1
|
Michot B, Casey SM, Lee CS, Erdogan O, Basu H, Chiu I, Gibbs JL. Lipopolysaccharide-Induced TRPA1 Upregulation in Trigeminal Neurons is Dependent on TLR4 and Vesicular Exocytosis. J Neurosci 2023; 43:6731-6744. [PMID: 37643860 PMCID: PMC10552941 DOI: 10.1523/jneurosci.0162-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
Pain from bacterial infection was believed to be the consequence of inflammation induced by bacterial products. However recent studies have shown that bacterial products can directly activate sensory neurons and induce pain. The mechanisms by which bacteria induce pain are poorly understood, but toll-like receptor (TLR)4 and transient receptor potential A1 (TRPA1) receptors are likely important integrators of pain signaling induced by bacteria. Using male and female mice we show that sensory neuron activation by bacterial lipopolysaccharides (LPS) is mediated by both TRPA1 and TLR4 and involves the mobilization of extracellular and intracellular calcium. We also show that LPS induces neuronal sensitization in a process dependent on TLR4 receptors. Moreover, we show that TLR4 and TRPA1 are both involved in sensory neurons response to LPS stimulation. Activation of TLR4 in a subset of sensory neurons induces TRPA1 upregulation at the cell membrane through vesicular exocytosis, contributing to the initiation of neuronal sensitization and pain. Collectively these data highlight the importance of sensory neurons to pathogen detection, and their activation by bacterial products like LPS as potentially important to early immune and nociceptive responses.SIGNIFICANCE STATEMENT Bacterial infections are often painful and the recent discovery that bacteria can directly stimulate sensory neurons leading to pain sensation and modulation of immune system have highlighted the importance of nervous system in the response to bacterial infection. Here, we showed that lipopolysaccharide, a major bacterial by-product, requires both toll-like receptor (TLR)4 and transient receptor potential A1 (TRPA1) receptors for neuronal activation and acute spontaneous pain, but only TLR4 mediates sensory neurons sensitization. Moreover, we showed for the first time that TLR4 sensitize sensory neurons through a rapid upregulation of TRPA1 via vesicular exocytosis. Our data highlight the importance of sensory neurons to pathogen detection and suggests that TLR4 would be a potential therapeutic target to modulate early stage of bacteria-induced pain and immune response.
Collapse
Affiliation(s)
- Benoit Michot
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts 02115
- Department of Endodontics, New York University College of Dentistry, New York, New York 10010
| | - Sharon M Casey
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts 02115
- Department of Endodontics, New York University College of Dentistry, New York, New York 10010
| | - Caroline S Lee
- Department of Endodontics, New York University College of Dentistry, New York, New York 10010
| | - Ozge Erdogan
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - Himanish Basu
- Department of Immunology, Harvard Medical School, Boston, Massachusetts 02215
| | - Isaac Chiu
- Department of Immunology, Harvard Medical School, Boston, Massachusetts 02215
| | - Jennifer L Gibbs
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts 02115
- Department of Endodontics, New York University College of Dentistry, New York, New York 10010
| |
Collapse
|
2
|
Zhang YY, Liu F, Fang ZH, Li YL, Liao HL, Song QX, Zhou C, Shen JF. Differential roles of NMDAR subunits 2A and 2B in mediating peripheral and central sensitization contributing to orofacial neuropathic pain. Brain Behav Immun 2022; 106:129-146. [PMID: 36038077 DOI: 10.1016/j.bbi.2022.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
The spinal N-methyl-d-aspartate receptor (NMDAR), particularly their subtypes NR2A and NR2B, plays pivotal roles in neuropathic and inflammatory pain. However, the roles of NR2A and NR2B in orofacial pain and the exact molecular and cellular mechanisms mediating nervous system sensitization are still poorly understood. Here, we exhaustively assessed the regulatory effect of NMDAR in mediating peripheral and central sensitization in orofacial neuropathic pain. Von-Frey filament tests showed that the inferior alveolar nerve transection (IANX) induced ectopic allodynia behavior in the whisker pad of mice. Interestingly, mechanical allodynia was reversed in mice lacking NR2A and NR2B. IANX also promoted the production of peripheral sensitization-related molecules, such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α, brain-derived neurotrophic factor (BDNF), and chemokine upregulation (CC motif) ligand 2 (CCL2), and decreased the inward potassium channel (Kir) 4.1 on glial cells in the trigeminal ganglion, but NR2A conditional knockout (CKO) mice prevented these alterations. In contrast, NR2B CKO only blocked the changes of Kir4.1, IL-1β, and TNF-α and further promoted the production of CCL2. Central sensitization-related c-fos, glial fibrillary acidic protein (GFAP), and ionized calcium-binding adaptor molecule 1 (Iba-1) were promoted and Kir4.1 was reduced in the spinal trigeminal caudate nucleus by IANX. Differential actions of NR2A and NR2B in mediating central sensitization were also observed. Silencing of NR2B was effective in reducing c-fos, GFAP, and Iba-1 but did not affect Kir4.1. In contrast, NR2A CKO only altered Iba-1 and Kir4.1 and further increased c-fos and GFAP. Gain-of-function and loss-of-function approaches provided insight into the differential roles of NR2A and NR2B in mediating peripheral and central nociceptive sensitization induced by IANX, which may be a fundamental basis for advancing knowledge of the neural mechanisms' reaction to nerve injury.
Collapse
Affiliation(s)
- Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhong-Han Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hong-Lin Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qin-Xuan Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Gong C, Ding Y, Liang F, Wu S, Tang X, Ding H, Huang W, Yu X, Zhou L, Li J, Liu S. Muscarinic receptor regulation of chronic pain-induced atrial fibrillation. Front Cardiovasc Med 2022; 9:934906. [PMID: 36187006 PMCID: PMC9521049 DOI: 10.3389/fcvm.2022.934906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
Atrial fibrillation (AF), one of the most common arrhythmias, is associated with chronic emotional disorder. Chronic pain represents a psychological instability condition related to cardiovascular diseases, but the mechanistic linkage connecting chronic pain to AF occurrence remains unknown. Wild-type C57BL/6J male mice were randomly divided into sham and chronic pain groups. Autonomic nerve remodeling was reflected by the increased atrial parasympathetic tension and muscarinic acetylcholine receptor M2 expression. AF susceptibility was assessed through transesophageal burst stimulation in combination with electrocardiogram recording and investigating AERP in Langendorff perfused hearts. Our results demonstrated the elevated protein expression of muscarinic acetylcholine receptor M2 in the atria of mice subjected to chronic pain stress. Moreover, chronic pain induced the increase of atrial PR interval, and atrial effective refractory periods as compared to the sham group, underlying the enhanced susceptibility of AF. Thus, autonomic cholinergic nerve may mediate mice AF in the setting of chronic pain.
Collapse
Affiliation(s)
- Chao Gong
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Ding
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Liang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang Wu
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiruo Tang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongzhang Ding
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Huang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaotong Yu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Likun Zhou
- Nanjing Medical University, Nanjing, China
| | - Jun Li
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Jun Li
| | - Shaowen Liu
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Shaowen Liu
| |
Collapse
|
4
|
Bagues A, Girón R, Abalo R, Goicoechea C, Martín-Fontelles MI, Sánchez-Robles EM. SHORT-TERM STRESS SIGNIFICANTLY DECREASES MORPHINE ANALGESIA IN TRIGEMINAL BUT NOT IN SPINAL INNERVATED AREAS IN RATS. Behav Brain Res 2022; 435:114046. [PMID: 35933048 DOI: 10.1016/j.bbr.2022.114046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/15/2022]
Abstract
Plenty information exists regarding the effects of chronic stress, although few data exist on the effects of short-lasting stressors, which would mimic daily challenges. Differences in craniofacial and spinal nociception have been observed, thus those observations obtained in spinally innervated areas cannot be directly applied to the orofacial region. Although, opioids are considered amongst the most effective analgesics, their use is sometimes hampered by the constipation they induce. Thus, our aims were to study if a short-lasting stressor, forced swim stress (FSS), modifies nociception, morphine antinociception and constipation in rats. Animals were submitted to 10-20min of FSS for three days, nociception and gastrointestinal transit were studied 24h after the last swimming session. Nociception and morphine (0.6-5mg/kg) antinociception were evaluated in the formalin and hypertonic saline tests in the orofacial area and limbs. Morphine-induced modifications in the GI transit were studied through radiographic techniques. Naloxone was administered, before each swimming session, to analyse the involvement of the endogenous opioid system on the effect of stress. Overall, stress did not alter nociception, although interestingly it reduced the effect of morphine in the orofacial tests and in the inflammatory phase of the formalin tests. Naloxone antagonized the effect of stress and normalized the effect of morphine. Stress did not modify the constipation induced by morphine. Opioid treatment may be less effective under a stressful situation, whilst adverse effects, such as constipation, are maintained. The prevention of stress may improve the level of opioid analgesia. Keywords.
Collapse
Affiliation(s)
- Ana Bagues
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada I+D+i al Instituto de Química Médica (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM).
| | - Rocío Girón
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada I+D+i al Instituto de Química Médica (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM).
| | - Raquel Abalo
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada I+D+i al Instituto de Química Médica (CSIC), Alcorcón, Spain; High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC); Working Group of Basic Sciences in Pain and Analgesia of the Sociedad Española del Dolor.
| | - Carlos Goicoechea
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada I+D+i al Instituto de Química Médica (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM); Working Group of Basic Sciences in Pain and Analgesia of the Sociedad Española del Dolor.
| | - Ma Isabel Martín-Fontelles
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada I+D+i al Instituto de Química Médica (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM); Working Group of Basic Sciences in Pain and Analgesia of the Sociedad Española del Dolor.
| | - Eva Ma Sánchez-Robles
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada I+D+i al Instituto de Química Médica (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM).
| |
Collapse
|
5
|
Ishida K, Tanaka S, Shen D, Matsui S, Fuseya S, Shindo T, Kawamata M. Calcitonin gene-related peptide is not involved in neuropathic pain induced by partial sciatic nerve ligation in mice. Neurosci Lett 2022; 778:136615. [DOI: 10.1016/j.neulet.2022.136615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
|
6
|
Kim MS, Kim BY, Saghetlians A, Zhang X, Okida T, Kim SY. Anti-nociceptive effects of dual neuropeptide antagonist therapy in mouse model of neuropathic and inflammatory pain. Korean J Pain 2022; 35:173-182. [PMID: 35354680 PMCID: PMC8977203 DOI: 10.3344/kjp.2022.35.2.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/05/2022] Open
Abstract
Background Neurokinin-1 (NK1) and calcitonin gene-related peptide (CGRP) play a vital role in pain pathogenesis, and these proteins' antagonists have attracted attention as promising pharmaceutical candidates. The authors investigated the antinociceptive effect of co-administration of the CGRP antagonist and an NK1 antagonist on pain models compared to conventional single regimens. Methods C57Bl/6J mice underwent sciatic nerve ligation for the neuropathic pain model and were injected with 4% formalin into the hind paw for the inflammatory pain model. Each model was divided into four groups: vehicle, NK1 antagonist, CGRP antagonist, and combination treatment groups. The NK1 antagonist aprepitant (BIBN4096, 1 mg/kg) or the CGRP antagonist olcegepant (MK-0869, 10 mg/kg) was injected intraperitoneally. Mechanical allodynia, thermal hypersensitivity, and anxiety-related behaviors were assessed using the von Frey, hot plate, and elevated plus-maze tests. The flinching and licking responses were also evaluated after formalin injection. Results Co-administration of aprepitant and olcegepant more significantly alleviated pain behaviors than administration of single agents or vehicle, increasing the mechanical threshold and improving the response latency. Anxiety-related behaviors were also markedly improved after dual treatment compared with either naive mice or the neuropathic pain model in the dual treatment group. Flinching frequency and licking response after formalin injection decreased significantly in the dual treatment group. Isobolographic analysis showed a meaningful additive effect between the two compounds. Conclusions A combination pharmacological therapy comprised of multiple neuropeptide antagonists could be a more effective therapeutic strategy for alleviating neuropathic or inflammatory pain.
