1
|
Janerås L, Breivik H, Lundeland B, Ringstad GA, Stubhaug A. Long-term intrathecal infusion of low-dose morphine effectively relieves symptoms of severe restless legs syndrome/Willis-Ekbom disease without inducing opioid tolerance. Pain 2024; 165:2693-2697. [PMID: 39106456 DOI: 10.1097/j.pain.0000000000003311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/20/2024] [Indexed: 08/09/2024]
Abstract
ABSTRACT Restless legs syndrome/Willis-Ekbom disease (RLS/WED) causes a strong urge to move legs while resting. Restless legs syndrome/WED is an often-inherited disease occurring in 3% to 10% of adult populations, increasing with age. Severity varies from mild disturbance of sleep to painful restless legs and arms, loss of sleep, fatigue, and risk of suicide. Dopaminergic drugs relieve symptoms, but cause augmentation, ie, initially helpful but later increase the burden of symptoms. Oral gabapentinoids and opioids are often added, but opioid tolerance and adverse effects are common. With the high prevalence and incomplete help from oral drugs, significant unmet needs exist for effective therapy for severe RLS/WED. Ongoing spinal intrathecal infusion of low-dose morphine is effective, but not generally recognized, as only 12 cases have been published since 2002. We report 7 patients suffering from severe RLS/WED, who had no relief from oral dopaminergic, gabapentinoid, or opioid drugs; they all had excellent relief during ongoing spinal intrathecal infusion of morphine at only 1 to 5 μg/h, ongoing for 1 to 21 years without need of higher doses of morphine.. We suggest that morphine may be transported with the cerebrospinal fluid reaching and readjusting malfunctioning dopamine neuronal systems in the brain and spinal cord. The effects last only as long as the infusion continues. A patient with RLS/WED and persistent genital arousal disorder (PGAD) was relieved of both RLS/WED and PGAD symptoms. These case reports suggest that intrathecal infusion of low-dose morphine is an effective treatment of severe RLS.
Collapse
Affiliation(s)
- Lars Janerås
- Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway
- Department of Anaesthesia, Karlstad Central Hospital, Karlstad, Sweden
| | - Harald Breivik
- Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bård Lundeland
- Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway
| | - Geir Andre Ringstad
- Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal Medicine, Sørlandet Hospital, Arendal, Norway
| | - Audun Stubhaug
- Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Antelmi E, Mogavero MP, Lanza G, Cartella SM, Ferini-Strambi L, Plazzi G, Ferri R, Tinazzi M. Sensory aspects of restless legs syndrome: Clinical, neurophysiological and neuroimaging prospectives. Sleep Med Rev 2024; 76:101949. [PMID: 38749362 DOI: 10.1016/j.smrv.2024.101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/20/2023] [Accepted: 04/29/2024] [Indexed: 07/26/2024]
Abstract
Restless Legs Syndrome (RLS) is a complex sensorimotor disorder, classified among the sleep-related movement disorders. Although sensory symptoms appear as key features of the disorder, they are still poorly characterized from a clinical perspective and conceptualized from a pathophysiological point of view. In this review, we aim to describe the clinical and functional substrates of RLS, focusing mainly on its sensory symptoms and on their neurophysiological and anatomical correlates. Knowledge of both subjective sensory symptoms and objective sensory signs are still controversial. Current data also indicate that the sensory component of RLS seems to be subserved by anomalies of sensorimotor integration and by mechanism of central sensitization. Overall, electrophysiological findings highlight the involvement of multiple generators in the pathogenesis of RLS, eventually resulting in an increased nervous system excitability and/or alterations in inhibition within the somatosensory and nociceptive pathways. Structural and functional neuroimaging data show the involvement of several crucial areas and circuits, among which the thalamus appears to play a pivotal role. A holistic approach looking at brain connectivity, structural or functional abnormalities, and their interplay with molecular vulnerability and neurotransmitter alterations is warranted to disentangle the complex framework of RLS.
Collapse
Affiliation(s)
- Elena Antelmi
- Neurology Unit, Parkinson Disease and Movement Disorders Division, DIMI Department of Engineering and Medicine of Innovation, University of Verona, Italy.
| | - Maria P Mogavero
- Vita-Salute San Raffaele University, Milan, Italy; San Raffaele Scientific Institute, Division of Neuroscience, Sleep Disorders Center, Milan, Italy
| | - Giuseppe Lanza
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy; University of Catania, Department of Surgery and Medical-Surgical Specialties, Catania, Italy
| | - Sandy M Cartella
- Movement Disorders Centre, Department of Neurology, Policlinico "Madonna Della Consolazione", Reggio Calabria, Italy
| | - Luigi Ferini-Strambi
- Vita-Salute San Raffaele University, Milan, Italy; San Raffaele Scientific Institute, Division of Neuroscience, Sleep Disorders Center, Milan, Italy
| | - Giuseppe Plazzi
- IRCCS, Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Michele Tinazzi
- Neurology Unit, Parkinson Disease and Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| |
Collapse
|
3
|
Koo BB, Abdelfattah A, Eysa A, Lu L. The Melanocortin and Endorphin Neuropeptides in Patients with Restless Legs Syndrome. Ann Neurol 2024; 95:688-699. [PMID: 38308537 DOI: 10.1002/ana.26876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/13/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
OBJECTIVE Based upon similarities between the urge to move and sensory discomfort of restless legs syndrome (RLS) and properties of melanocortin hormones, including their incitement of movement and hyperalgesia, we assessed plasma and cerebrospinal fluid (CSF) α-melanocyte-stimulating hormone (α-MSH) and β-endorphin in RLS patients and controls. METHODS Forty-two untreated moderate-to-severe RLS patients and 44 matched controls underwent venipuncture at 19:00, 20:30, and 22:00; 37 RLS and 36 controls had lumbar puncture at 21:30. CSF and plasma were analyzed for pro-opiomelanocortin (POMC), adrenocorticotropin hormone (ACTH), α-MSH, β-MSH, and β-endorphin by immunoassay. RLS severity was assessed by International RLS Study Group Severity Scale. RESULTS RLS participants were 52.7 ± 12.0 years old, 61.9% were women, 21.4% had painful RLS, and RLS severity was 24.8 ± 9.0. Controls had similar age and sex. Plasma ACTH, α-MSH, and β-endorphin were similar between groups. Plasma POMC was significantly greater in RLS than controls (17.0 ± 11.5 vs 12.7 ± 6.1fmol/ml, p = 0.048). CSF ACTH was similar between groups. CSF β-MSH was significantly higher in painful than nonpainful RLS or controls (48.2 ± 24.8 vs 32.1 ± 14.8 vs 32.6 ± 15.2pg/ml, analysis of variance [ANOVA] p = 0.03). CSF α-MSH was higher in RLS than controls (34.2 ± 40.9 vs 20.3 ± 11.0pg/ml, p = 0.062). CSF β-EDP was lowest in painful RLS, intermediate in nonpainful RLS, and highest in controls (8.0 ± 3.4 vs 10.8 ± 3.1 vs 12.3 ± 5.0pg/ml, ANOVA p = 0.049). The ratio of the sum of CSF α- and β-MSH to CSF β-endorphin was highest, intermediate, and lowest in painful RLS, nonpainful RLS, and controls (p = 0.007). INTERPRETATION CSF β-MSH is increased and CSF β-endorphin decreased in RLS patients with painful symptoms. ANN NEUROL 2024;95:688-699.
