. Krystal
- Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina,Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco
| | | | - Oscar Morales
- Psychiatric Neurotherapeutics Program, McLean Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brent G. Nelson
- Department of Psychiatry, University of Minnesota, St Louis Park
| | | | - Mark S. George
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston,Ralph H. Johnson VA Medical Center, Charleston, South Carolina
| | - Sarah H. Lisanby
- Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina
| | | | | |
Collapse
|
46
|
Andre-Obadia N, Magnin M, Simon E, Garcia-Larrea L. Somatotopic effects of rTMS in neuropathic pain? A comparison between stimulation over hand and face motor areas. Eur J Pain 2017; 22:707-715. [DOI: 10.1002/ejp.1156] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2017] [Indexed: 11/09/2022]
Affiliation(s)
- N. Andre-Obadia
- Neurophysiology & Epilepsy Unit; Neurological Hospital P. Wertheimer; Hospices Civils de Lyon; France
- University Hospital Pain Center (CETD); Neurological Hospital P. Wertheimer; Hospices Civils de Lyon; France
- NeuroPain lab; INSERM U1028, CNRS UMR5292; Lyon Neuroscience Research Center; University Claude Bernard Lyon 1; France
| | - M. Magnin
- NeuroPain lab; INSERM U1028, CNRS UMR5292; Lyon Neuroscience Research Center; University Claude Bernard Lyon 1; France
| | - E. Simon
- NeuroPain lab; INSERM U1028, CNRS UMR5292; Lyon Neuroscience Research Center; University Claude Bernard Lyon 1; France
- Neurosurgery Unit; Neurological Hospital P. Wertheimer; Hospices Civils de Lyon; France
| | - L. Garcia-Larrea
- University Hospital Pain Center (CETD); Neurological Hospital P. Wertheimer; Hospices Civils de Lyon; France
- NeuroPain lab; INSERM U1028, CNRS UMR5292; Lyon Neuroscience Research Center; University Claude Bernard Lyon 1; France
| |
Collapse
|
47
|
McGovern AE, Ajayi IE, Farrell MJ, Mazzone SB. A neuroanatomical framework for the central modulation of respiratory sensory processing and cough by the periaqueductal grey. J Thorac Dis 2017; 9:4098-4107. [PMID: 29268420 DOI: 10.21037/jtd.2017.08.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sensory information arising from the airways is processed in a distributed brain network that encodes for the discriminative and affective components of the resultant sensations. These higher brain networks in turn regulate descending motor control circuits that can both promote or suppress behavioural responses. Here we explore the existence of possible descending neural control pathways that regulate airway afferent processing in the brainstem, analogous to the endogenous descending analgesia system described for noxious somatosensation processing and placebo analgesia. A key component of this circuitry is the midbrain periaqueductal grey, a region of the brainstem recently highlighted for its altered activity in patients with chronic cough. Understanding the nature and plasticity of descending neural control may help identify novel central therapeutic targets to alleviate the neuronal hypersensitivity underpinning many symptoms of respiratory disease.
Collapse
Affiliation(s)
- Alice E McGovern
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville VIC 3010, Australia
| | - Itopa E Ajayi
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville VIC 3010, Australia
| | - Michael J Farrell
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton VIC 3800, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville VIC 3010, Australia
| |
Collapse
|
48
|
Seminowicz DA, Moayedi M. The Dorsolateral Prefrontal Cortex in Acute and Chronic Pain. THE JOURNAL OF PAIN 2017; 18:1027-1035. [PMID: 28400293 PMCID: PMC5581265 DOI: 10.1016/j.jpain.2017.03.008] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 02/06/2023]
Abstract
The dorsolateral prefrontal cortex (DLPFC) is a functionally and structurally heterogeneous region and a key node of several brain networks, implicated in cognitive, affective, and sensory processing. As such, the DLPFC is commonly activated in experimental pain studies, and shows abnormally increased function in chronic pain populations. Furthermore, several studies have shown that some chronic pains are associated with decreased left DLPFC gray matter and that successful interventions can reverse this structural abnormality. In addition, studies have indicated that noninvasive stimulation of the left DLPFC effectively treats some chronic pains. In this article, we review the neuroimaging literature regarding the role of the DLPFC and its potential as a therapeutic target for chronic pain conditions, including studies showing the involvement of the DLPFC in encoding and modulating acute pain and studies demonstrating the reversal of DLPFC functional and structural abnormalities after successful interventions for chronic pain. We also review studies of noninvasive brain stimulation of the DLPFC showing acute pain modulation and some effectiveness as a treatment for certain chronic pain conditions. We further discuss the network architecture of the DLPFC, and postulate mechanisms by which DLPFC stimulation alleviates chronic pain. Future work testing these mechanisms will allow for more effective therapies. PERSPECTIVE The structure and function of the DLPFC is abnormal in some chronic pain conditions. Upon successful resolution of pain, these abnormalities are reversed. Understanding the underlying mechanisms and the role of this region can lead to the development of an effective therapeutic target for some chronic pain conditions.