Collapse
Affiliation(s)
- Min Su Kim
- Department of Rehabilitation Medicine, Wonkwang University College of Medicine, Iksan, Korea
| | - Bo Yeon Kim
- Department of Rehabilitation Medicine, Wonkwang University College of Medicine, Iksan, Korea.,Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Xiang Zhang
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Takuya Okida
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - So Yeon Kim
- Department of Rehabilitation Medicine, Wonkwang University College of Medicine, Iksan, Korea.,Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
7
|
Abstract
We aimed to investigate a sexually dimorphic role of calcitonin gene-related peptide (CGRP) in rodent models of pain. Based on findings in migraine where CGRP has a preferential pain-promoting effect in female rodents, we hypothesized that CGRP antagonists and antibodies would attenuate pain sensitization more efficaciously in female than male mice and rats. In hyperalgesic priming induced by activation of interleukin 6 signaling, CGRP receptor antagonists olcegepant and CGRP8-37 both given intrathecally, blocked, and reversed hyperalgesic priming only in females. A monoclonal antibody against CGRP, given systemically, blocked priming specifically in female rodents but failed to reverse it. In the spared nerve injury model, there was a transient effect of both CGRP antagonists, given intrathecally, on mechanical hypersensitivity in female mice only. Consistent with these findings, intrathecally applied CGRP caused a long-lasting, dose-dependent mechanical hypersensitivity in female mice but more transient effects in males. This CGRP-induced mechanical hypersensitivity was reversed by olcegepant and the KCC2 enhancer CLP257, suggesting a role for anionic plasticity in the dorsal horn in the pain-promoting effects of CGRP in females. In spinal dorsal horn slices, CGRP shifted GABAA reversal potentials to significantly more positive values, but, again, only in female mice. Therefore, CGRP may regulate KCC2 expression and/or activity downstream of CGRP receptors specifically in females. However, KCC2 hypofunction promotes mechanical pain hypersensitivity in both sexes because CLP257 alleviated hyperalgesic priming in male and female mice. We conclude that CGRP promotes pain plasticity in female rodents but has a limited impact in males.SIGNIFICANCE STATEMENT The majority of patients impacted by chronic pain are women. Mechanistic studies in rodents are creating a clear picture that molecular events promoting chronic pain are different in male and female animals. We sought to build on evidence showing that CGRP is a more potent and efficacious promoter of headache in female than in male rodents. To test this, we used hyperalgesic priming and the spared nerve injury neuropathic pain models in mice. Our findings show a clear sex dimorphism wherein CGRP promotes pain in female but not male mice, likely via a centrally mediated mechanism of action. Our work suggests that CGRP receptor antagonists could be tested for efficacy in women for a broader variety of pain conditions.
Collapse
|
8
|
Serrano NE, Saputra SG, Íbias J, Company M, Nazarian A. Pain-induced impulsivity is sexually dimorphic and mu-opioid receptor sensitive in rats. Psychopharmacology (Berl) 2021; 238:3447-3462. [PMID: 34427720 DOI: 10.1007/s00213-021-05963-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022]
Abstract
RATIONALE AND OBJECTIVES Pain sensation can negatively impact cognitive function, including impulsivity. Pain-induced changes in impulsivity can contribute to development of psychiatric comorbidities found in those with chronic pain conditions. The goal of this study was to determine whether complete Freund's adjuvant (CFA)-induced pain manipulation enhances impulsivity in rats. Whether the pain-induced impulsivity is sexually dimorphic, and if mu-opioid receptors play a role in these processes. METHODS Male and female rats were screened for trait impulsivity and designated as high or low impulsive using a delay discounting task. Rats then received a hind paw injection of CFA, and their impulsivity was assessed for 16 days. The effects of morphine on impulsivity were also examined. In a separate experiment, rats were pretreated with beta-funaltrexamine (β-FNA) to determine the role of mu-opioid receptors on impulsivity. RESULTS CFA treatment increased impulsivity in males and females. The onset of CFA-induced impulsivity was faster in high impulsive females than males. Morphine blocked CFA-induced impulsivity in both sexes in a dose- and time-dependent manner. β-FNA prevented the actions of morphine on CFA-induced impulsivity in high impulsive males, but not high impulsive females. Moreover, β-FNA increased CFA-induced impulsivity in morphine naïve males, but not females. CONCLUSION These findings demonstrate unique sex differences in CFA-induced impulsivity, response to morphine, and the impact of mu-opioid receptors. A better understanding of cognitive deficits and their mechanisms can provide insight into the development of substance abuse and psychiatric comorbidities that occur in people with chronic pain.
Collapse
Affiliation(s)
- Nidia Espinoza Serrano
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Samuel G Saputra
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Javier Íbias
- Departamento de Metodologίa de Las Ciencias del Comportamiento, Facultad de Psicologίa, Universidad Nacional de Educacίon a Distancia (UNED), 28040, Madrid, Spain
| | - Matthew Company
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Arbi Nazarian
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA.
| |
Collapse
|
9
|
Maegawa H, Yoshikawa C, Usami N, Hanamoto H, Kudo C, Niwa H. Anti-calcitonin gene-related peptide antibody attenuates orofacial mechanical and heat hypersensitivities induced by infraorbital nerve injury. Biochem Biophys Res Commun 2021; 569:147-153. [PMID: 34245979 DOI: 10.1016/j.bbrc.2021.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 01/06/2023]
Abstract
Currently, limited information regarding the role of calcitonin gene-related peptide (CGRP) in neuropathic pain is available. Intracerebroventricular administrations of an anti-CGRP antibody were performed in rats with infraorbital nerve ligation. Anti-CGRP antibody administration attenuated mechanical and heat hypersensitivities induced by nerve ligation and decreased the phosphorylated extracellular signal-regulated kinase expression levels in the trigeminal spinal subnucleus caudalis (Vc) following mechanical or heat stimulation. An increased CGRP immunoreactivity in the Vc appeared after nerve ligation. A decreased CGRP immunoreactivity resulted from anti-CGRP antibody administration. Our findings suggest that anti-CGRP antibody administration attenuates the symptoms of trigeminal neuropathic pain by acting on CGRP in the Vc.
Collapse
Affiliation(s)
- Hiroharu Maegawa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| | - Chiaki Yoshikawa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| | - Nayuka Usami
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| | - Hiroshi Hanamoto
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| | - Chiho Kudo
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| | - Hitoshi Niwa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
10
|
Nagakura Y, Nagaoka S, Kurose T. Potential Molecular Targets for Treating Neuropathic Orofacial Pain Based on Current Findings in Animal Models. Int J Mol Sci 2021; 22:ijms22126406. [PMID: 34203854 PMCID: PMC8232571 DOI: 10.3390/ijms22126406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 01/25/2023] Open
Abstract
This review highlights potential molecular targets for treating neuropathic orofacial pain based on current findings in animal models. Preclinical research is currently elucidating the pathophysiology of the disease and identifying the molecular targets for better therapies using animal models that mimic this category of orofacial pain, especially post-traumatic trigeminal neuropathic pain (PTNP) and primary trigeminal neuralgia (PTN). Animal models of PTNP and PTN simulate their etiologies, that is, trauma to the trigeminal nerve branch and compression of the trigeminal root entry zone, respectively. Investigations in these animal models have suggested that biological processes, including inflammation, enhanced neuropeptide-mediated pain signal transmission, axonal ectopic discharges, and enhancement of interactions between neurons and glial cells in the trigeminal pathway, are underlying orofacial pain phenotypes. The molecules associated with biological processes, whose expressions are substantially altered following trigeminal nerve damage or compression of the trigeminal nerve root, are potentially involved in the generation and/or exacerbation of neuropathic orofacial pain and can be potential molecular targets for the discovery of better therapies. Application of therapeutic candidates, which act on the molecular targets and modulate biological processes, attenuates pain-associated behaviors in animal models. Such therapeutic candidates including calcitonin gene-related peptide receptor antagonists that have a reasonable mechanism for ameliorating neuropathic orofacial pain and meet the requirements for safe administration to humans seem worth to be evaluated in clinical trials. Such prospective translation of the efficacy of therapeutic candidates from animal models to human patients would help develop better therapies for neuropathic orofacial pain.
Collapse
Affiliation(s)
- Yukinori Nagakura
- School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa-city, Fukuoka 831-8501, Japan
- Correspondence:
| | - Shogo Nagaoka
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan; (S.N.); (T.K.)
| | - Takahiro Kurose
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan; (S.N.); (T.K.)
| |
Collapse
|
11
|
Acute and Chronic Pain from Facial Skin and Oral Mucosa: Unique Neurobiology and Challenging Treatment. Int J Mol Sci 2021; 22:ijms22115810. [PMID: 34071720 PMCID: PMC8198570 DOI: 10.3390/ijms22115810] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
The oral cavity is a portal into the digestive system, which exhibits unique sensory properties. Like facial skin, the oral mucosa needs to be exquisitely sensitive and selective, in order to detect harmful toxins versus edible food. Chemosensation and somatosensation by multiple receptors, including transient receptor potential channels, are well-developed to meet these needs. In contrast to facial skin, however, the oral mucosa rarely exhibits itch responses. Like the gut, the oral cavity performs mechanical and chemical digestion. Therefore, the oral mucosa needs to be insensitive, to some degree, in order to endure noxious irritation. Persistent pain from the oral mucosa is often due to ulcers, involving both tissue injury and infection. Trigeminal nerve injury and trigeminal neuralgia produce intractable pain in the orofacial skin and the oral mucosa, through mechanisms distinct from those seen in the spinal area, which is particularly difficult to predict or treat. The diagnosis and treatment of idiopathic chronic pain, such as atypical odontalgia (idiopathic painful trigeminal neuropathy or post-traumatic trigeminal neuropathy) and burning mouth syndrome, remain especially challenging. The central integration of gustatory inputs might modulate chronic oral and facial pain. A lack of pain in chronic inflammation inside the oral cavity, such as chronic periodontitis, involves the specialized functioning of oral bacteria. A more detailed understanding of the unique neurobiology of pain from the orofacial skin and the oral mucosa should help us develop novel methods for better treating persistent orofacial pain.
Collapse
|
12
|
Chen W, McRoberts JA, Ennes HS, Marvizon JC. cAMP signaling through protein kinase A and Epac2 induces substance P release in the rat spinal cord. Neuropharmacology 2021; 189:108533. [PMID: 33744339 DOI: 10.1016/j.neuropharm.2021.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 11/18/2022]
Abstract
Using neurokinin 1 receptor (NK1R) internalization to measure of substance P release in rat spinal cord slices, we found that it was induced by the adenylyl cyclase (AC) activator forskolin, by the protein kinase A (PKA) activators 6-Bnz-cAMP and 8-Br-cAMP, and by the activator of exchange protein activated by cAMP (Epac) 8-pCPT-2-O-Me-cAMP (CPTOMe-cAMP). Conversely, AC and PKA inhibitors decreased substance P release induced by electrical stimulation of the dorsal root. Therefore, the cAMP signaling pathway mediates substance P release in the dorsal horn. The effects of forskolin and 6-Bnz-cAMP were not additive with NMDA-induced substance P release and were decreased by the NMDA receptor blocker MK-801. In cultured dorsal horn neurons, forskolin increased NMDA-induced Ca2+ entry and the phosphorylation of the NR1 and NR2B subunits of the NMDA receptor. Therefore, cAMP-induced substance P release is mediated by the activating phosphorylation by PKA of NMDA receptors. Voltage-gated Ca2+ channels, but not by TRPV1 or TRPA1, also contributed to cAMP-induced substance P release. Activation of PKA was required for the effects of forskolin and the three cAMP analogs. Epac2 contributed to the effects of forskolin and CPTOMe-cAMP, signaling through a Raf - mitogen-activated protein kinase pathway to activate Ca2+ channels. Epac1 inhibitors induced NK1R internalization independently of substance P release. In rats with latent sensitization to pain, the effect of 6-Bnz-cAMP was unchanged, whereas the effect of forskolin was decreased due to the loss of the stimulatory effect of Epac2. Hence, substance P release induced by cAMP decreases during pain hypersensitivity.