Collapse
Affiliation(s)
- Brian B Koo
- Department of Neurology, Yale University, New Haven, CT, USA
| | | | - Athar Eysa
- Department of Internal Medicine, Morristown Medical Center, Morristown, NJ, USA
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Martel RD, Papafragou G, Weigand S, Rolke R, Prawitt D, Birklein F, Treede RD, Magerl W. Interindividual variability in cold-pressor pain sensitivity is not explained by peripheral vascular responding and generalizes to a C-nociceptor-specific pain phenotype. Pain 2024; 165:e1-e14. [PMID: 38284423 DOI: 10.1097/j.pain.0000000000003049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 07/07/2023] [Indexed: 01/30/2024]
Abstract
ABSTRACT Pain sensitivity of healthy subjects in the cold-pressor (CP) test was proposed to be dichotomously distributed and to represent a pain sensitivity trait. Still, it has not been systematically explored which factors influence this pain sensitivity readout. The aim of this study was to distinguish potential contributions of local tissue-related factors such as perfusion and thermoregulation or gain settings in nociceptive systems. Cold-pressor-sensitive and CP-insensitive students screened from a medical student laboratory course were recruited for a CP retest with additional cardiovascular and bilateral local vascular monitoring. In addition, comprehensive quantitative sensory testing according to Deutscher Forschungsverbund Neuropathischer Schmerz standards and a sustained pinch test were performed. Cold pressor was reproducible across sessions (Cohen kappa 0.61 ± 0.14, P < 0.005). At 30 seconds in ice water, CP-sensitive subjects exhibited not only more pain (78.6 ± 26.3 vs 29.5 ± 17.5, P < 0.0001) but also significantly stronger increases in mean arterial blood pressure (12.6 ± 9.3 vs 5.6 ± 8.1 mm Hg, P < 0.05) and heart rate (15.0 ± 8.2 vs 7.1 ± 6.2 bpm, P < 0.005), and lower baroreflex sensitivity, but not local or vasoconstrictor reflex-mediated microcirculatory responses. Cold-pressor-sensitive subjects exhibited significantly lower pain thresholds also for cold, heat, and blunt pressure, and enhanced pain summation, but no significant differences in Aδ-nociceptor-mediated punctate mechanical pain. In conclusion, differences in nociceptive signal processing drove systemic cardiovascular responses. Baroreceptor activation suppressed pain and cardiovascular responses more efficiently in CP-insensitive subjects. Cold-pressor sensitivity generalized to a pain trait of C-fiber-mediated nociceptive channels, which was independent of local thermal and vascular changes in the ice-water-exposed hand. Thus, the C-fiber pain trait reflects gain setting of the nociceptive system.
Collapse
Affiliation(s)
- Richard D Martel
- Department of Neurophysiology, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany. Martel is now with the Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany. Papafragou is now with the Vitos Orthopädische Klinik Kassel, Kassel, Germany. Weigand is now with the Department of Internal Medicine I, University of Regensburg, Regensburg, Germany. Rolke is now with the Department of Palliative Care, RWTH Aachen, Aachen, Germany
| | - Georgios Papafragou
- Department of Neurophysiology, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany. Martel is now with the Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany. Papafragou is now with the Vitos Orthopädische Klinik Kassel, Kassel, Germany. Weigand is now with the Department of Internal Medicine I, University of Regensburg, Regensburg, Germany. Rolke is now with the Department of Palliative Care, RWTH Aachen, Aachen, Germany
| | - Sylvia Weigand
- Department of Neurophysiology, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany. Martel is now with the Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany. Papafragou is now with the Vitos Orthopädische Klinik Kassel, Kassel, Germany. Weigand is now with the Department of Internal Medicine I, University of Regensburg, Regensburg, Germany. Rolke is now with the Department of Palliative Care, RWTH Aachen, Aachen, Germany
| | | | - Dirk Prawitt
- Pediatric Medicine, Medical Center, Johannes Gutenberg University, Mainz, Germany
| | | | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany. Martel is now with the Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany. Papafragou is now with the Vitos Orthopädische Klinik Kassel, Kassel, Germany. Weigand is now with the Department of Internal Medicine I, University of Regensburg, Regensburg, Germany. Rolke is now with the Department of Palliative Care, RWTH Aachen, Aachen, Germany
| | - Walter Magerl
- Department of Neurophysiology, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany. Martel is now with the Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany. Papafragou is now with the Vitos Orthopädische Klinik Kassel, Kassel, Germany. Weigand is now with the Department of Internal Medicine I, University of Regensburg, Regensburg, Germany. Rolke is now with the Department of Palliative Care, RWTH Aachen, Aachen, Germany
| |
Collapse
|
5
|
Vollert J, Fardo F, Attal N, Baron R, Bouhassira D, Enax-Krumova EK, Freynhagen R, Hansson P, Jensen TS, Kersebaum D, Maier C, Pogatzki-Zahn E, Rice AS, Sachau J, Schaldemose EL, Segerdahl M, Sendel M, Tölle TR, Finnerup NB, Treede RD. Paradoxical heat sensation as a manifestation of thermal hypesthesia: a study of 1090 patients with lesions of the somatosensory system. Pain 2024; 165:216-224. [PMID: 37578447 PMCID: PMC10723641 DOI: 10.1097/j.pain.0000000000003014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023]
Abstract
ABSTRACT Paradoxical heat sensation (PHS) is the perception of warmth when the skin is cooled. Paradoxical heat sensation rarely occurs in healthy individuals but more frequently in patients suffering from lesions or disease of the peripheral or central nervous system. To further understand mechanisms and epidemiology of PHS, we evaluated the occurrence of PHS in relation to disease aetiology, pain levels, quantitative sensory testing parameters, and Neuropathic Pain Symptom Inventory (NPSI) items in patients with nervous system lesions. Data of 1090 patients, including NPSI scores from 404 patients, were included in the analysis. We tested 11 quantitative sensory testing parameters for thermal and mechanical detection and pain thresholds, and 10 NPSI items in a multivariate generalised linear model with PHS, aetiology, and pain (yes or no) as fixed effects. In total, 30% of the neuropathic patients reported PHS in contrast to 2% of healthy individuals. The frequency of PHS was not linked to the presence or intensity of pain. Paradoxical heat sensation was more frequent in patients living with polyneuropathy compared with central or unilateral peripheral nerve lesions. Patients who reported PHS demonstrated significantly lower sensitivity to thermal perception, with lower sensitivity to normally painful heat and cold stimuli. Neuropathic Pain Symptom Inventory scores were lower for burning and electric shock-like pain quality for patients with PHS. Our findings suggest that PHS is associated with loss of small thermosensory fibre function normally involved in cold and warm perception. Clinically, presence of PHS could help screening for loss of small fibre function as it is straightforward to measure or self-reported by patients.
Collapse
Affiliation(s)
- Jan Vollert
- Pain Research, MSk Lab, Department of Surgery and Cancer, Imperial College, London, United Kingdom
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Münster, Germany
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience MCTN, Medical Faculty Mannheim, Ruprecht Karls University, Heidelberg, Germany
| | - Francesca Fardo
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nadine Attal
- INSERM U-987, Centre d'Evaluation et de Traitement de la Douleur, CHU Ambroise Paré, Boulogne-Billancourt, France, Université Versailles-Saint-Quentin, Versailles, France
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Didier Bouhassira
- INSERM U-987, Centre d'Evaluation et de Traitement de la Douleur, CHU Ambroise Paré, Boulogne-Billancourt, France, Université Versailles-Saint-Quentin, Versailles, France
| | - Elena K. Enax-Krumova
- Department of Neurology, BG University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bochum, Germany
| | - Rainer Freynhagen
- Department of Anaesthesiology, Critical Care Medicine, Pain Therapy and Palliative Care, Pain Center Lake Starnberg, Benedictus Hospital, Tutzing, Germany
- Department of Anaesthesiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Per Hansson
- Department of Pain Management and Research, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Troels S. Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Dilara Kersebaum
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Christoph Maier
- University Hospital of Pediatrics and Adolescent Medicine, Ruhr-University Bochum, Bochum, Germany
| | - Esther Pogatzki-Zahn
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Münster, Germany
| | - Andrew S.C. Rice
- Pain Research, MSk Lab, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Ellen L. Schaldemose
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Märta Segerdahl
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- MS Medical Consulting, Stockholm, Sweden
| | - Manon Sendel
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Thomas R. Tölle
- Department of Neurology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Nanna B. Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience MCTN, Medical Faculty Mannheim, Ruprecht Karls University, Heidelberg, Germany
| |
Collapse
|
6
|
Hackethal S, Maino P, Koetsier E, Manconi M. Spinal cord stimulation in severe pharmacoresistant restless legs syndrome-two case reports. Front Neurol 2023; 14:1219881. [PMID: 38099065 PMCID: PMC10720037 DOI: 10.3389/fneur.2023.1219881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/18/2023] [Indexed: 12/17/2023] Open
Abstract
Restless legs syndrome is a prevalent, sleep-related sensorimotor disorder with relevant impact on the patients' quality of life. For patients suffering from severe, pharmacoresistant restless legs syndrome, few therapeutic options remain to alleviate symptoms. In this case series, two patients with severe, pharmacoresistant restless legs syndrome were treated with epidural spinal cord stimulation and repeatedly assessed with polysomnography, including sleep structure and periodic limb movements as objective biomarkers not subject to placebo effects, during a 6-month follow-up period. One of the patients experienced excellent short- and long-term efficacy on subjective symptom severity (International RLS Study group rating scale 1 vs. 34 points at 3 months) and objective sleep parameters such as sleep architecture and periodic limb movements during sleep, while the second patient only reported short-term benefits from spinal cord stimulation. Ultimately, both patients opted for removal of the device for inefficacy. Based on the complex pathophysiology of restless legs syndrome and presumed mechanism of action of spinal cord stimulation in chronic pain disorders, we provide a detailed hypothesis on the possible modulating effect of spinal cord stimulation on the key symptoms of restless legs syndrome. Apart from describing a new therapeutic option for pharmacoresistant restless legs syndrome, our findings might also provide further insights into the pathophysiology of the syndrome.