Collapse
Affiliation(s)
- David A Seminowicz
- Department of Neural and Pain Sciences, University of Maryland, School of Dentistry, Baltimore, Maryland; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, Maryland.
| | - Massieh Moayedi
- Faculty of Dentistry, and University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Hanlon CA, Dowdle LT, Correia B, Mithoefer O, Kearney-Ramos T, Lench D, Griffin M, Anton RF, George MS. Left frontal pole theta burst stimulation decreases orbitofrontal and insula activity in cocaine users and alcohol users. Drug Alcohol Depend 2017; 178:310-317. [PMID: 28686990 PMCID: PMC5896018 DOI: 10.1016/j.drugalcdep.2017.03.039] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Preclinical research has demonstrated a causal relationship between medial prefrontal cortex activity and cocaine self-administration. As a step towards translating those data to a neural circuit-based intervention for patients, this study sought to determine if continuous theta burst stimulation (cTBS) to the left frontal pole (FP), would attenuate frontal-striatal activity in two substance-dependent populations. METHODS Forty-nine substance dependent individuals (25 cocaine, 24 alcohol) completed a single-blind, sham-controlled, crossover study wherein they received 6 trains of real or sham cTBS (110% resting motor threshold, FP1) each visit. Baseline evoked BOLD signal was measured immediately before and after real and sham cTBS (interleaved TMS/BOLD imaging: single pulses to left FP; scalp-to-cortex distance covariate, FWE correction p<0.05) RESULTS: Among cocaine users, real cTBS significantly decreased evoked BOLD signal in the caudate, accumbens, anterior cingulate, orbitofrontal (OFC) and parietal cortex relative to sham cTBS. Among alcohol users, real cTBS significantly decreased evoked BOLD signal in left OFC, insula, and lateral sensorimotor cortex. There was no significant difference between the groups. CONCLUSIONS These data suggest that 6 trains of left FP cTBS delivered in a single day decreases TMS-evoked BOLD signal in the OFC and several cortical nodes which regulate salience and are typically activated by drug cues. The reliability of this pattern across cocaine- and alcohol-dependent individuals suggests that cTBS may be an effective tool to dampen neural circuits typically engaged by salient drug cues. Multiday studies are required to determine it this has a sustainable effect on the brain or drug use behavior.
Collapse
Affiliation(s)
- Colleen A Hanlon
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, United States; Department of Neurosciences, Medical University of South Carolina, United States; Center for Biomedical Imaging, Medical University of South Carolina, United States.
| | - Logan T Dowdle
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, United States; Department of Neurosciences, Medical University of South Carolina, United States
| | | | - Oliver Mithoefer
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, United States
| | - Tonisha Kearney-Ramos
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, United States; Department of Neurosciences, Medical University of South Carolina, United States
| | - Daniel Lench
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, United States; Department of Neurosciences, Medical University of South Carolina, United States
| | - Millie Griffin
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, United States; Department of Neurosciences, Medical University of South Carolina, United States
| | - Raymond F Anton
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, United States; Department of Neurosciences, Medical University of South Carolina, United States; Center for Biomedical Imaging, Medical University of South Carolina, United States
| | - Mark S George
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, United States; Department of Neurosciences, Medical University of South Carolina, United States; Center for Biomedical Imaging, Medical University of South Carolina, United States; Ralph H Johnson Veterans Affairs Medical Center, United States
| |
Collapse
|
50
|
Lamusuo S, Hirvonen J, Lindholm P, Martikainen IK, Hagelberg N, Parkkola R, Taiminen T, Hietala J, Helin S, Virtanen A, Pertovaara A, Jääskeläinen S. Neurotransmitters behind pain relief with transcranial magnetic stimulation - positron emission tomography evidence for release of endogenous opioids. Eur J Pain 2017; 21:1505-1515. [DOI: 10.1002/ejp.1052] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2017] [Indexed: 01/28/2023]
Affiliation(s)
- S. Lamusuo
- Department of Neurology; Turku University Hospital; Finland
- Division of Clinical Neuroscience; University of Turku; Finland
- Turku PET Centre; University of Turku; Finland
| | - J. Hirvonen
- Turku PET Centre; University of Turku; Finland
| | - P. Lindholm
- Department of Neurology; Turku University Hospital; Finland
- Department of Clinical Neurophysiology; Turku University Hospital and University of Turku; Finland
| | - I. K. Martikainen
- Department of Physiology; Turku University Hospital and University of Turku; Finland
| | - N. Hagelberg
- Pain Clinic; Turku University Hospital and University of Turku; Finland
| | - R. Parkkola
- Turku PET Centre; University of Turku; Finland
- Department of Radiology; Turku University Hospital and University of Turku; Finland
| | - T. Taiminen
- Department of Psychiatry; Turku University Hospital and University of Turku; Finland
| | - J. Hietala
- Turku PET Centre; University of Turku; Finland
- Department of Psychiatry; Turku University Hospital and University of Turku; Finland
| | - S. Helin
- Turku PET Centre; University of Turku; Finland
| | - A. Virtanen
- Department of Clinical Neurophysiology; Turku University Hospital and University of Turku; Finland
| | - A. Pertovaara
- Department of Physiology; Faculty of Medicine; University of Helsinki; Finland
| | - S.K. Jääskeläinen
- Department of Clinical Neurophysiology; Turku University Hospital and University of Turku; Finland
| |
Collapse
|