Collapse
Affiliation(s)
- Wenling Chen
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA; Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - James A McRoberts
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Helena S Ennes
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Juan Carlos Marvizon
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA; Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA.
| |
Collapse
|
13
|
Gambeta E, Chichorro JG, Zamponi GW. Trigeminal neuralgia: An overview from pathophysiology to pharmacological treatments. Mol Pain 2021; 16:1744806920901890. [PMID: 31908187 PMCID: PMC6985973 DOI: 10.1177/1744806920901890] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The trigeminal nerve (V) is the fifth and largest of all cranial nerves, and it is responsible for detecting sensory stimuli that arise from the craniofacial area. The nerve is divided into three branches: ophthalmic (V1), maxillary (V2), and mandibular (V3); their cell bodies are located in the trigeminal ganglia and they make connections with second-order neurons in the trigeminal brainstem sensory nuclear complex. Ascending projections via the trigeminothalamic tract transmit information to the thalamus and other brain regions responsible for interpreting sensory information. One of the most common forms of craniofacial pain is trigeminal neuralgia. Trigeminal neuralgia is characterized by sudden, brief, and excruciating facial pain attacks in one or more of the V branches, leading to a severe reduction in the quality of life of affected patients. Trigeminal neuralgia etiology can be classified into idiopathic, classic, and secondary. Classic trigeminal neuralgia is associated with neurovascular compression in the trigeminal root entry zone, which can lead to demyelination and a dysregulation of voltage-gated sodium channel expression in the membrane. These alterations may be responsible for pain attacks in trigeminal neuralgia patients. The antiepileptic drugs carbamazepine and oxcarbazepine are the first-line pharmacological treatment for trigeminal neuralgia. Their mechanism of action is a modulation of voltage-gated sodium channels, leading to a decrease in neuronal activity. Although carbamazepine and oxcarbazepine are the first-line treatment, other drugs may be useful for pain control in trigeminal neuralgia. Among them, the anticonvulsants gabapentin, pregabalin, lamotrigine and phenytoin, baclofen, and botulinum toxin type A can be coadministered with carbamazepine or oxcarbazepine for a synergistic approach. New pharmacological alternatives are being explored such as the active metabolite of oxcarbazepine, eslicarbazepine, and the new Nav1.7 blocker vixotrigine. The pharmacological profiles of these drugs are addressed in this review.
Collapse
Affiliation(s)
- Eder Gambeta
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Juliana G Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Brazil
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Chen W, Marvizón JC. A Src family kinase maintains latent sensitization in rats, a model of inflammatory and neuropathic pain. Brain Res 2020; 1746:146999. [PMID: 32579948 PMCID: PMC10866137 DOI: 10.1016/j.brainres.2020.146999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Latent sensitization is a long-term model of chronic pain in which hyperalgesia is continuously suppressed by opioid receptors, as demonstrated by the induction of mechanical allodynia by opioid antagonists. Different intracellular signals may mediate the initiation, maintenance and expression of latent sensitization. Our criterion for the involvement of a signal in the maintenance of latent sensitization is that inhibitors should permanently eliminate the allodynia produced by an opioid antagonist. We hypothesized that Src family kinases (SFKs) maintain latent sensitization and tested this hypothesis by inducing latent sensitization in rats with complete Freund's adjuvant (CFA) or spared nerve injury. After measures of mechanical allodynia returned to baseline, vehicle or the SFK inhibitor PP2 were injected intrathecally. The opioid antagonist naltrexone injected intrathecally 15 min later produced allodynia in control rats but not in rats injected with PP2. Vehicle or PP2 were injected daily for two more days and naltrexone was injected five days later. Again, naltrexone induced allodynia in the control rats but not in the rats injected with PP2. Results were similar when latent sensitization was induced with CFA or spared nerve injury. We concluded that an SFK, likely Fyn, maintains latent sensitization induced by inflammation or nerve injury.
Collapse
Affiliation(s)
- Wenling Chen
- Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States; Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Juan Carlos Marvizón
- Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States; Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
15
|
Chen W, Marvizon JC. Neurokinin 1 receptor activation in the rat spinal cord maintains latent sensitization, a model of inflammatory and neuropathic chronic pain. Neuropharmacology 2020; 177:108253. [PMID: 32736088 PMCID: PMC10863619 DOI: 10.1016/j.neuropharm.2020.108253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022]
Abstract
Latent sensitization is a model of chronic pain in which a persistent state of pain hypersensitivity is suppressed by opioid receptors, as evidenced by the ability of opioid antagonists to induce a period of mechanical allodynia. Our objective was to determine if substance P and its neurokinin 1 receptor (NK1R) mediate the maintenance of latent sensitization. Latent sensitization was induced by injecting rats in the hindpaw with complete Freund's adjuvant (CFA), or by tibial spared nerve injury (SNI). When responses to von Frey filaments returned to baseline (day 28), the rats were injected intrathecally with saline or the NK1R antagonist RP67580, followed 15 min later by intrathecal naltrexone. In both pain models, the saline-injected rats developed allodynia for 2 h after naltrexone, but not the RP67580-injected rats. Saline or RP67580 were injected daily for two more days. Five days later (day 35), naltrexone was injected intrathecally. Again, the saline-injected rats, but not the RP67580-injected rats, developed allodynia in response to naltrexone. To determine if there is sustained activation of NK1Rs during latent sensitization, NK1R internalization was measured in lamina I neurons in rats injected in the paw with saline or CFA, and then injected intrathecally with saline or naltrexone on day 28. The rats injected with CFA had a small amount of NK1R internalization that was significantly higher than in the saline-injected rats. Naltrexone increased NK1R internalization in the CFA-injected rats but nor in the saline-injected rats. Therefore, sustained activation of NK1Rs maintains pain hypersensitivity during latent sensitization.
Collapse
Affiliation(s)
- Wenling Chen
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA; Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - Juan Carlos Marvizon
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA; Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA.
| |
Collapse
|
16
|
Mulder IA, Li M, de Vries T, Qin T, Yanagisawa T, Sugimoto K, van den Bogaerdt A, Danser AHJ, Wermer MJH, van den Maagdenberg AMJM, MaassenVanDenBrink A, Ferrari MD, Ayata C. Anti-migraine Calcitonin Gene-Related Peptide Receptor Antagonists Worsen Cerebral Ischemic Outcome in Mice. Ann Neurol 2020; 88:771-784. [PMID: 32583883 PMCID: PMC7540520 DOI: 10.1002/ana.25831] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 06/11/2020] [Accepted: 06/21/2020] [Indexed: 12/31/2022]
Abstract
Objective Calcitonin gene–related peptide (CGRP) pathway inhibitors are emerging treatments for migraine. CGRP‐mediated vasodilation is, however, a critical rescue mechanism in ischemia. We, therefore, investigated whether gepants, small molecule CGRP receptor antagonists, worsen cerebral ischemia. Methods Middle cerebral artery was occluded for 12 to 60 minutes in mice. We compared infarct risk and volumes, collateral flow, and neurological deficits after pretreatment with olcegepant (single or 10 daily doses of 0.1–1mg/kg) or rimegepant (single doses of 10–100mg/kg) versus vehicle. We also determined their potency on CGRP‐induced relaxations in mouse and human vessels, in vitro. Results Olcegepant (1mg/kg, single dose) increased infarct risk after 12‐ to 20‐minute occlusions mimicking transient ischemic attacks (14/19 vs 6/18 with vehicle, relative risk = 2.21, p < 0.022), and doubled infarct volumes (p < 0.001) and worsened neurological deficits (median score = 9 vs 5 with vehicle, p = 0.008) after 60‐minute occlusion. Ten daily doses of 0.1 to 1mg/kg olcegepant yielded similar results. Rimegepant 10mg/kg increased infarct volumes by 60% after 20‐minute ischemia (p = 0.03); 100mg/kg caused 75% mortality after 60‐minute occlusion. In familial hemiplegic migraine type 1 mice, olcegepant 1mg/kg increased infarct size after 30‐minute occlusion (1.6‐fold, p = 0.017). Both gepants consistently diminished collateral flow and reduced reperfusion success. Olcegepant was 10‐fold more potent than rimegepant on CGRP‐induced relaxations in mouse aorta. Interpretation Gepants worsened ischemic stroke in mice via collateral dysfunction. CGRP pathway blockers might thus aggravate coincidental cerebral ischemic events. The cerebrovascular safety of these agents must therefore be better delineated, especially in patients at increased risk of ischemic events or on prophylactic CGRP inhibition. ANN NEUROL 2020;88:771–784
Collapse
Affiliation(s)
- Inge A Mulder
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mei Li
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tessa de Vries
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tao Qin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Takeshi Yanagisawa
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kazutaka Sugimoto
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Antoinette MaassenVanDenBrink
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Cenk Ayata
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Hu TT, Yu J, Liu K, Du Y, Qu FH, Guo F, Yu LN, Nishibori M, Chen Z, Zhang SH. A crucial role of HMGB1 in orofacial and widespread pain sensitization following partial infraorbital nerve transection. Brain Behav Immun 2020; 88:114-124. [PMID: 32389703 DOI: 10.1016/j.bbi.2020.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Ting-Ting Hu
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yu Du
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Feng-Hui Qu
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Fang Guo
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Li-Na Yu
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Zhong Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Shi-Hong Zhang
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Chung MK, Wang S, Yang J, Alshanqiti I, Wei F, Ro JY. Neural Pathways of Craniofacial Muscle Pain: Implications for Novel Treatments. J Dent Res 2020; 99:1004-1012. [PMID: 32374638 DOI: 10.1177/0022034520919384] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Craniofacial muscle pain is highly prevalent in temporomandibular disorders but is difficult to treat. Enhanced understanding of neurobiology unique to craniofacial muscle pain should lead to the development of novel mechanism-based treatments. Herein, we review recent studies to summarize neural pathways of craniofacial muscle pain. Nociceptive afferents in craniofacial muscles are predominantly peptidergic afferents enriched with TRPV1. Signals from peripheral glutamate receptors converge onto TRPV1, leading to mechanical hyperalgesia. Further studies are needed to clarify whether hyperalgesic priming in nonpeptidergic afferents or repeated acid injections also affect craniofacial muscle pain. Within trigeminal ganglia, afferents innervating craniofacial muscles interact with surrounding satellite glia, which enhances the sensitivity of the inflamed neurons as well as nearby uninjured afferents, resulting in hyperalgesia and ectopic pain originating from adjacent orofacial tissues. Craniofacial muscle afferents project to a wide area within the trigeminal nucleus complex, and central sensitization of medullary dorsal horn neurons is a critical factor in muscle hyperalgesia related to ectopic pain and emotional stress. Second-order neurons project rostrally to pathways associated with affective pain, such as parabrachial nucleus and medial thalamic nucleus, as well as sensory-discriminative pain, such as ventral posteromedial thalamic nuclei. Abnormal endogenous pain modulation can also contribute to chronic muscle pain. Descending serotonergic circuits from the rostral ventromedial medulla facilitate activation of second-order neurons in the trigeminal nucleus complex, which leads to the maintenance of mechanical hyperalgesia of inflamed masseter muscle. Patients with temporomandibular disorders exhibit altered brain networks in widespread cortical and subcortical regions. Recent development of methods for neural circuit manipulation allows silencing of specific hyperactive neural circuits. Chemogenetic silencing of TRPV1-expressing afferents or rostral ventromedial medulla neurons attenuates hyperalgesia during masseter inflammation. It is likely, therefore, that further delineation of neural circuits mediating craniofacial muscle hyperalgesia potentially enhances treatment of chronic muscle pain conditions.