Collapse
Affiliation(s)
- Sandra Hackethal
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Lugano, Switzerland
| | - Paolo Maino
- Pain Management Center, Neurocenter of Southern Switzerland, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Eva Koetsier
- Pain Management Center, Neurocenter of Southern Switzerland, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Mauro Manconi
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
- Department of Neurology, University Hospital, Inselspital, Bern, Switzerland
| |
Collapse
|
7
|
Antelmi E, Squintani GM, Sandri A, Lippolis M, Segatti A, Tinazzi M. Defect of the Endogenous Inhibitory Pain System in Idiopathic Restless Legs Syndrome: A Laser Evoked Potentials Study. Mov Disord 2023; 38:1688-1696. [PMID: 37314385 DOI: 10.1002/mds.29509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Restless legs syndrome (RLS) is a complex sensorimotor disorder. Symptoms worsen toward evening and at rest and are temporarily relieved by movement. Symptoms are perceived as painful in up to 45% of cases, and nociception system may be involved. OBJECTIVES To assess the descending diffuse noxious inhibitory control in RLS patients. METHODS Twenty-one RLS patients and twenty age and sex-matched healthy controls (HC) underwent a conditioned pain modulation protocol. Cutaneous heat stimuli were delivered via laser evoked potentials (LEPs) on the dorsum of the right hand (UL) and foot (LL). N2 and P2 latencies, N2/P2 amplitude and pain ratings (NRS) were recorded before (baseline), during, and after a heterotopic noxious conditioning stimulation (HNCS) application. The baseline/HNCS ratio was calculated for both UL and LL. RESULTS N2 and P2 latencies did not vary between groups at each condition and limbs. Both groups showed a physiological N2/P2 amplitude and NRS reduction during the HNCS condition in UL and LL in comparison to baseline and post conditions (all, P < 0.003). Between-groups comparisons revealed a significant lower amplitude reduction in RLS at the N2/P2 amplitude during the HNCS condition only for LL (RLS, 13.6 μV; HC, 10.1 μV; P = 0.004). Such result was confirmed by the significant difference at the ratio (RLS, 69%, HC, 52.5%; P = 0.038). CONCLUSIONS The lower physiological reduction during the HNCS condition at LL in RLS patients suggests a defect in the endogenous inhibitory pain system. Further studies should clarify the causal link of this finding, also investigating the circadian modulation of this paradigm. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Elena Antelmi
- Neurology Unit, Parkinson Disease and Movement Disorders Division, DIMI Department of Engineering and Medicine of Innovation, University of Verona, Verona, Italy
| | | | - Angela Sandri
- Neurology Unit, Parkinson Disease and Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Alessia Segatti
- UOC Neurology A, Department of Neurosciences, AOUI, Verona, Italy
| | - Michele Tinazzi
- Neurology Unit, Parkinson Disease and Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
8
|
Walters AS, Li Y, Karroum EG, Champion D, Weinstock LB, Bagai K, Afrin LB, Spruyt K. Exploring the role of the endogenous opiate system in the pathogenesis of anemia in an opiate receptor knock-out model of Restless Legs Syndrome. Med Hypotheses 2022; 167:110941. [PMID: 36505961 PMCID: PMC9731170 DOI: 10.1016/j.mehy.2022.110941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Restless Legs Syndrome (RLS) is characterized by bothersome leg discomfort accompanied by an urge to move to obtain relief and symptoms are worse at night and on lying down. There is at least partial and temporary relief with activity. It is also an opioid responsive disorder, often accompanied by iron deficiency with or without anemia, and inflammation may be a precipitating factor in some cases. We created two in-vivo opiate receptor knock out mouse models of RLS - a triple opiate receptor knock-out mouse and a mu opiate receptor knock-out mouse. Both sets of animals were restless during the sleep period as is also true of RLS. Both of our knockout models showed statistically significantly decreased Hemoglobin and Hematocrit indicating anemia and both models showed statistically significant decreases in serum iron suggestive of either iron deficiency anemia or inflammatory anemia. The rest of the hematologic studies were not consistent enough to determine which of these two types of anemia was present in either model. An additional experiment in normal wild type mice showed a statistically significant decrease in serum iron when an opiate receptor blocker was used. To our knowledge this is the first demonstration that deficiency of endogenous opioids might play a role in the production of anemia. Our hypothesis is that an intact endogenous opiate system is necessary for red cell homeostasis. The presence of opioid receptors both on red blood cells and on various immunologically based white blood cells suggest mechanisms by which deficiency in the endogenous opiate system could cause anemia of either the iron deficiency or inflammatory types. The administration of opioid agonists or antagonists to iron deficient cultures of red blood cell precursors is a next step in determining the role of the endogenous opiate system in the maintenance of red cell homeostasis and in the possible prevention of iron deficiency or inflammatory anemia where iron dysregulation is key.
Collapse
Affiliation(s)
- Arthur S. Walters
- Sleep Division, Dept of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Dept of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Elias G. Karroum
- Department of Neurology & Rehabilitation Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC., USA
| | - David Champion
- Sydney Children’s Hospital, Randwick, NSW 2031, Australia
| | - Leonard B. Weinstock
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kanika Bagai
- Sleep Division, Dept of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lawrence B. Afrin
- Hematology/Oncology, AIM Center for Personalized Medicine, Purchase, New York
| | - Karen Spruyt
- Université de Paris, NeuroDiderot Inserm, France
| |
Collapse
|
9
|
Salwen-Deremer JK, Ballou S. Painful GI Conditions and Their Bidirectional Relationships with Sleep Disturbances. CURRENT SLEEP MEDICINE REPORTS 2022. [DOI: 10.1007/s40675-022-00230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Su YC, Guo YH, Liao CL, Lin YC. Effectiveness and Safety of Botulinum Toxin Type A in Treatment of Restless Legs Syndrome: A Systematic Review and Meta-Analysis. Healthcare (Basel) 2021; 9:healthcare9111538. [PMID: 34828584 PMCID: PMC8623507 DOI: 10.3390/healthcare9111538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/27/2022] Open
Abstract
Our study aimed to investigate the effectiveness and safety of botulinum toxin type A in patients with restless legs syndrome. We searched electronic databases, including PubMed, Cochrane Library, and Web of Science, up to 12 June 2021, for published articles. We enrolled randomized controlled clinical trials and non-randomized controlled studies involving patients with restless legs syndrome who were treated with botulinum toxin. Quality assessment was performed using the Cochrane risk of bias tool and Joanna Briggs Institute Critical Appraisal Checklist for Quasi-Experimental Studies. As for the results, we included four articles comprising 62 participants, two studies were randomized controlled trials. Improvement in International Restless Legs Syndrome Study Group (IRLSSG) rating scale was observed in three studies. Adverse events were temporary and self-limited. Meta-analyses were performed, including the two randomized controlled trials with 27 participants. Compared with placebo, botulinum toxin injection significantly reduced scores of IRLSSG rating scale (SMD, −0.819, 95% confidence interval [CI], −1.377 to −0.262). A total of 11.8% (95% CI, 0.7–72.4%) of patients reported at least one adverse event. In conclusion, botulinum toxin injection may relieve restless legs syndrome related symptoms. However, decisive conclusions cannot be drawn because of the small number of patients included in our meta-analysis. Large-scale, randomized controlled trials are warranted to discover the optimal dose, safety, and long-term effect of intervention with botulinum toxin type A for patients with restless legs syndrome.