Collapse
Affiliation(s)
- M K Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, USA
| | - S Wang
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, USA
| | - J Yang
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, USA
| | - I Alshanqiti
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, USA
| | - F Wei
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, USA
| | - J Y Ro
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, USA
| |
Collapse
|
19
|
He L, Liu L, Guan S, Zheng X, Ge H, Yin C, Shen Y, Tan M, Wang C, Gao Y, Xiong W. Palmatine alleviates hyperalgesia by inhibiting the expression of calcitonin gene-related peptide in the trigeminal ganglion of rats with chronic constriction injury of the infraorbital nerve. Br J Oral Maxillofac Surg 2020; 58:443-450. [PMID: 32139146 DOI: 10.1016/j.bjoms.2020.01.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/31/2020] [Indexed: 12/22/2022]
Abstract
Trigeminal neuralgia is one of the most common of the neuropathic pains, and it can seriously influence patients' quality of life. Calcitonin gene-related peptide (CGRP) is a type of nociceptive neurotransmitter that is expressed in neurons of the trigeminal ganglion and plays a major part in transmitting pain. The rat model of trigeminal neuralgia was established by causing a chronic constriction injury of the infraorbital nerve (CCI-ION). Male Sprague-Dawley rats (n=24) were randomly divided into a sham control group (sham, n=6), sham-treated with palmatine group (sham+palmatine, n=6), trigeminal nerve model group (TN, n=6), and trigeminal nerve treated with palmatine group (TN+palmatine, n=6). Fifteen days after the operation the mechanical response threshold was decreased in the TN group compared with the sham group. From postoperative day 7 to day 15, the mechanical response threshold in the TN+palmatine group significantly increased compared with the TN group. On postoperative day 15 the results of quantitative polymerase chain reaction (qPCR), immunohistochemical staining, and western blotting showed an obvious increase in expression of CGRP and its receptors, serum concentrations of interleukin-1β (IL-1β), and tumour necrosis factor-α (TNF-α), and phosphorylation of protein kinase C (PKC) in the trigeminal ganglia of the TN group compared with the sham group, but these increases could be down-regulated by treatment with palmatine. Palmatine might therefore have therapeutic potential for the treatment of trigeminal neuralgia by inhibiting the expression of CGRP and its receptors in trigeminal ganglia, suppressing the serum concentrations of IL-1β and TNF-α, and decreasing the phosphorylation of PKC in the trigeminal ganglia of affected rats.
Collapse
Affiliation(s)
- L He
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - L Liu
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - S Guan
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - X Zheng
- Queen Mary college of grade 2015, Nanchang University, Nanchang, Jiangxi, China
| | - H Ge
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - C Yin
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Y Shen
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - M Tan
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - C Wang
- Second Clinic Medical College of Grade 2017, Nanchang University, Nanchang, Jiangxi, China
| | - Y Gao
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, China
| | - W Xiong
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, China; Jiangxi Provincial Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China.
| |
Collapse
|
20
|
Lapp HS, Sabatowski R, Weidner K, Croy I, Gossrau G. C-tactile touch perception in migraineurs – a case-control study. Cephalalgia 2019; 40:478-492. [DOI: 10.1177/0333102419889349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background Migraine is characterized by sensory hypersensitivity and habituation deficits. Slow brushing over the skin activates C-tactile nerve fibers, which mediate pleasant touch and analgesic effects in healthy subjects. As this function is altered in painful conditions, we aimed to examine whether the C-tactile processing is disrupted in migraines. Methods To psychophysically assess C-tactile function, we applied optimal and suboptimal C-tactile stroking stimuli on the dorsal forearm (body reference area) and the trigeminally innervated skin of 52 interictal migraineurs and 52 matched healthy controls. For habituation testing, 60 repeated C-tactile optimal stimuli were presented in both test areas. The participants rated each stimulus on a visual analogue scale by intensity, pleasantness, and painfulness. Results Regarding C-tactile function, migraineurs showed unphysiological rating patterns but no significantly different pleasantness ratings than controls. During repeated stimulation, controls showed stable pleasantness ratings while migraineurs’ ratings decreased, especially in those experiencing tactile allodynia during headaches. Migraineurs taking triptans responded like controls. Conclusion The C-tactile function of migraineurs is subclinically altered. Repeated C-tactile stimulation leads to altered habituation but differs from previous work by the direction of the changes. Although the pathophysiology remains unknown, causative mechanisms could include central and peripheral neuronal sensitization, tactile allodynia and hedonic stimulus attributions.
Collapse
Affiliation(s)
- Hanna Sophie Lapp
- Pain Center, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany
| | - Rainer Sabatowski
- Pain Center, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany
- Department of Anesthesiology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany
| | - Kerstin Weidner
- Department of Psychotherapy and Psychosomatic Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany
| | - Ilona Croy
- Department of Psychotherapy and Psychosomatic Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany
| | - Gudrun Gossrau
- Pain Center, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany
| |
Collapse
|
21
|
Marvizon JC, Chen W, Fu W, Taylor BK. Neuropeptide Y release in the rat spinal cord measured with Y1 receptor internalization is increased after nerve injury. Neuropharmacology 2019; 158:107732. [PMID: 31377198 DOI: 10.1016/j.neuropharm.2019.107732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
Neuropeptide Y (NPY) modulates nociception in the spinal cord, but little is known about its mechanisms of release. We measured NPY release in situ using the internalization of its Y1 receptor in dorsal horn neurons. Y1 receptor immunoreactivity was normally localized to the cell surface, but addition of NPY to spinal cord slices increased the number of neurons with Y1 internalization in a biphasic fashion (EC50s of 1 nM and 1 μM). Depolarization with KCl, capsaicin, or the protein kinase A activator 6-benzoyl-cAMP also induced Y1 receptor internalization, presumably by releasing NPY. NMDA receptor activation in the presence of BVT948, an inhibitor of protein tyrosine phosphatases, also released NPY. Electrical stimulation of the dorsal horn frequency-dependently induced NPY release; and this was decreased by the Y1 antagonist BIBO3304, the Nav channel blocker lidocaine, or the Cav2 channel blocker ω-conotoxin MVIIC. Dorsal root immersion in capsaicin, but not its electrical stimulation, also induced NPY release. This was blocked by CNQX, suggesting that part of the NPY released by capsaicin was from dorsal horn neurons receiving synapses from primary afferents and not from the afferent themselves. Mechanical stimulation in vivo, with rub or clamp of the hindpaw, elicited robust Y1 receptor internalization in rats with spared nerve injury but not sham surgery. In summary, NPY is released from dorsal horn interneurons or primary afferent terminals by electrical stimulation and by activation of TRPV1, PKA or NMDA receptors in. Furthermore, NPY release evoked by noxious and tactile stimuli increases after peripheral nerve injury.
Collapse
Affiliation(s)
- Juan Carlos Marvizon
- Vatche and Tamar Manoukian Division of Digestive Diseases, 900 Veterans Ave., Warren Hall Building, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA; Veteran Affairs Greater Los Angeles Healthcare System, 11310 Wilshire Blvd., Building 115, Los Angeles, CA, 90073, USA.
| | - Wenling Chen
- Vatche and Tamar Manoukian Division of Digestive Diseases, 900 Veterans Ave., Warren Hall Building, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA; Veteran Affairs Greater Los Angeles Healthcare System, 11310 Wilshire Blvd., Building 115, Los Angeles, CA, 90073, USA.
| | - Weisi Fu
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA.
| | - Bradley K Taylor
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA; Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Christensen SL, Petersen S, Kristensen DM, Olesen J, Munro G. Targeting CGRP via receptor antagonism and antibody neutralisation in two distinct rodent models of migraine-like pain. Cephalalgia 2019; 39:1827-1837. [DOI: 10.1177/0333102419861726] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction Rodent disease models can play an indispensable role in drug development. Confirming that translationally-relevant disease mechanisms are engaged in such models is a crucial facet of this process. Accordingly, we have validated the role of calcitonin gene-related peptide signaling in a mouse model of glyceryl trinitrate-provoked migraine-like pain and a spontaneous rat model of migraine-like pain by assessing their pharmacological responsiveness to the small molecule calcitonin gene-related peptide receptor antagonist olcegepant, and the humanised monoclonal calcitonin gene-related peptide antibody ALD405. Methods Cutaneous sensitivity to hind paw, and periorbital mechanical stimulation were used as surrogate markers of activation of relevant pain pathways in each respective model. Separate experiments were performed to identify the time-course of treatment response to olcegepant (1 mg/kg i.p.) and ALD405 (10 mg/kg i.p.). Results Olcegepant and ALD405 significantly alleviated cutaneous mechanical hypersensitivity in both models compared with corresponding control treatments (saline and IgG control antibody respectively). As expected, the duration of anti-nociceptive action obtained with ALD405 was considerably longer than that associated with olcegepant. Surprisingly, in the spontaneous rat model the onset of action of ALD405 occurred within just 4 hours after administration. Discussion The current data clearly show that calcitonin gene-related peptide-mediated signaling is critically involved in the manifestation of cutaneous hypersensitivity in distinct rodent models of migraine-like pain and emphasise their translational relevance. Moreover, the unexpected rapidity of onset observed for ALD405 supports i) a probable site of action outside the blood-brain barrier, and ii) a potential clinical utility of specific monoclonal calcitonin gene-related peptide antibodies in the abortive treatment of migraine.
Collapse
Affiliation(s)
- Sarah L Christensen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Nordstjernevej, Glostrup, Denmark
| | - Steffen Petersen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Nordstjernevej, Glostrup, Denmark
| | - David Møbjerg Kristensen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Nordstjernevej, Glostrup, Denmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Nordstjernevej, Glostrup, Denmark
| | - Gordon Munro
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Nordstjernevej, Glostrup, Denmark
| |
Collapse
|
23
|
Bagues A, Martín MI, Higuera-Matas A, Esteban-Hernández J, Ambrosio E, Sánchez-Robles EM. Mu-Opioid Receptors in Ganglia, But Not in Muscle, Mediate Peripheral Analgesia in Rat Muscle Pain. Anesth Analg 2019; 126:1369-1376. [PMID: 29261544 DOI: 10.1213/ane.0000000000002717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Previous studies have demonstrated the participation of peripheral μ-opioid receptors (MOR) in the antinociceptive effect of systemically administered morphine and loperamide in an orofacial muscle pain model, induced by hypertonic saline, but not in a spinally innervated one, in rats. In this study, we determine whether this peripheral antinociceptive effect is due to the activation of MOR localized in the muscle, ganglia, or both. METHODS To determine the local antinociceptive effect of morphine and loperamide, 2 models of acute muscle pain (trigeminal and spinal) were used. Also, to study the MOR expression, protein quantification was performed in the trigeminal and spinal ganglia, and in the muscles. RESULTS The behavioral results show that the intramuscular injection of morphine and loperamide did not exert an antinociceptive effect in either muscle (morphine: P = .63, loperamide: P = .9). On the other hand, MOR expression was found in the ganglia but not in the muscles. This expression was on average 44% higher (95% confidence interval, 33.3-53.9) in the trigeminal ganglia than in the spinal one. CONCLUSIONS The peripheral antinociceptive effect of systemically administered opioids may be due to the activation of MOR in ganglia. The greater expression of MOR in trigeminal ganglia could explain the higher antinociceptive effect of opioids in orofacial muscle pain than in spinal muscle pain. Therefore, peripheral opioids could represent a promising approach for the treatment of orofacial pain.