Collapse
Affiliation(s)
- Yu-Chi Su
- National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan;
| | - Yao-Hong Guo
- Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan;
| | - Chung-Lun Liao
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan;
| | - Yu-Ching Lin
- Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan;
- Department of Physical Medicine and Rehabilitation, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
- Correspondence:
| |
Collapse
|
11
|
Bergmann M, Heidbreder A, Stefani A, Raccagni C, Brandauer E, Rudzki D, Fischer MB, Rossmanith E, Pasztorek M, Löscher WN, Högl B, Wanschitz JV. Signs of sympathetic and endothelial cell activation in the skin of patients with restless legs syndrome. Sleep Med 2021; 84:227-236. [PMID: 34174707 DOI: 10.1016/j.sleep.2021.05.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/28/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To evaluate skin biopsies of patients with early- and late onset restless legs syndrome (RLS) for concomitant small fiber neuropathy (SFN) and to determine cutaneous sympathetic innervation and microvascularization in comparison to healthy individuals. METHODS Density of intraepidermal nerve fibers (IENFD), adrenergic nerve fibers and dermal capillaries was analyzed by immunofluorescence for PGP9.5, tyrosine hydroxylase and endothelial markers CD31 and CD105 in skin biopsies of 11 individuals with RLS and 8 age- and sex-matched controls. RESULTS IENFD did not differ between RLS and controls, but two RLS patients with comorbid impaired glucose metabolism fulfilled morphometric criteria of SFN according to published normative values. In contrast, dermal nerve bundles of RLS patients showed an increased density of tyrosine hydroxylase+ adrenergic nerve fibers (p < 0.005). Moreover, an increased ratio between immature CD105+ and mature CD31+ endothelial cells within dermal capillaries was observed in RLS (p < 0.02). CONCLUSIONS SFN, as a potential contributing factor for RLS, should be considered in patients with predisposing comorbidities presenting with burning or shooting pain, dysesthesias and impaired sensory and temperature perception. Evidence of an increased adrenergic innervation of the skin in RLS patients is in accordance with sympathetic hyperactivity while signs of endothelial cell activation may reflect an adaptive response to tissue hypoxia.
Collapse
Affiliation(s)
- Melanie Bergmann
- Department of Neurology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Anna Heidbreder
- Department of Neurology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Cecilia Raccagni
- Department of Neurology, Medical University of Innsbruck, Innsbruck, 6020, Austria; Department of Neurology, Regional General Hospital, Bolzano, 39100, Italy
| | - Elisabeth Brandauer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Dagmar Rudzki
- Department of Neurology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Michael B Fischer
- Department for Health Science and Biomedicine, Danube University Krems, Krems, 3500, Austria; Clinic for Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Eva Rossmanith
- Department for Health Science and Biomedicine, Danube University Krems, Krems, 3500, Austria
| | - Markus Pasztorek
- Department for Health Science and Biomedicine, Danube University Krems, Krems, 3500, Austria
| | - Wolfgang N Löscher
- Department of Neurology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Birgit Högl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Julia V Wanschitz
- Department of Neurology, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| |
Collapse
|
12
|
Nardone R, Sebastianelli L, Versace V, Brigo F, Golaszewski S, Pucks-Faes E, Saltuari L, Trinka E. Contribution of transcranial magnetic stimulation in restless legs syndrome: pathophysiological insights and therapeutical approaches. Sleep Med 2020; 71:124-134. [PMID: 32088150 DOI: 10.1016/j.sleep.2019.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 01/06/2023]
Abstract
Transcranial magnetic stimulation (TMS) may offer a reliable means to characterize significant pathophysiologic and neurochemical aspects of restless legs syndrome (RLS). Namely, TMS has revealed specific patterns of changes in cortical excitability and plasticity, in particular dysfunctional inhibitory mechanisms and sensorimotor integration, which are thought to be part of the pathophysiological mechanisms of RLS rather than reflect a non-specific consequence of sleep architecture alteration. If delivered repetitively, TMS is able to transiently modulate the neural activity of the stimulated and connected areas. Some studies have begun to therapeutically use repetitive TMS (rTMS) to improve sensory and motor disturbances in RLS. High-frequency rTMS applied over the primary motor cortex or the supplementary motor cortex, as well as low-frequency rTMS over the primary somatosensory cortex, seem to have transient beneficial effects. However, further studies with larger patient samples, repeated sessions, an optimized rTMS setup, and clinical follow-up are needed in order to corroborate preliminary results. Thus, we performed a systematic search of all the studies that have used TMS and rTMS techniques in patients with RLS.
Collapse
Affiliation(s)
- Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy; Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Austria; Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria.
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy; Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy; Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Francesco Brigo
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy; Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Italy
| | - Stefan Golaszewski
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria; Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | | | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy; Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy; Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria; Centre for Cognitive Neurosciences Salzburg, Salzburg, Austria; University for Medical Informatics and Health Technology, UMIT, Hall in Tirol, Austria
| |
Collapse
|
13
|
Effects of repetitive transcranial magnetic stimulation in subjects with sleep disorders. Sleep Med 2020; 71:113-121. [PMID: 32173186 DOI: 10.1016/j.sleep.2020.01.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/06/2020] [Accepted: 01/31/2020] [Indexed: 01/08/2023]
|
14
|
Abstract
There is a complex interplay between sleep disturbance and patients in pain. There is an increasing appreciation of the direct effects of analgesic drugs and sleep quality. This review provides an overview of the effects of different analgesic drugs and their effects on phases of sleep. The effects of different pain conditions and their direct effects on sleep physiology are also discussed. A structured search of the scientific literature using MEDLINE and PubMed databases. Original human and animal studies were included. A multi-search term strategy was employed. An appreciation of the physiological effects of these drugs will allow a more considered prescription of them to better manage sleep disturbance.
Collapse
Affiliation(s)
- Adam Woo
- Consultant Anaesthetist & Pain Physician, King's College Hospital, London, UK
| | | |
Collapse
|
15
|
Lyu S, DeAndrade MP, Unger EL, Mueller S, Oksche A, Walters AS, Li Y. Mu opioid receptor knockout mouse: Phenotypes with implications on restless legs syndrome. J Neurosci Res 2020; 98:1532-1548. [PMID: 32424971 DOI: 10.1002/jnr.24637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 04/12/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
Abstract
Restless legs syndrome (RLS) is characterized by an irresistible need to move the legs while sitting or lying at night with insomnia as a frequent consequence. Human RLS has been associated with abnormalities in the endogenous opioid system, the dopaminergic system, the iron regulatory system, anemia, and inflammatory and auto-immune disorders. Our previous work indicates that mice lacking all three subtypes of opioid receptors have a phenotype similar to that of human RLS. To study the roles of each opioid receptor subtype in RLS, we first used mu opioid receptor knockout (MOR KO) mice based on our earlier studies using postmortem brain and cell culture. The KO mice showed decreased hemoglobin, hematocrit, and red blood cells (RBCs), with an appearance of microcytic RBCs indicating anemia. Together with decreased serum iron and transferrin, but increased ferritin levels, the anemia is similar to that seen with chronic inflammation in humans. A decreased serum iron level was also observed in the wildtype mice treated with an MOR antagonist. Iron was increased in the liver and spleen of the KO mice. Normal circadian variations in the dopaminergic and serotoninergic systems were absent in the KO mice. The KO mice showed hyperactivity and increased thermal sensitivity in wakefulness primarily during what would normally be the sleep phase similar to that seen in human RLS. Deficits in endogenous opioid system transmission could predispose to anemia of inflammation and loss of circadian variations in dopaminergic or serotonergic systems, thereby contributing to an RLS-like phenotype.
Collapse
Affiliation(s)
- Shangru Lyu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mark P DeAndrade
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Erica L Unger
- Department of Biology, Lebanon Valley College, Annville, PA, USA
| | | | - Alexander Oksche
- Mundipharma Research Limited, Cambridge, UK.,Rudolf-Buchheim-Institut für Pharmakologie, University of Giessen, Giessen, Germany
| | - Arthur S Walters
- Division of Sleep Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
van Reij RR, Joosten EA, van den Hoogen NJ. Dopaminergic neurotransmission and genetic variation in chronification of post-surgical pain. Br J Anaesth 2019; 123:853-864. [DOI: 10.1016/j.bja.2019.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/10/2019] [Accepted: 07/26/2019] [Indexed: 01/30/2023] Open
|
17
|
Lyu S, Xing H, DeAndrade MP, Perez PD, Zhang K, Liu Y, Yokoi F, Febo M, Li Y. The role of BTBD9 in the cerebral cortex and the pathogenesis of restless legs syndrome. Exp Neurol 2019; 323:113111. [PMID: 31715135 DOI: 10.1016/j.expneurol.2019.113111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/09/2019] [Accepted: 11/07/2019] [Indexed: 01/18/2023]
Abstract
Restless legs syndrome (RLS) is a nocturnal neurological disorder affecting up to 10% of the population. It is characterized by an urge to move and uncomfortable sensations in the legs which can be relieved by movements. Mutations in BTBD9 may confer a higher risk of RLS. We developed Btbd9 knockout mice as an animal model. Functional alterations in the cerebral cortex, especially the sensorimotor cortex, have been found in RLS patients in several imaging studies. However, the role of cerebral cortex in the pathogenesis of RLS remains unclear. To explore this, we used in vivo manganese-enhanced MRI and found that the Btbd9 knockout mice had significantly increased neural activities in the primary somatosensory cortex (S1) and the rostral piriform cortex. Morphometry study revealed a decreased thickness in a part of S1 representing the hindlimb (S1HL) and M1. The electrophysiological recording showed Btbd9 knockout mice had enhanced short-term plasticity at the corticostriatal terminals to D1 medium spiny neurons (MSNs). Furthermore, we specifically knocked out Btbd9 in the cerebral cortex of mice (Btbd9 cKO). The Btbd9 cKO mice showed a rest-phase specific motor restlessness, decreased thermal sensation, and a thinner S1HL and M1. Both Btbd9 knockout and Btbd9 cKO exhibited motor deficits. Our results indicate that systematic BTBD9 deficiency leads to both functional and morphometrical changes of the cerebral cortex, and an alteration in the corticostriatal pathway to D1 MSNs. Loss of BTBD9 only in the cerebral cortex is sufficient to cause similar phenotypes as observed in the Btbd9 complete knockout mice.
Collapse
Affiliation(s)
- Shangru Lyu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mark P DeAndrade
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Pablo D Perez
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Keer Zhang
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yuning Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Marcelo Febo
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
18
|
Abnormal Circadian Modification of A δ-Fiber Pathway Excitability in Idiopathic Restless Legs Syndrome. Pain Res Manag 2019; 2019:5408732. [PMID: 31827655 PMCID: PMC6885267 DOI: 10.1155/2019/5408732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/06/2019] [Accepted: 10/16/2019] [Indexed: 11/17/2022]
Abstract
Restless legs syndrome (RLS) is characterized by unpleasant sensations generally localized to legs, associated with an urge to move. A likely pathogenetic mechanism is a central dopaminergic dysfunction. The exact role of pain system is unclear. The purpose of the study was to investigate the nociceptive pathways in idiopathic RLS patients. We enrolled 11 patients (mean age 53.2 ± 19.7 years; 7 men) suffering from severe, primary RLS. We recorded scalp laser-evoked potentials (LEPs) to stimulation of different sites (hands and feet) and during two different time conditions (daytime and nighttime). Finally, we compared the results with a matched control group of healthy subjects. The Aδ responses obtained from patients did not differ from those recorded from control subjects. However, the N1 and the N2-P2 amplitudes' night/day ratios after foot stimulation were increased in patients, as compared to controls (N1: patients: 133.91 ± 50.42%; controls: 83.74 ± 34.45%; p = 0.016; Aδ-N2-P2: patients: 119.15 ± 15.56%; controls: 88.42 ± 23.41%; p = 0.003). These results suggest that RLS patients present circadian modifications in the pain system, which are not present in healthy controls. Both sensory-discriminative and affective-emotional components of pain experience show parallel changes. This study confirms the structural integrity of Aδ nociceptive system in idiopathic RLS, but it also suggests that RLS patients present circadian modifications in the pain system. These findings could potentially help clinicians and contribute to identify new therapeutic approaches.
Collapse
|
19
|
Lyu S, DeAndrade MP, Mueller S, Oksche A, Walters AS, Li Y. Hyperactivity, dopaminergic abnormalities, iron deficiency and anemia in an in vivo opioid receptors knockout mouse: Implications for the restless legs syndrome. Behav Brain Res 2019; 374:112123. [PMID: 31376441 DOI: 10.1016/j.bbr.2019.112123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Previous studies have uncovered a potential role of the opioid system in iron hemostasis and dopamine metabolism. Abnormalities in both of these systems have been noted in human RLS. Autopsy studies of human RLS have shown an endogenous opioid deficiency in the thalamus. Opioids, particularly prolonged-release oxycodone/naloxone, have been approved in Europe to be a second-line therapy for severe restless legs syndrome (RLS). To study the role of opioid receptors in the pathogenesis of RLS, we used a triple knockout (KO) mouse strain that lack mu, delta, and kappa opioid receptors and explored the behavioral and biochemical parameters relevant to RLS. The triple KO mice showed hyperactivity and a trend of increased probability of waking during the rest period (day) akin to that in human RLS (night). Surprisingly, triple KO mice also exhibit decreased serum iron concentration, evidence of anemia, a significant dysfunction in dopamine metabolism akin to that noted in human RLS, as well as an increased latency in response to thermal stimuli. To our knowledge, this is the first study to demonstrate that the endogenous opioid system may play a role in iron metabolism and subsequently in the pathogenesis of anemia. It is also the first study showing that opioid receptors are involved in the production of motor restlessness with a circadian predominance. Our findings support the role of endogenous opioids in the pathogenesis of RLS, and the triple KO mice can be used to understand the relationship between iron deficiency, anemia, dopaminergic dysfunction, and RLS.