Collapse
Affiliation(s)
| | | | - Alejandro Higuera-Matas
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Jesús Esteban-Hernández
- Área de Medicina Preventiva y Salud Pública, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| | - Emilio Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | | |
Collapse
|
24
|
Vasović D, Divović B, Treven M, Knutson DE, Steudle F, Scholze P, Obradović A, Fabjan J, Brković B, Sieghart W, Ernst M, Cook JM, Savić MM. Trigeminal neuropathic pain development and maintenance in rats are suppressed by a positive modulator of α6 GABA A receptors. Eur J Pain 2019; 23:973-984. [PMID: 30633839 PMCID: PMC6461498 DOI: 10.1002/ejp.1365] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 01/06/2023]
Abstract
γ-Aminobutyric acid type A (GABAA ) receptors containing the α6 subunit are located in trigeminal ganglia, and their reduction by small interfering RNA increases inflammatory temporomandibular and myofascial pain in rats. We thus hypothesized that enhancing their activity may help in neuropathic syndromes originating from the trigeminal system. Here, we performed a detailed electrophysiological and pharmacokinetic analysis of two recently developed deuterated structurally similar pyrazoloquinolinone compounds. DK-I-56-1 at concentrations below 1 µM enhanced γ-aminobutyric acid (GABA) currents at recombinant rat α6β3γ2, α6β3δ and α6β3 receptors, whereas it was inactive at most GABAA receptor subtypes containing other α subunits. DK-I-87-1 at concentrations below 1 µM was inactive at α6-containing receptors and only weakly modulated other GABAA receptors investigated. Both plasma and brain tissue kinetics of DK-I-56-1 were relatively slow, with half-lives of 6 and 13 hr, respectively, enabling the persistence of estimated free brain concentrations in the range 10-300 nM throughout a 24-hr period. Results obtained in two protocols of chronic constriction injury of the infraorbital nerve in rats dosed intraperitoneally with DK-I-56-1 during 14 days after surgery or with DK-I-56-1 or DK-I-87-1 during 14 days after trigeminal neuropathy were already established, demonstrated that DK-I-56-1 but not DK-I-87-1 significantly reduced the hypersensitivity response to von Frey filaments. SIGNIFICANCE: Neuropathic pain induced by trigeminal nerve damage is poorly controlled by current treatments. DK-I-56-1 that positively modulates α6 GABAA receptors is appropriate for repeated administration and thus may represent a novel treatment option against the development and maintenance of trigeminal neuropathic pain.
Collapse
Affiliation(s)
- Dina Vasović
- School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Branka Divović
- Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia
| | - Marco Treven
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Daniel E Knutson
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Friederike Steudle
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Aleksandar Obradović
- Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia
| | - Jure Fabjan
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Božidar Brković
- School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Werner Sieghart
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - James M Cook
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Miroslav M Savić
- Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
25
|
Chen W, Taché Y, Marvizón JC. Corticotropin-Releasing Factor in the Brain and Blocking Spinal Descending Signals Induce Hyperalgesia in the Latent Sensitization Model of Chronic Pain. Neuroscience 2019; 381:149-158. [PMID: 29776484 DOI: 10.1016/j.neuroscience.2018.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/21/2018] [Accepted: 03/16/2018] [Indexed: 12/25/2022]
Abstract
Latent sensitization is a model of chronic pain in which an injury triggers a period of hyperalgesia followed by an apparent recovery, but in which pain sensitization persists but is suppressed by opioid and adrenergic receptors. One important characteristic of latent sensitization is that hyperalgesia can be triggered by acute stress. To determine whether the effect of stress is mimicked by the activation of corticotropin-releasing factor (CRF) signaling in the brain, rats with latent sensitization induced by injecting complete Freund's adjuvant (CFA, 50 μl) in one hind paw were given an intracerebroventricular (i.c.v.) injection of CRF. The i.c.v. injection of CRF (0.6 μg, 10 μl), but not saline, induced bilateral mechanical hyperalgesia in rats with latent sensitization. In contrast, CRF i.c.v. did not induce hyperalgesia in rats without latent sensitization (injected with saline in the hind paw). To determine whether descending pain inhibition mediates the suppression of hyperalgesia in latent sensitization, rats with CFA-induced latent sensitization received an intrathecal injection of lidocaine (10%, 1 μl) at the cervical-thoracic spinal cord to produce a spinal block. Lidocaine-injected rats, but not rats injected intrathecally with saline, developed bilateral mechanical hyperalgesia. Intrathecal lidocaine did not induce hyperalgesia in rats without latent sensitization (injected with saline in the hind paw). These results show that i.c.v. CRF mimicked the hyperalgesic response triggered by stress during latent sensitization, possibly by blocking inhibitory spinal descending signals that suppress hyperalgesia.
Collapse
Affiliation(s)
- Wenling Chen
- Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States; Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, United States.
| | - Yvette Taché
- Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States; Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, United States.
| | - Juan Carlos Marvizón
- Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States; Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
26
|
Abstract
CGRP has long been suspected as a mediator of arthritis pain, although evidence that CGRP directly mediates human musculoskeletal pain remains circumstantial. This chapter describes in depth the evidence surrounding CGRP's association with pain in musculoskeletal disorders and also summarises evidence for CGRP being a direct cause of pain in other conditions. CGRP-immunoreactive nerves are present in musculoskeletal tissues, and CGRP expression is altered in musculoskeletal pain. CGRP modulates musculoskeletal pain through actions both in the periphery and central nervous system. Human observational studies, research on animal arthritis models and the few reported randomised controlled trials in humans of treatments that target CGRP provide the context of CGRP as a possible pain biomarker or mediator in conditions other than migraine.
Collapse
Affiliation(s)
- David A Walsh
- Pain Centre Versus Arthritis, NIHR Nottingham Biomedical Research Centre and Division of ROD, University of Nottingham, Nottingham, UK.
- Rheumatology, Sherwood Forest Hospitals NHS Foundation Trust, Nottinghamshire, UK.
| | - Daniel F McWilliams
- Pain Centre Versus Arthritis, NIHR Nottingham Biomedical Research Centre and Division of ROD, University of Nottingham, Nottingham, UK
| |
Collapse
|
27
|
Tarighi N, Menger D, Pierre S, Kornstädt L, Thomas D, Ferreirós N, Nüsing RM, Geisslinger G, Scholich K. Thromboxane-Induced α-CGRP Release from Peripheral Neurons Is an Essential Positive Feedback Loop in Capsaicin-Induced Neurogenic Inflammation. J Invest Dermatol 2018; 139:656-664. [PMID: 30612974 DOI: 10.1016/j.jid.2018.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 11/30/2022]
Abstract
α-CGRP is synthesized by sensory nerves in the dermis and its release can cause vasodilation and local inflammation. Its vasorelaxant effects are based on the direct activation of smooth muscle and endothelial cells, as well as the activation of mast cells causing the release of vasoactive and proinflammatory mediators. Here, we show that in the capsaicin model for neurogenic inflammation, capsaicin-induced edema formation is mediated by α-CGRP and mast cells, but is absent in thromboxane receptor-deficient mice. Capsaicin treatment of mice induced a thromboxane synthesis, which was mediated by α-CGRP and mast cells. Fittingly, α-CGRP induced thromboxane synthesis in mast cells and the thromboxane receptor agonist I-BOP caused edema formation independently of mast cells, suggesting that mast cells are the source of thromboxane. Most importantly, I-BOP-induced edema formation was mediated by α-CGRP and I-BOP was able to stimulate through calcineurin the α-CGRP release from peripheral neurons. Likewise, the signaling pathway, including α-CGRP, thromboxane receptor, and mast cells, also mediated capsaicin-induced mechanical hypersensitivity, a common symptom of capsaicin treatment. Taken together, the thromboxane-induced α-CGRP release from neurons forms a positive feedback loop causing prolonged α-CGRP release and edema formation during capsaicin-induced neurogenic inflammation.
Collapse
Affiliation(s)
- Neda Tarighi
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Germany
| | - Dominic Menger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Germany
| | - Sandra Pierre
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Germany
| | - Lisa Kornstädt
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Germany
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Germany
| | - Rolf M Nüsing
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology, Frankfurt/Main, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology, Frankfurt/Main, Germany.
| |
Collapse
|
28
|
Habay SA, Miller JM, Bowler MM, Manchak R, Thomas JZ. An efficient synthesis of the piperidinyl dihydroquinazolinone (PDQ) fragment of olcegepant. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
M'Dahoma S, Poitevin M, Dabala E, Payan H, Gabriel C, Mocaër E, Bourgoin S, Hamon M. α 2- and β 2-Adrenoreceptor-Mediated Efficacy of the Atypical Antidepressant Agomelatine Combined With Gabapentin to Suppress Allodynia in Neuropathic Rats With Ligated Infraorbital or Sciatic Nerve. Front Pharmacol 2018; 9:587. [PMID: 29930510 PMCID: PMC5999781 DOI: 10.3389/fphar.2018.00587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
Previous data showed that neuropathic pain induced by mechanical lesion of peripheral nerves has specific characteristics and responds differently to alleviating drugs at cephalic versus extracephalic level. This is especially true for tricyclic antidepressants currently used for alleviating neuropathic pain in humans which are less effective against cephalic neuropathic pain. Whether this also applies to the antidepressant agomelatine, with its unique pharmacological properties as MT1/MT2 melatonin receptor agonist and 5-HT2B/5-HT2C serotonin receptor antagonist, has been investigated in two rat models of neuropathic pain. Acute treatments were performed 2 weeks after unilateral chronic constriction (ligation) injury to the sciatic nerve (CCI-SN) or the infraorbital nerve (CCI-ION), when maximal mechanical allodynia had developed in ipsilateral hindpaw or vibrissal pad, respectively, in Sprague–Dawley male rats. Although agomelatine (45 mg/kg i.p.) alone was inactive, co-treatment with gabapentin, at an essentially ineffective dose (50 mg/kg i.p.) on its own, produced marked anti-allodynic effects, especially in CCI-ION rats. In both CCI-SN and CCI-ION models, suppression of mechanical allodynia by ‘agomelatine + gabapentin’ could be partially mimicked by the combination of 5-HT2C antagonist (SB 242084) + gabapentin, but not by melatonin or 5-HT2B antagonist (RS 127445, LY 266097), alone or combined with gabapentin. In contrast, pretreatment by idazoxan, propranolol or the β2 antagonist ICI 118551 markedly inhibited the anti-allodynic effect of ‘agomelatine + gabapentin’ in both CCI-SN and CCI-ION rats, whereas pretreatment by the MT1/MT2 receptor antagonist S22153 was inactive. Altogether these data indicate that ‘agomelatine + gabapentin’ is a potent anti-allodynic combination at both cephalic and extra-cephalic levels, whose action implicates α2- and β2-adrenoreceptor-mediated noradrenergic neurotransmission.
Collapse
Affiliation(s)
- Saïd M'Dahoma
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France
| | | | - Eric Dabala
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France
| | - Hugo Payan
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France
| | - Cecilia Gabriel
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Elisabeth Mocaër
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Sylvie Bourgoin
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France
| | - Michel Hamon
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France
| |
Collapse
|
30
|
Ding W, You Z, Shen S, Yang J, Lim G, Doheny JT, Zhu S, Zhang Y, Chen L, Mao J. Increased HCN Channel Activity in the Gasserian Ganglion Contributes to Trigeminal Neuropathic Pain. THE JOURNAL OF PAIN 2018; 19:626-634. [PMID: 29366880 PMCID: PMC5972061 DOI: 10.1016/j.jpain.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/15/2017] [Accepted: 01/03/2018] [Indexed: 12/27/2022]
Abstract
Orofacial neuropathic pain caused by trigeminal nerve injury is a debilitating condition with limited therapeutic options. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate neuronal excitability and are involved in the development and maintenance of chronic pain. However, the effect of HCN channel activity in the Gasserian ganglion on trigeminal neuropathic pain has not been examined. We evaluated nociceptive behaviors after microinjection of the HCN channel blockers ZD7288 or ivabradine into the Gasserian ganglion in rats with trigeminal nerve injury. Both blockers dose-dependently ameliorated evoked and spontaneous nociceptive behavior in rats with trigeminal neuropathic pain. Moreover, the clinically available HCN channel blocker ivabradine showed a prolonged antinociceptive effect. In the Gasserian ganglion, HCN1 and HCN2 are major HCN isoforms. After trigeminal nerve injury, the counts of HCN1 as well as HCN2 immuno-positive punctae were increased in the ipsilateral Gasserian ganglions. These results indicate that the increased HCN channel activity in the Gasserian ganglion directly contributes to neuropathic pain resulting from trigeminal nerve injury. PERSPECTIVE Trigeminal nerve damage-induced orofacial pain is severe and more resistant to standard pharmacological treatment than other types of neuropathic pain. Our study suggests that targeting HCN channel activities in the Gasserian ganglion may provide an alternative treatment of trigeminal neuropathy including trigeminal neuralgia.
Collapse
Affiliation(s)
- Weihua Ding
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Zerong You
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shiqian Shen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jinsheng Yang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Grewo Lim
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jason T Doheny
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shengmei Zhu
- The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yi Zhang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lucy Chen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jianren Mao
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
31
|
Sensory symptom profiles differ between trigeminal and thoracolumbar postherpetic neuralgia. Pain Rep 2018; 3:e636. [PMID: 29430564 PMCID: PMC5802323 DOI: 10.1097/pr9.0000000000000636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/11/2017] [Accepted: 01/03/2018] [Indexed: 01/10/2023] Open
Abstract
Introduction Animal experimental evidence suggests that mechanisms of pain generation and response to treatment differ between neuropathic pain in the cephalic and the extracephalic innervation territories. Objectives The objective of the study was to examine whether in humans an identical peripheral painful neuropathy is associated with different pain qualities and sensory abnormalities in the face as compared with the thoracic region. Methods We retrospectively analysed epidemiological and clinical data of 639 patients with postherpetic neuralgia (PHN) in the face and at the trunk who were collected within a cross-sectional cohort survey and compared the respective sensory symptom profiles captured with the painDETECT questionnaire. Results Two hundred twenty-four patients suffered from trigeminal PHN and 415 from thoracolumbar PHN. There were no significant differences in sex-ratio, age, body mass index, and pain duration. Patients with trigeminal PHN were more often severely depressed. Anxiety and sleep scores were not different. The average pain intensity was slightly higher in thoracolumbar PHN than trigeminal PHN (visual analogue scale 5.0 vs 4.6). Postherpetic neuralgia in the thoracolumbar region showed significantly more intense burning sensations, allodynia, painful attacks, and significantly less prickling and numbness than PHN in the face. Conclusions The differences in sensory symptom profiles between facial PHN and truncal PHN might be associated with different pathophysiological mechanisms and different treatment response. Drugs that primarily act on sensitization processes in the peripheral nociceptive system may work better in thoracolumbar PHN than in trigeminal PHN. If new medications are tested in patients with PHN, it would therefore be of interest to include an analysis of the treatment results in regard to subgroups based on the localisation of pain in patients with PHN.
Collapse
|
32
|
Hu TT, Wang RR, Tang YY, Wu YX, Yu J, Hou WW, Lou GD, Zhou YD, Zhang SH, Chen Z. TLR4 deficiency abrogated widespread tactile allodynia, but not widespread thermal hyperalgesia and trigeminal neuropathic pain after partial infraorbital nerve transection. Pain 2017; 159:273-283. [DOI: 10.1097/j.pain.0000000000001100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
33
|
Lewis SS, Grace PM, Hutchinson MR, Maier SF, Watkins LR. Constriction of the buccal branch of the facial nerve produces unilateral craniofacial allodynia. Brain Behav Immun 2017; 64:59-64. [PMID: 27993689 PMCID: PMC5474358 DOI: 10.1016/j.bbi.2016.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 01/23/2023] Open
Abstract
Despite pain being a sensory experience, studies of spinal cord ventral root damage have demonstrated that motor neuron injury can induce neuropathic pain. Whether injury of cranial motor nerves can also produce nociceptive hypersensitivity has not been addressed. Herein, we demonstrate that chronic constriction injury (CCI) of the buccal branch of the facial nerve results in long-lasting, unilateral allodynia in the rat. An anterograde and retrograde tracer (3000MW tetramethylrhodamine-conjugated dextran) was not transported to the trigeminal ganglion when applied to the injury site, but was transported to the facial nucleus, indicating that this nerve branch is not composed of trigeminal sensory neurons. Finally, intracisterna magna injection of interleukin-1 (IL-1) receptor antagonist reversed allodynia, implicating the pro-inflammatory cytokine IL-1 in the maintenance of neuropathic pain induced by facial nerve CCI. These data extend the prior evidence that selective injury to motor axons can enhance pain to supraspinal circuits by demonstrating that injury of a facial nerve with predominantly motor axons is sufficient for neuropathic pain, and that the resultant pain has a neuroimmune component.
Collapse
Affiliation(s)
- Susannah S. Lewis
- Department of Psychology & Neuroscience, University of Colorado, Boulder, USA
| | - Peter M. Grace
- Department of Psychology & Neuroscience, University of Colorado, Boulder, USA,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Mark R. Hutchinson
- School of Medicine, University of Adelaide, Adelaide, Australia,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, Australia
| | - Steven F. Maier
- Department of Psychology & Neuroscience, University of Colorado, Boulder, USA
| | - Linda R. Watkins
- Department of Psychology & Neuroscience, University of Colorado, Boulder, USA,Corresponding author: Department of Psychology, Campus Box 345, University of Colorado at Boulder, Boulder, Colorado, USA 80309-0345, , Fax: (303) 492-2967, Phone: (303) 492-7034
| |
Collapse
|
34
|
Dallel R, Descheemaeker A, Luccarini P. Recurrent administration of the nitric oxide donor, isosorbide dinitrate, induces a persistent cephalic cutaneous hypersensitivity: A model for migraine progression. Cephalalgia 2017; 38:776-785. [DOI: 10.1177/0333102417714032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background A subgroup of migraineurs experience an increase in attack frequency leading to chronic migraine. Methods We assessed in rats the roles of dose and repeat administration of systemic isosorbide dinitrate (ISDN), a nitric oxide donor, on the occurrence and development of cephalic/face and extracephalic/hindpaw mechanical allodynia as a surrogate of migraine pain, and the effect of acute systemic sumatriptan and olcegepant and chronic systemic propranolol on these behavioral changes. Results A single high (H-ISDN) but not low (L-ISDN) dose of ISDN induces a reversible cephalic and extracephalic mechanical allodynia. However, with repeat administration, L-ISDN produces reversible cephalic but never extracephalic allodynia, whereas H-ISDN induces cephalic and extracephalic allodynia that are both potentiated. H-ISDN-induced cephalic allodynia thus gains persistency. Sumatriptan and olcegepant block single H-ISDN-induced behavioral changes, but only olcegepant reduces these acute changes when potentiated by repeat administration. Neither sumatriptan nor olcegepant prevent chronic cephalic hypersensitivity. Conversely, propranolol blocks repeat H-ISDN-induced chronic, but not acute, behavioral changes. Conclusions Repeated ISDN administration appears to be a naturalistic rat model for migraine progression, suitable for screening acute and preventive migraine therapies. It suggests frequent and severe migraine attacks associated with allodynia may be a risk factor for disease progression.
Collapse
Affiliation(s)
- Radhouane Dallel
- Université Clermont Auvergne, Clermont-Ferrand, France
- Centre Hospitalier Universitaire (CHU) de Clermont-Ferrand, Clermont-Ferrand, France
- Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Amélie Descheemaeker
- Université Clermont Auvergne, Clermont-Ferrand, France
- Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Philippe Luccarini
- Université Clermont Auvergne, Clermont-Ferrand, France
- Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| |
Collapse
|
35
|
Michot B, Deumens R, Hermans E. Immunohistochemical comparison of astrocytic mGluR5 upregulation in infraorbital nerve- versus sciatic nerve-ligated rat. Neurosci Lett 2017; 653:113-119. [PMID: 28533177 DOI: 10.1016/j.neulet.2017.05.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/13/2017] [Accepted: 05/17/2017] [Indexed: 01/16/2023]
Abstract
The differential pharmacological responsiveness of cephalic and extra-cephalic neuropathic pain has been proposed to relate to distinct mechanisms that may involve neuroinflammatory reactions mediated by glial cells. Astrocytes are particularly important for neuronal sensitization in neuropathic pain, in part through modulation of glutamatergic transmission. Because the metabotropic glutamate receptor 5 (mGluR5) is involved in the astrocytic regulation of the glutamatergic system, we investigated modifications of its expression in models of cephalic versus extra-cephalic neuropathic pain. Adult male rats underwent unilateral chronic constriction injury (CCI) of either the infraorbital nerve (ION) or the sciatic nerve (SN). Seven days later, mGluR5 and the astrocyte marker GFAP (glial fibrillary acidic protein) were overexpressed and appeared localized mainly in the superficial lamina of the trigeminal nucleus in CCI-ION and the spinal cord dorsal horn in CCI-SN rats. In addition, colocalization of GFAP and mGluR5 strongly suggested an increase of astrocytic mGluR5 expression in nerve-injured rats compared to sham animals. The present data show an upregulation of astrocytic mGluR5 in central structures in both CCI-ION and CCI-SN. This suggests that the pharmacological modulation of mGluR5 could be a new approach to reduce both cephalic and extra-cephalic neuropathic pain.
Collapse
Affiliation(s)
- Benoit Michot
- Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate B1.54.10, 1200 Brussels, Belgium.
| | - Ronald Deumens
- Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate B1.54.10, 1200 Brussels, Belgium
| | - Emmanuel Hermans
- Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate B1.54.10, 1200 Brussels, Belgium
| |
Collapse
|
36
|
Su D, Zhao H, Hu J, Tang D, Cui J, Zhou M, Yang J, Wang S. TRPA1 and TRPV1 contribute to iodine antiseptics-associated pain and allergy. EMBO Rep 2016; 17:1422-1430. [PMID: 27566753 PMCID: PMC5048374 DOI: 10.15252/embr.201642349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/26/2016] [Accepted: 08/01/2016] [Indexed: 11/09/2022] Open
Abstract
Iodine antiseptics exhibit superior antimicrobial efficacy and do not cause acquired microbial resistance. However, they are underused in comparison with antibiotics in infection treatments, partly because of their adverse effects such as pain and allergy. The cause of these noxious effects is not fully understood, and no specific molecular targets or mechanisms have been discovered. In this study, we show that iodine antiseptics cause pain and promote allergic contact dermatitis in mouse models, and iodine stimulates a subset of sensory neurons that express TRPA1 and TRPV1 channels. In vivo pharmacological inhibition or genetic ablation of these channels indicates that TRPA1 plays a major role in iodine antiseptics-induced pain and the adjuvant effect of iodine antiseptics on allergic contact dermatitis and that TRPV1 is also involved. We further demonstrate that iodine activates TRPA1 through a redox mechanism but has no direct effects on TRPV1. Our study improves the understanding of the adverse effects of iodine antiseptics and suggests a means to minimize their side effects through local inhibition of TRPA1 and TRPV1 channels.
Collapse
Affiliation(s)
- Deyuan Su
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Hong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jinsheng Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Dan Tang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jianmin Cui
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, USA
| | - Ming Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jian Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Shu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
37
|
Sustained Suppression of Hyperalgesia during Latent Sensitization by μ-, δ-, and κ-opioid receptors and α2A Adrenergic Receptors: Role of Constitutive Activity. J Neurosci 2016; 36:204-21. [PMID: 26740662 DOI: 10.1523/jneurosci.1751-15.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Many chronic pain disorders alternate between bouts of pain and periods of remission. The latent sensitization model reproduces this in rodents by showing that the apparent recovery ("remission") from inflammatory or neuropathic pain can be reversed by opioid antagonists. Therefore, this remission represents an opioid receptor-mediated suppression of a sustained hyperalgesic state. To identify the receptors involved, we induced latent sensitization in mice and rats by injecting complete Freund's adjuvant (CFA) in the hindpaw. In WT mice, responses to mechanical stimulation returned to baseline 3 weeks after CFA. In μ-opioid receptor (MOR) knock-out (KO) mice, responses did not return to baseline but partially recovered from peak hyperalgesia. Antagonists of α2A-adrenergic and δ-opioid receptors reinstated hyperalgesia in WT mice and abolished the partial recovery from hyperalgesia in MOR KO mice. In rats, antagonists of α2A adrenergic and μ-, δ-, and κ-opioid receptors reinstated hyperalgesia during remission from CFA-induced hyperalgesia. Therefore, these four receptors suppress hyperalgesia in latent sensitization. We further demonstrated that suppression of hyperalgesia by MORs was due to their constitutive activity because of the following: (1) CFA-induced hyperalgesia was reinstated by the MOR inverse agonist naltrexone (NTX), but not by its neutral antagonist 6β-naltrexol; (2) pro-enkephalin, pro-opiomelanocortin, and pro-dynorphin KO mice showed recovery from hyperalgesia and reinstatement by NTX; (3) there was no MOR internalization during remission; (4) MORs immunoprecipitated from the spinal cord during remission had increased Ser(375) phosphorylation; and (5) electrophysiology recordings from dorsal root ganglion neurons collected during remission showed constitutive MOR inhibition of calcium channels. SIGNIFICANCE STATEMENT Chronic pain causes extreme suffering to millions of people, but its mechanisms remain to be unraveled. Latent sensitization is a phenomenon studied in rodents that has many key features of chronic pain: it is initiated by a variety of noxious stimuli, has indefinite duration, and pain appears in episodes that can be triggered by stress. Here, we show that, during latent sensitization, there is a sustained state of pain hypersensitivity that is continuously suppressed by the activation of μ-, δ-, and κ-opioid receptors and by adrenergic α2A receptors in the spinal cord. Furthermore, we show that the activation of μ-opioid receptors is not due to the release of endogenous opioids, but rather to its ligand-independent constitutive activity.