Collapse
Affiliation(s)
- Shangru Lyu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mark P DeAndrade
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Stefan Mueller
- Mundipharma Research GmbH & Co. KG, Höhenstraße 10, Limburg, Germany
| | - Alexander Oksche
- Mundipharma Research Limited, Cambridge, UK; Rudolf-Buchheim-Institut für Pharmakologie, University of Giessen, Giessen, Germany
| | - Arthur S Walters
- Division of Sleep Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
20
|
Kerr S, McKinon W, Dafkin C, Bentley A. Characterization of painful Restless Legs Syndrome sensations in an English-speaking South African population. Scand J Pain 2019; 19:483-489. [PMID: 30796850 DOI: 10.1515/sjpain-2018-0313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/29/2019] [Indexed: 11/15/2022]
Abstract
Background and aims Restless Legs Syndrome (RLS) is characterised by unusual sensations in the legs which can be described as painful in up to 60% of RLS patients. The purpose of this study was to characterise and examine whether the presence of pain influenced the words used to describe the sensations of RLS in an English speaking population. Methods RLS participants (n=55) were divided according to whether or not painful RLS sensations were reported upon questioning. They completed the McGill Pain Questionnaire (MPQ), the International Restless Legs Syndrome Severity Scale (IRLS) and selected descriptors from a list of previously published RLS terms. Results Thirty-five percent of the RLS patients had painful sensations. The participants with painful RLS had higher Pain Rating Index (PRI) scores [median (interquartile range) 21 (17-28) vs. 14 (7.5-21) p=0.0008] and IRLS scores [23 (17-28) vs. 18 (11.5-22.5) p=0.0175] than the participants with non-painful RLS. Patients with painful RLS symptoms selected more pain-related literature terms, chose significantly different words in eight of the MPQ subclasses (both sensory and affective) and selected more intense descriptors from certain MPQ subclasses than the non-painful RLS group. The terms that characterised painful RLS were "aching", "painful", "cramping" and "unbearable". Conclusions Descriptors of RLS sensations are changed by the presence of pain, which may indicate an aetiological difference in the patients who have painful RLS. Clinically, patients complaining of cramping and painful sensations may be diagnosed with a condition that mimics RLS. Thus, it is important that the most accurate set of descriptors for RLS are used to enable recognition of RLS and optimised treatment according to the RLS phenotype. Implications The diagnosis of RLS may be improved by overcoming language and cultural barriers and obtaining differential diagnostic terms for painful conditions mimicking RLS.
Collapse
Affiliation(s)
- Samantha Kerr
- School of Physiology, Faculty of Health Sciences, Movement Physiology Research Laboratory, University of the Witwatersrand Medical School, 7 York Road, Parktown 2193, Johannesburg, South Africa, Phone: +27(011) 717-2258
| | - Warrick McKinon
- School of Physiology, Faculty of Health Sciences, Movement Physiology Research Laboratory, University of the Witwatersrand Medical School, Parktown, Johannesburg, South Africa
| | - Chloe Dafkin
- School of Physiology, Faculty of Health Sciences, Movement Physiology Research Laboratory, University of the Witwatersrand Medical School, Parktown, Johannesburg, South Africa
| | - Alison Bentley
- Department of Family Medicine, Faculty of Health Sciences, University of the Witwatersrand Medical School, Parktown, Johannesburg, South Africa
| |
Collapse
|
21
|
Abstract
Itching can result from activity of specialized primary afferent neurons (“pruriceptors”) that have been shown to express certain molecular markers such as B-type natriuretic peptide and several members of the Mrgpr-family in rodents. On the other hand, neurons involved in pain processing (“nociceptors”) can also provoke itching when the activation site is restricted to an isolated tiny spot within the epidermis. Individuals classified as having sensitive skin report increased itching and pain sensations upon weak external stimuli that are not painful or itchy in the control group. Numerous possible factors could contribute to sensitive skin along the pathway of transduction of the external stimuli into peripheral neuronal signals, followed by neuronal processing, finally resulting in the perception: (a) reduced local protective factors leading to impaired skin barrier function, (b) increased production of excitatory skin mediators, (c) sensitized peripheral neurons, (d) facilitated spinal and central processing, and (e) reduced descending inhibition from the central nervous system. For all of those pathophysiological mechanisms there are clinical examples such as atopic dermatitis (a,b,c), neuropathic itching (c,e), and restless leg syndrome (d,e). However, none of these factors have been directly linked to the occurrence of sensitive skin. Moreover, individuals reporting sensitive skin are heterogeneous and a subpopulation with defined pathophysiology has not yet been identified. Given that the condition is reported in about 50% of women, and thereby includes many healthy individuals, it appears problematic to assign a definitive pathophysiological mechanism to it.
Collapse
Affiliation(s)
- Martin Schmelz
- Department Experimental Pain Research, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
22
|
Zhu XY, Wu TT, Wang HM, Ni LY, Li X, Liu Y, Zhang XJ, Chen YJ, Cui XX, Ondo WG, Wu YC. Clinical features and subtypes of restless legs syndrome in Chinese population: a study of 359 patients. Sleep Med 2019; 59:15-23. [DOI: 10.1016/j.sleep.2019.01.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
|
23
|
Restless legs syndrome: Clinical changes in nervous system excitability at the spinal cord level. Sleep Med Rev 2019; 47:9-17. [PMID: 31212170 DOI: 10.1016/j.smrv.2019.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/30/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022]
Abstract
Restless legs syndrome (RLS) is a complex multifactorial disorder whose aetiology has yet to be fully elucidated. Some of the features of RLS, such as processing of sensations and activation of movement, may result from a dysfunction in spinal processing giving rise to a state of spinal hyperexcitability. In the current article we review studies investigating spinal excitability in RLS patients looking specifically at electrophysiological studies of spinal activity, sensory evaluations, and spinal reflex studies. Increased spinal excitability has been shown in RLS patients based on the combined data from electrophysiological studies. Results from studies assessing sensory evaluations in RLS patients show enhanced spinal processing of nociceptive inputs possibly due to central sensitisation. However, not all sensory modalities demonstrate an increase in sensitivity. An increase in nervous system excitability would result in an increase in reflex responses in RLS patients however the data from reflex analyses in RLS patients has failed to consistently show this expected result. Overall changes to RLS spinal excitability have been demonstrated though these changes might be heterogeneous as not all afferent input appears to be affected in the same manner. There may be phase-dependent and modality-dependent alterations in spinal excitability suggesting that the theory of absolute spinal hyperexcitability in RLS patients' needs to be reconsidered.
Collapse
|
24
|
Suzuki K, Suzuki S, Haruyama Y, Kobashi G, Shiina T, Hirata K. Restless legs syndrome is associated with headache-related disabilities in patients with migraine: a prospective 7-year follow-up study. Eur J Neurol 2018; 26:238-245. [PMID: 30169898 DOI: 10.1111/ene.13796] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/28/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE No prospective study has evaluated the impact of restless legs syndrome (RLS) on clinical factors in patients with migraine. We planned a prospective study to assess the impact of RLS comorbid status on clinical factors in patients with migraine. METHODS A total of 101 patients with migraine who were evaluated for RLS twice at 7-year intervals in a university hospital setting were included in this study. The RLS group was defined as positive for RLS at either baseline or follow-up and the non-RLS group was defined as negative for RLS at both baseline and follow-up. The Migraine Disability Assessment (MIDAS) questionnaire, Beck Depression Inventory-II (BDI-II), Pittsburgh Sleep Quality Index (PSQI) and Epworth Sleepiness Scale were administered to all patients. RESULTS The RLS prevalence was 16.8% at baseline and 20.8% at follow-up. Compared with the non-RLS group (n = 27), the RLS group (n = 74) showed a significantly higher rate of smoking and higher MIDAS and BDI-II scores at 7-year follow-up. A significant reduction in MIDAS and BDI-II scores at 7-year follow-up compared with those at baseline was observed in the non-RLS group, but not in the RLS group. The non-RLS group showed a significantly lower MIDAS score at 7-year follow-up than the RLS group after adjusting for confounding variables such as age, gender, smoking status, Epworth Sleepiness Scale and PSQI scores using analysis of covariance. The persistent RLS group (n = 11) (positive for RLS at both baseline and follow-up) showed a significantly higher rate of smoking and increased MIDAS, BDI-II and PSQI scores compared with the non-RLS group (n = 74) at 7-year follow-up. CONCLUSION Our prospective study showed that RLS had a significant impact on headache-related disability in patients with migraine.