Collapse
|
38
|
Yang YJ, Hu L, Xia YP, Jiang CY, Miao C, Yang CQ, Yuan M, Wang L. Resveratrol suppresses glial activation and alleviates trigeminal neuralgia via activation of AMPK. J Neuroinflammation 2016; 13:84. [PMID: 27093858 PMCID: PMC4837542 DOI: 10.1186/s12974-016-0550-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/11/2016] [Indexed: 12/14/2022] Open
Abstract
Background Glial activation and neuroinflammation in the spinal trigeminal nucleus (STN) play a pivotal role in the genesis and maintenance of trigeminal neuralgia (TN). Resveratrol, a natural compound from grape and red wine, has a potential anti-inflammatory effect. We hypothesized that resveratrol could significantly suppress neuroinflammation in the STN mediated by glial activation and further relieve TN. In this study, we evaluated whether resveratrol could alleviate trigeminal allodynia and explore the mechanism underlying the antinociceptive effect of resveratrol. Methods Animals were orally injected with resveratrol after chronic constriction injury (CCI) of the infraorbital nerve. Mechanical thresholds of the affected whisker pad were measured to assess nociceptive behaviors. The STN was harvested to quantify the changing levels of p-NR1, p-PKC, TNF-α, and IL1-β by western blotting and detect the expression of calcitonin gene-related peptide (CGRP) and c-Fos by immunofluorescence. Glial activation was observed by immunofluorescence and western blotting. Mitogen-activated protein kinase (MAPK) phosphorylation in vivo and in vitro was examined by western blotting. Results We found that resveratrol significantly attenuated trigeminal allodynia dose-dependently and decreased the increased expression of CGRP and c-Fos in the STN. Additionally, resveratrol showed an inhibitory effect on CCI-evoked astrocyte and microglia activation and reduced production of pro-inflammatory cytokines in the STN. Furthermore, the antinociceptive effect of resveratrol was partially mediated by reduced phosphorylation of MAP kinases via adenosine monophosphate-activated protein kinase (AMPK) activation. Conclusions AMPK activation in the STN glia via resveratrol has utility in the treatment of CCI-induced neuroinflammation and further implicates AMPK as a novel target for the attenuation of trigeminal neuralgia.
Collapse
Affiliation(s)
- Yan-jing Yang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, People's Republic of China.
| | - Liang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Ye-peng Xia
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Chun-yi Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Chen Miao
- Department of Pathology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Chun-qing Yang
- Department of Pathology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Miao Yuan
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, People's Republic of China.
| |
Collapse
|
39
|
Gris G, Portillo-Salido E, Aubel B, Darbaky Y, Deseure K, Vela JM, Merlos M, Zamanillo D. The selective sigma-1 receptor antagonist E-52862 attenuates neuropathic pain of different aetiology in rats. Sci Rep 2016; 6:24591. [PMID: 27087602 PMCID: PMC4834548 DOI: 10.1038/srep24591] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/23/2016] [Indexed: 12/31/2022] Open
Abstract
E-52862 is a selective σ1R antagonist currently undergoing phase II clinical trials for neuropathic pain and represents a potential first-in-class analgesic. Here, we investigated the effect of single and repeated administration of E-52862 on different pain-related behaviours in several neuropathic pain models in rats: mechanical allodynia in cephalic (trigeminal) neuropathic pain following chronic constriction injury of the infraorbital nerve (IoN), mechanical hyperalgesia in streptozotocin (STZ)-induced diabetic polyneuropathy, and cold allodynia in oxaliplatin (OX)-induced polyneuropathy. Mechanical hypersensitivity induced after IoN surgery or STZ administration was reduced by acute treatment with E-52862 and morphine, but not by pregabalin. In the OX model, single administration of E-52862 reversed the hypersensitivity to cold stimuli similarly to 100 mg/kg of gabapentin. Interestingly, repeated E-52862 administration twice daily over 7 days did not induce pharmacodynamic tolerance but an increased antinociceptive effect in all three models. Additionally, as shown in the STZ and OX models, repeated daily treatment with E-52862 attenuated baseline pain behaviours, which supports a sustained modifying effect on underlying pain-generating mechanisms. These preclinical findings support a role for σ1R in neuropathic pain and extend the potential for the use of selective σ1R antagonists (e.g., E-52862) to the chronic treatment of cephalic and extra-cephalic neuropathic pain.
Collapse
Affiliation(s)
- Georgia Gris
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Enrique Portillo-Salido
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Bertrand Aubel
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | | | - Kristof Deseure
- Laboratory of Anesthesiology, University of Antwerp, Antwerp, Belgium
| | - José Miguel Vela
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Manuel Merlos
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Daniel Zamanillo
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| |
Collapse
|
40
|
Variability in Capsaicin-stimulated Calcitonin Gene-related Peptide Release from Human Dental Pulp. J Endod 2016; 42:542-6. [PMID: 26898566 DOI: 10.1016/j.joen.2015.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The unique innervation and anatomic features of dental pulp contribute to the remarkable finding that any physical stimulation of pulpal tissue is painful. Furthermore, when pathological processes such as caries affect teeth and produce inflammation of the pulp, the pain experienced can be quite intense and debilitating. To better understand these underlying neurobiological mechanisms and identify novel analgesic targets for pulpally derived pain, we have developed a powerful ex vivo model using human tooth slices. METHODS Noncarious, freshly extracted teeth were collected and sectioned longitudinally into 1-mm-thick slices containing both dental pulp and the surrounding mineralized tissues. Tooth slices from 36 patients were exposed to 60 μmol/L capsaicin to stimulate the release of calcitonin gene-related peptide (CGRP) from nerve terminals in the pulp. Patient factors were analyzed for their effects on capsaicin-stimulated CGRP release using a mixed model analysis of variance. RESULTS Approximately one third of the variability observed in capsaicin-evoked CGRP release was attributable to differences between individuals. In terms of individual factors, there was no effect of anesthesia type, sex, or age on capsaicin-stimulated CGRP release. Using a within-subject study design, a significant effect of capsaicin on CGRP release was observed. CONCLUSIONS Capsaicin-stimulated CGRP release from dental pulp is highly variable between individuals. A within-subject study design improves the variability and maximizes the potential of this powerful translational model to test the efficacy of novel pharmacotherapeutic agents on human peripheral nociceptors.
Collapse
|
41
|
Costa GMF, de Oliveira AP, Martinelli PM, da Silva Camargos ER, Arantes RME, de Almeida-Leite CM. Demyelination/remyelination and expression of interleukin-1β, substance P, nerve growth factor, and glial-derived neurotrophic factor during trigeminal neuropathic pain in rats. Neurosci Lett 2015; 612:210-218. [PMID: 26687274 DOI: 10.1016/j.neulet.2015.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/05/2015] [Accepted: 12/09/2015] [Indexed: 12/11/2022]
Abstract
The etiology of trigeminal neuropathic pain is not clear, but there is evidence that demyelination, expression of cytokines, neuropeptides, and neurotrophic factors are crucial contributors. In order to elucidate mechanisms underlying trigeminal neuropathic pain, we evaluated the time course of morphological changes in myelinated and unmyelinated trigeminal nerve fibers, expression of cytokine IL-1β, neuropeptide substance P (SP), nerve growth factor (NGF), and glial derived neurotrophic factor (GDNF) in peripheral and ganglion tissues, using a rat model of trigeminal neuropathic pain. Chronic constriction injury (CCI) of the infraorbital nerve (IoN), or a sham surgery, was performed. Mechanical allodynia was evaluated from day 3 to day 15 post-surgery. Trigeminal nerves were divided into 2 sections - distal to CCI and ganglion - for morphological analyses, immunohistochemistry (IL-1β, SP), and protein quantification by ELISA (NGF, GDNF). At early postoperative time points, decreased mechanical responses were observed, which were associated with demyelination, glial cell proliferation, increased immunoexpression of IL-1 β and SP, and impaired GDNF production. In the late postoperative period, mechanical allodynia was present with partial recovery of myelination, glial cell proliferation, and increased immunoreactivity of IL-1β and SP. Our data show that demyelination/remyelination processes are related to the development of pain behavior. IL-1β may have effects both in ganglia and nerves, while SP may be an important mediator at the nerve endings. Additionally, low levels of GDNF may produce impaired signaling, which may be involved in generation of pain.
Collapse
Affiliation(s)
- Grazielle Mara Ferreira Costa
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627-Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | | | - Patricia Massara Martinelli
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627-Pampulha, 31270-901 Belo Horizonte, MG, Brazil; Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), UFMG, Brazil
| | | | - Rosa Maria Esteves Arantes
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627-Pampulha, 31270-901 Belo Horizonte, MG, Brazil; Departamento de Patologia Geral, ICB/UFMG, Brazil
| | - Camila Megale de Almeida-Leite
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627-Pampulha, 31270-901 Belo Horizonte, MG, Brazil; Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), UFMG, Brazil.
| |
Collapse
|
42
|
A systematic review of animal models for experimental neuroma. J Plast Reconstr Aesthet Surg 2015; 68:1447-63. [DOI: 10.1016/j.bjps.2015.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 05/11/2015] [Accepted: 05/18/2015] [Indexed: 01/06/2023]
|
43
|
Abstract
Migraine is a highly prevalent headache disease that typically affects patients during their most productive years. Despite significant progress in understanding the underlying pathophysiology of this disorder, its treatment so far continues to depend on drugs that, in their majority, were not specifically designed for this purpose. The neuropeptide calcitonin gene-related peptide (CGRP) has been indicated as playing a critical role in the central and peripheral pathways leading to a migraine attack. It is not surprising that drugs designed to specifically block its action are gaining remarkable attention from researchers in the field with, at least so far, a safe risk profile. In this article, we highlight the evolution from older traditional treatments to the innovative CGRP target drugs that are revolutionizing the way to approach this debilitating neurological disease. We provide a brief introduction on pathophysiology of migraine and details on the characteristic, function, and localization of CGRP to then focus on CGRP receptor antagonists (CGRP-RAs) and CGRP monoclonal antibodies (CGRP mAbs).
Collapse
Affiliation(s)
- Stephanie Wrobel Goldberg
- Department of Neurology, Jefferson Headache Center, Thomas Jefferson University, 900 Walnut Street, Suite 200, Philadelphia, PA, 19107, USA,
| | | |
Collapse
|
44
|
Gallo A, Dimiziani A, Damblon J, Michot B, Des Rieux A, De Kock M, Hermans E, Deumens R. Modulation of spinal glial reactivity by intrathecal PPF is not sufficient to inhibit mechanical allodynia induced by nerve crush. Neurosci Res 2015; 95:78-82. [PMID: 25697394 DOI: 10.1016/j.neures.2015.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/29/2015] [Accepted: 02/07/2015] [Indexed: 12/16/2022]
Abstract
Spinal glial reactivity has been strongly implicated in pain that follows peripheral nerve injury. Among the many therapeutic agents that have been tested for anti-allodynia through immune modulation is the atypical methylxanthine propentofylline. While propentofylline shows a potent anti-allodynia effect after nerve transection injury, we here demonstrate that, when propentofylline is used intrathecally at the effective immune-modulatory dose, allodynia after rat nerve crush injury is completely preserved. Microglial/macrophage Iba-1 and astrocytic GFAP expression, increased in the dorsal horn of nerve crushed animals, was, however, effectively attenuated by propentofylline. Effective modulation of spinal glial reactivity is, thus, no assurance for anti-allodynia.
Collapse
Affiliation(s)
- Alessandro Gallo
- Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate B1.54.10, 1200 Brussels, Belgium
| | - Andrea Dimiziani
- Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate B1.54.10, 1200 Brussels, Belgium
| | - Jonathan Damblon
- Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate B1.54.10, 1200 Brussels, Belgium
| | - Benoît Michot
- Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate B1.54.10, 1200 Brussels, Belgium
| | - Anne Des Rieux
- Louvain Drug Research Institute, Pharmaceutics and Drug Delivery Unit, Avenue E. Mounier 73, 1200 Brussels, Belgium
| | - Marc De Kock
- Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate B1.54.10, 1200 Brussels, Belgium
| | - Emmanuel Hermans
- Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate B1.54.10, 1200 Brussels, Belgium
| | - Ronald Deumens
- Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate B1.54.10, 1200 Brussels, Belgium.
| |
Collapse
|
45
|
Serotonin, 5HT1 agonists, and migraine: new data, but old questions still not answered. Curr Opin Support Palliat Care 2015; 8:137-42. [PMID: 24670810 DOI: 10.1097/spc.0000000000000044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The serotonergic system has long been linked to migraine but recent studies highlight how much is still unclear about this link. And recent data add to the uncertainty of where/how triptans act and why they are headache specific. RECENT FINDINGS Markers of 5HT levels in the brains of migraine patients show no changes between attacks. Several recent meta-analyses show the most convincing data on genetic differences in the serotonergic system for 5HT transporters. Findings of additional triptan actions on peripheral trigeminovascular neurons and in the hypothalamus add more fuel to the debate on where these drugs act. A growing list of studies show efficacy of multiple triptans and other 5HT1b/1d agonists in preclinical models of nonheadache pain arguing for reevaluation of whether these drugs have efficacy in other pain states. Despite these issues, serotonergic drugs continue to be the gold standard for abortive agents with new members on the horizon (5HT1f agonists). SUMMARY Given the clear efficacy of serotonergic drugs for migraine, continued study on the role of the endogenous 5HT system may lead to more novel therapies. And with the list of studies demonstrating efficacy triptans in models of nonheadache, clinical studies should address whether these drugs work for other types of pain.
Collapse
|
46
|
Michot B, Kayser V, Hamon M, Bourgoin S. CGRP receptor blockade by MK-8825 alleviates allodynia in infraorbital nerve-ligated rats. Eur J Pain 2014; 19:281-90. [PMID: 25370954 DOI: 10.1002/ejp.616] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND Previous data showed that, in rats, anti-migraine drugs (triptans, olcegepant) significantly reduced mechanical allodynia induced by infraorbital nerve (ION) ligation but not that evoked by sciatic nerve (SN) ligation. Whether this also occurs with MK-8825, a novel anti-migraine drug also acting through CGRP receptor blockade (but chemically unrelated to olcegepant) was tested in the present study, which also investigated possible anti-neuroinflammatory effects of this drug. METHODS Adult male Sprague-Dawley rats underwent unilateral chronic constriction injury (CCI) to either the ION or the SN, and mechanical allodynia was assessed 2 weeks later within the ipsilateral vibrissae territory or hindpaw, respectively. Transcripts of neuroinflammatory markers were quantified by real-time quantitative RT-PCR in ipsilateral trigeminal ganglion and spinal trigeminal nucleus in CCI-ION rats. RESULTS Acute as well as repeated (for 4 days) administration of MK-8825 (30-100 mg/kg, i.p.) significantly reduced CCI-ION-induced mechanical allodynia but was ineffective in CCI-SN rats. CCI-ION was associated with marked up-regulation of neuronal and glial inflammatory markers (ATF3, IL6, iNOS, COX2) in ipsilateral trigeminal ganglion but not spinal trigeminal nucleus. MK-8825-induced inhibition of iNOS mRNA up-regulation probably underlay its anti-allodynic effect because pharmacological blockade of iNOS by AMT (6 mg/kg, s.c.) mimicked this effect. CONCLUSIONS These data further support the idea that CGRP receptor blockade might be a valuable approach to alleviate trigeminal, but not spinal, neuropathic pain through, at least partly, an inhibitory effect on neuropathic pain-associated increase in NO production in trigeminal ganglion.
Collapse
Affiliation(s)
- B Michot
- INSERM U894, CPN, Paris, France; Neuropsychopharmacology, Faculty of Medicine Pierre & Marie Curie, University Pierre et Marie Curie (UPMC), Paris, France
| | | | | | | |
Collapse
|
47
|
Michot B, Kayser V, Bastian G, Bourgoin S, Hamon M. Differential pharmacological alleviation of oxaliplatin-induced hyperalgesia/allodynia at cephalic versus extra-cephalic level in rodents. Neuropharmacology 2014; 79:432-43. [DOI: 10.1016/j.neuropharm.2013.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 12/21/2022]
|
48
|
Dauvergne C, Molet J, Reaux-Le Goazigo A, Mauborgne A, Mélik-Parsadaniantz S, Boucher Y, Pohl M. Implication of the chemokine CCL2 in trigeminal nociception and traumatic neuropathic orofacial pain. Eur J Pain 2013; 18:360-75. [PMID: 23918315 DOI: 10.1002/j.1532-2149.2013.00377.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Chemokine (C-C motif) ligand 2 (CCL2) participates in different mechanisms contributing to the spinal cord inflammation and pain development after sciatic nerve injury. Recent data also support its role in orofacial thermal hypersensitivity, although its implication in different phases of trigeminal pain emergence is unclear. We assessed the importance of CCL2 signalling in biochemical and behavioural alterations during the early and late stages following chronic constriction injury of infraorbital nerve (ION-CCI), a model of peripheral traumatic trigeminal pain. METHODS After evaluating the consequences of CCL2 intracisternal injection in naïve rats, we determined the expression changes for CCL2, inflammatory and glia activation markers in the somatosensory trigeminal complex (STC) and trigeminal ganglia (TG) after ION-CCI. The role of CCL2 signalling was assessed using pre-emptive or 'curative' intracisternal treatment with specific CCL2 receptor antagonist - INCB3344. RESULTS Exogenous CCL2 evoked spontaneous behaviour reminiscent of orofacial pain and marked mechanical hypersensitivity, associated with increased expression of proinflammatory cytokines and glial markers in STC and TG. CCL2-evoked changes were prevented by the co-administration of INCB3344. Two weeks after ION-CCI, mRNA for CCL2, glial and inflammatory markers were up-regulated, and CCL2-immunoreactivity accumulated in central and ganglionic tissues. At this time, repeated intracisternal administration of INCB3344 did not attenuate the ION-CCI-associated behavioural nor biochemical changes. By contrast, pre-emptive INCB3344 treatment delayed the emergence of trigeminal mechanical allodynia and associated biochemical alterations. CONCLUSIONS Our data suggest that CCL2 is involved principally in the early events accompanying the ION lesion rather than in long-term alterations and the maintenance of trigeminal mechanical hypersensitivity.
Collapse
Affiliation(s)
- C Dauvergne
- INSERM UMRS 975, Faculté de Médecine Pitié-Salpêtrière, Paris, France; UFR Odontologie, Université Denis Diderot, Paris, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
BACKGROUND The aim of this study was to compare the incidence of neuroma formation and neuropathic pain following different techniques of nerve ablation in a rat sural nerve model. METHODS Rat sural nerve was subjected to four different techniques of ablation with standardized creation of a 1-cm gap (n = 15 in each group). These included nerve avulsion, transection and burying in muscle, transection and folding of nerve, and transection alone. Animals were killed after 3 months. Explanted nerves were sectioned and stained with Masson trichrome and S-100 stain against neural tissue. The maximal neural cross-sectional area and neural-to-connective tissue ratio was quantified. Quantitative reverse-transcriptase polymerase chain reaction (n = 5) was used to analyze relative mRNA expression of ciliary neurotrophic factor and calcitonin gene-related peptide. RESULTS Neural cross-sectional area was statistically increased (p < 0.05) compared with controls in folded, muscle buried, and transected specimens but decreased in avulsed specimens. The neural-to-connective tissue ratio was statistically decreased in the avulsed group. Relative mRNA expression of ciliary neurotrophic factor was lowest in muscle buried (4 percent of control) (p < 0.05) and avulsed specimens (15 percent of control) (p < 0.05) and higher in folded (52 percent of control) and transected specimens (75 percent of control). Relative mRNA expression of calcitonin gene-related peptide was highest in folded specimens (302 percent of control) (p < 0.05). CONCLUSIONS Folding and transection lead to increased histologic evidence of neuroma formation, whereas folding leads to neuropathic pain, assayed by calcitonin gene-related peptide expression. Avulsion and muscle burying are preferable techniques for nerve ablation and inhibit nerve regeneration, evidenced by decreased ciliary neurotrophic factor expression. Avulsion offers an alternative to muscle burying when there is no muscle in the vicinity to bury the transected nerve.
Collapse
|
50
|
Michot B, Bourgoin S, Kayser V, Hamon M. Effects of tapentadol on mechanical hypersensitivity in rats with ligatures of the infraorbital nerve versus the sciatic nerve. Eur J Pain 2012; 17:867-80. [PMID: 23229959 DOI: 10.1002/j.1532-2149.2012.00259.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND Convergent data showed that neuropathic pain has specific characteristics at cephalic versus extra-cephalic level, where single-targeted drugs differentially alleviate pain. Because the novel analgesic drug, tapentadol, is acting at two targets, μ-opioid receptors (as agonist) and noradrenaline reuptake (as inhibitor), we tested its effects on neuropathic pain at both cephalic and extra-cephalic levels. METHODS Sprague-Dawley rats underwent unilateral constriction injury (CCI) to the infraorbital nerve (ION; cephalic territory) or the sciatic nerve (SN; extra-cephalic territory), and alleviation of nerve lesion-induced mechanical allodynia/hyperalgesia was assessed after acute or repeated (for 4 days) treatment with tapentadol compared with morphine and/or reboxetine (noradrenaline reuptake inhibitor) 2 weeks after surgery. Possible changes in the expression of the neuroinflammatory markers activating transcription factor 3 (ATF3), interleukin-6 (IL-6) and brain-derived neurotrophic factor (BDNF) by repeated tapentadol treatment were quantified by real-time reverse transcription polymerase chain reaction in ganglia and central tissues. RESULTS Acute administration of tapentadol (1-10 mg/kg, i.p.) significantly reduced allodynia in both CCI-SN and CCI-ION rats. Although morphine (3 mg/kg, s.c.) or reboxetine (10 mg/kg, i.p.) alone was only marginally active, the combination of both drugs produced supra-additive effects like those observed with tapentadol. In contrast to repeated morphine whose effects vanished, the anti-allodynic effects of tapentadol remained unchanged after a 4-day treatment. However, the latter treatment with tapentadol did not affect nerve lesion-evoked overexpression of ATF3, IL-6 and BDNF transcripts. CONCLUSIONS The dual synergistic pharmacological properties of tapentadol, which result in clear-cut anti-neuropathic pain effects at both cephalic and extra-cephalic levels, probably involve mechanisms downstream of nerve injury-induced neuroinflammatory reaction.
Collapse
Affiliation(s)
- B Michot
- INSERM U894-CPN, Université Pierre et Marie Curie, Paris, France
| | | | | | | |
Collapse
|