Collapse
Affiliation(s)
- K Suzuki
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - S Suzuki
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Y Haruyama
- Department of Public Health School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - G Kobashi
- Department of Public Health School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - T Shiina
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - K Hirata
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
25
|
Meneely S, Dinkins ML, Kassai M, Lyu S, Liu Y, Lin CT, Brewer K, Li Y, Clemens S. Differential Dopamine D1 and D3 Receptor Modulation and Expression in the Spinal Cord of Two Mouse Models of Restless Legs Syndrome. Front Behav Neurosci 2018; 12:199. [PMID: 30233336 PMCID: PMC6131574 DOI: 10.3389/fnbeh.2018.00199] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/13/2018] [Indexed: 12/22/2022] Open
Abstract
Restless Legs Syndrome (RLS) is often and successfully treated with dopamine receptor agonists that target the inhibitory D3 receptor subtype, however there is no clinical evidence of a D3 receptor dysfunction in RLS patients. In contrast, genome-wide association studies in RLS patients have established that a mutation of the MEIS1 gene is associated with an increased risk in developing RLS, but the effect of MEIS1 dysfunction on sensorimotor function remain unknown. Mouse models for a dysfunctional D3 receptor (D3KO) and Meis1 (Meis1KO) were developed independently, and each animal expresses some features associated with RLS in the clinic, but they have not been compared in their responsiveness to treatment options used in the clinic. We here confirm that D3KO and Meis1KO animals show increased locomotor activities, but that only D3KO show an increased sensory excitability to thermal stimuli. Next we compared the effects of dopaminergics and opioids in both animal models, and we assessed D1 and D3 dopamine receptor expression in the spinal cord, the gateway for sensorimotor processing. We found that Meis1KO share most of the tested behavioral properties with their wild type (WT) controls, including the modulation of the thermal pain withdrawal reflex by morphine, L-DOPA and D3 receptor (D3R) agonists and antagonists. However, Meis1KO and D3KO were behaviorally more similar to each other than to WT when tested with D1 receptor (D1R) agonists and antagonists. Subsequent Western blot analyses of D1R and D3R protein expression in the spinal cord revealed a significant increase in D1R but not D3R expression in Meis1KO and D3KO over WT controls. As the D3R is mostly present in the dorsal spinal cord where it has been shown to modulate sensory pathways, while activation of the D1Rs can activate motoneurons in the ventral spinal cord, we speculate that D3KO and Meis1KO represent two complementary animal models for RLS, in which the mechanisms of sensory (D3R-mediated) and motor (D1R-mediated) dysfunctions can be differentially explored.
Collapse
Affiliation(s)
- Samantha Meneely
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Mai-Lynne Dinkins
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Miki Kassai
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Shangru Lyu
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Yuning Liu
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Chien-Te Lin
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Kori Brewer
- Department of Emergency Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Yuqing Li
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
- Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
26
|
Martikainen IK, Hagelberg N, Jääskeläinen SK, Hietala J, Pertovaara A. Dopaminergic and serotonergic mechanisms in the modulation of pain: In vivo studies in human brain. Eur J Pharmacol 2018; 834:337-345. [PMID: 30036531 DOI: 10.1016/j.ejphar.2018.07.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/18/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022]
Abstract
Here we review the literature assessing the roles of the brain dopaminergic and serotonergic systems in the modulation of pain as revealed by in vivo human studies using positron emission tomography. In healthy subjects, dopamine D2/D3 receptor availability particularly in the striatum and serotonin 5-HT1A and 5-HT2A receptor availabilities in the cortex predict the subject's response to tonic experimental pain. High availability of dopamine D2/D3 or serotonin 5-HT2A receptors is associated with high pain intensity, whereas high availability of 5-HT1A receptors associates with low pain intensity. Chronic neuropathic pain is associated with high striatal dopamine D2/D3 receptor availability, for which low endogenous dopamine tone is a plausible explanation, although a compensatory increase in striatal dopamine D2/D3 receptor density may also contribute. In contrast, chronic musculoskeletal pain is associated with low baseline availability of striatal dopamine D2/D3 receptors. In healthy subjects, brain serotonin 5-HT1A as well as dopamine D2/D3 receptor availabilities associate with the subject's response criterion rather than the capacity to discriminate painful thermal stimuli suggesting that these neurotransmitter systems act mainly on non-sensory rather than sensory factors of thermally induced pain experience. Additionally, 5-HT1A receptor availability predicts the subject's discriminative ability but not response criterion for non-painful tactile test stimuli, while no such correlation is observed with dopamine D2/D3 receptors. These findings suggest that dopamine acting on striatal dopamine D2/D3 receptors and serotonin acting on cortical 5-HT1A and 5-HT2A receptors contribute to top-down pain regulation in humans.
Collapse
Affiliation(s)
- Ilkka K Martikainen
- Department of Physiology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; Medical Imaging Center, Department of Radiology, Tampere University Hospital, 33521 Tampere, Finland
| | - Nora Hagelberg
- Department of Anesthesiology and Intensive Care, Turku University Central Hospital and University of Turku, 20520 Turku, Finland; Turku PET Centre, Turku University Central Hospital and University of Turku, 20520 Turku, Finland
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Turku University Central Hospital and University of Turku, 20520 Turku, Finland
| | - Jarmo Hietala
- Turku PET Centre, Turku University Central Hospital and University of Turku, 20520 Turku, Finland; Department of Psychiatry, Turku University Central Hospital and University of Turku, 20520 Turku, Finland
| | - Antti Pertovaara
- Department of Physiology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
27
|
Gemignani F. Restless legs syndrome from the spinal cord perspective: A flexor reflex circuitopathy? J Sleep Res 2018; 27:e12704. [DOI: 10.1111/jsr.12704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Franco Gemignani
- Former Associate Professor of Neurology at the University of Parma; Parma Italy
| |
Collapse
|
28
|
Lanza G, Cantone M, Aricò D, Lanuzza B, Cosentino FII, Paci D, Papotto M, Pennisi M, Bella R, Pennisi G, Paulus W, Ferri R. Clinical and electrophysiological impact of repetitive low-frequency transcranial magnetic stimulation on the sensory-motor network in patients with restless legs syndrome. Ther Adv Neurol Disord 2018. [PMID: 29511386 DOI: 10.1177/1756285618759973.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background Based on the hyperexcitability and disinhibition observed in patients with restless legs syndrome (RLS) following transcranial magnetic stimulation (TMS), we conducted a study with low-frequency repetitive TMS (rTMS) over the primary motor (M1) and somatosensory cortical areas (S1) in patients with RLS. Methods A total of 13 right-handed patients and 10 age-matched controls were studied using clinical scales and TMS. Measurements included resting motor threshold (rMT), motor-evoked potentials (MEPs), cortical silent period (CSP), and central motor conduction time (CMCT). A single evening session of rTMS (1 Hz, 20 trains, 50 stimuli each) was administered over the left M1, left S1, and sham stimulation over M1 in a random order. Clinical and TMS measures were repeated after each stimulation modality. Results Baseline CSP was shorter in patients than in controls and remained shorter in patients for both motor and somatosensory stimulation. The patients reported a subjective improvement of both initiating and maintaining sleep the night after the rTMS over S1. Patients exhibited a decrease in rMT after rTMS of S1 only, although the effect was smaller than in controls. MEP latency and CMCT changed only in controls after stimulation. Sham stimulation was without effect on the observed variables. Conclusions rTMS on S1-M1 connectivity alleviated the sensory-motor complaints of RLS patients. The TMS indexes of excitation and inhibition indicate an intracortical and corticospinal imbalance, mainly involving gamma-aminobutyric acid (GABA)ergic and glutamatergic circuitries, as well as an impairment of the short-term mechanisms of cortical plasticity. The rTMS-induced activation of the dorsal striatum with the consequent increase of dopamine release may have contributed to the clinical and neurophysiological outcome.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Oasi Research Institute - IRCCS Via Conte Ruggero, 73 - 94018, Troina, Italy
| | | | | | | | | | | | | | | | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies 'GF Ingrassia', Azienda Ospedaliero Universitaria Policlinico Vittorio Emanuele Catania, Catania, Italy
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgical Specialties, Azienda Ospedaliero Universitaria Policlinico-Vittorio Emanuele, Catania, Italy
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg August University Göttingen, Göttingen, Germany
| | | |
Collapse
|
29
|
Lanza G, Cantone M, Aricò D, Lanuzza B, Cosentino FII, Paci D, Papotto M, Pennisi M, Bella R, Pennisi G, Paulus W, Ferri R. Clinical and electrophysiological impact of repetitive low-frequency transcranial magnetic stimulation on the sensory-motor network in patients with restless legs syndrome. Ther Adv Neurol Disord 2018; 11:1756286418759973. [PMID: 29511386 PMCID: PMC5833163 DOI: 10.1177/1756286418759973] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/22/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Based on the hyperexcitability and disinhibition observed in patients with restless legs syndrome (RLS) following transcranial magnetic stimulation (TMS), we conducted a study with low-frequency repetitive TMS (rTMS) over the primary motor (M1) and somatosensory cortical areas (S1) in patients with RLS. METHODS A total of 13 right-handed patients and 10 age-matched controls were studied using clinical scales and TMS. Measurements included resting motor threshold (rMT), motor-evoked potentials (MEPs), cortical silent period (CSP), and central motor conduction time (CMCT). A single evening session of rTMS (1 Hz, 20 trains, 50 stimuli each) was administered over the left M1, left S1, and sham stimulation over M1 in a random order. Clinical and TMS measures were repeated after each stimulation modality. RESULTS Baseline CSP was shorter in patients than in controls and remained shorter in patients for both motor and somatosensory stimulation. The patients reported a subjective improvement of both initiating and maintaining sleep the night after the rTMS over S1. Patients exhibited a decrease in rMT after rTMS of S1 only, although the effect was smaller than in controls. MEP latency and CMCT changed only in controls after stimulation. Sham stimulation was without effect on the observed variables. CONCLUSIONS rTMS on S1-M1 connectivity alleviated the sensory-motor complaints of RLS patients. The TMS indexes of excitation and inhibition indicate an intracortical and corticospinal imbalance, mainly involving gamma-aminobutyric acid (GABA)ergic and glutamatergic circuitries, as well as an impairment of the short-term mechanisms of cortical plasticity. The rTMS-induced activation of the dorsal striatum with the consequent increase of dopamine release may have contributed to the clinical and neurophysiological outcome.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Oasi Research Institute – IRCCS Via Conte Ruggero, 73 – 94018, Troina, Italy
| | | | | | | | | | | | | | | | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies ‘GF Ingrassia’, Azienda Ospedaliero Universitaria Policlinico Vittorio Emanuele Catania, Catania, Italy
| | - Giovanni Pennisi
- Department of Surgery and Medical–Surgical Specialties, Azienda Ospedaliero Universitaria Policlinico-Vittorio Emanuele, Catania, Italy
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg August University Göttingen, Göttingen, Germany
| | | |
Collapse
|
30
|
Jank R, Gallee A, Boeckle M, Fiegl S, Pieh C. Chronic Pain and Sleep Disorders in Primary Care. PAIN RESEARCH AND TREATMENT 2017; 2017:9081802. [PMID: 29410915 PMCID: PMC5749281 DOI: 10.1155/2017/9081802] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/18/2017] [Accepted: 11/26/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Chronic pain (CP) and sleep disorders (SD) are highly prevalent in the general population. However, comprehensive data regarding the prevalence and characteristics of pain and SD in primary care are rare. METHODS From N = 578 patients N = 570 were included within 8 weeks (mean age: 50.8 ± 18.7 years, females: 289). Sociodemographic data, Insomnia Severity Index (ISI), and parts of a self-report questionnaire for pain (Multidimensional German Pain Questionnaire) were recorded and additional medical information (pain medication, sleep medication) was gathered from the patient charts. RESULTS Of the total sample, 33.2% (n = 189) suffer from CP (pain ≥ 6 months) and 29.1% (n = 166) from SD. 45.5% of the CP patients suffer from SD and 26.5% from clinical insomnia (ISI ≥ 15). SD (β = 0.872, SE = 0.191, t = 4,572, p < 0.001, CI [0.497; 1.246]) and older age (β = 0.025, SE = 0.005, t = 5.135, p < 0.001, CI [0.015; 0.035]) were significantly associated with pain experience. CONCLUSION About a quarter of CP patients suffer from clinical insomnia. The suggested bidirectional relation should be considered during comprehensive assessment and treatment of patients.
Collapse
Affiliation(s)
- Robert Jank
- Department of Psychotherapy and Biopsychosocial Health, Danube University Krems, Krems, Austria
| | | | - Markus Boeckle
- Department of Psychotherapy and Biopsychosocial Health, Danube University Krems, Krems, Austria
| | - Sabine Fiegl
- Department of Psychotherapy and Biopsychosocial Health, Danube University Krems, Krems, Austria
| | - Christoph Pieh
- Department of Psychotherapy and Biopsychosocial Health, Danube University Krems, Krems, Austria
- Department of Psychosomatic Medicine, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
31
|
Dafkin C, Green A, Olivier B, Mckinon W, Kerr S. Circadian variation of flexor withdrawal and crossed extensor reflexes in patients with restless legs syndrome. J Sleep Res 2017; 27:e12645. [DOI: 10.1111/jsr.12645] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/30/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Chloe Dafkin
- Biomechanics Laboratory; School of Physiology; Faculty of Health Sciences; Medical School; University of the Witwatersrand; Johannesburg South Africa
| | - Andrew Green
- Biomechanics Laboratory; School of Physiology; Faculty of Health Sciences; Medical School; University of the Witwatersrand; Johannesburg South Africa
| | - Benita Olivier
- Physiotherapy Department; Faculty of Health Sciences; University of the Witwatersrand Medical School Faculty of Health Sciences; University of the Witwatersrand Medical School; Johannesburg South Africa
| | - Warrick Mckinon
- Biomechanics Laboratory; School of Physiology; Faculty of Health Sciences; Medical School; University of the Witwatersrand; Johannesburg South Africa
| | - Samantha Kerr
- Biomechanics Laboratory; School of Physiology; Faculty of Health Sciences; Medical School; University of the Witwatersrand; Johannesburg South Africa
| |
Collapse
|
32
|
Dafkin C, Green A, Olivier B, McKinon W, Kerr S. Plantar reflex excitability is increased in the evening in restless legs syndrome patients. Neurosci Lett 2017; 660:74-78. [PMID: 28917979 DOI: 10.1016/j.neulet.2017.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/12/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate if diurnal changes in spinal excitability (plantar reflex) occur in restless legs syndrome (RLS) participants compared to healthy matched controls. METHODS Thirteen RLS participants and 13 healthy control participants' plantar reflex responses were evaluated in the evening (PM) and the morning (AM). Plantar reflex responses were assessed electromyographically, using motion analysis (kinematically) and by subjective nociception (Visual Analogue Scale). RESULTS RLS participants showed a circadian variation in plantar reflex responses whilst control participants did not. Evening ankle angle changes were larger and faster in RLS participants compared to morning responses. In addition RLS participants displayed significantly smaller change in ankle angle and significantly slower ankle movements in the evening and the morning as well as significantly lower lateral gastrocnemius maximum amplitude in the compared to control participants. CONCLUSION The findings of the current study support the theory of RLS circadian fluctuations in spinal excitability. An unexpected finding was decreased plantar reflex responses in RLS participants compared to healthy control participants. However this finding supports the theory of mechanical hypoesthesia in RLS. The results of this study provide further insight into the pathophysiology of RLS, highlighting that not all sensory processing is affected in the same manner.
Collapse
Affiliation(s)
- Chloe Dafkin
- Biomechanics Laboratory, School of Physiology, University of the Witwatersrand, Faculty of Health Sciences, Medical School, Johannesburg, South Africa.
| | - Andrew Green
- Biomechanics Laboratory, School of Physiology, University of the Witwatersrand, Faculty of Health Sciences, Medical School, Johannesburg, South Africa
| | - Benita Olivier
- Physiotherapy Department, Faculty of Health Sciences, University of the Witwatersrand Medical School, Johannesburg, South Africa
| | - Warrick McKinon
- Biomechanics Laboratory, School of Physiology, University of the Witwatersrand, Faculty of Health Sciences, Medical School, Johannesburg, South Africa
| | - Samantha Kerr
- Biomechanics Laboratory, School of Physiology, University of the Witwatersrand, Faculty of Health Sciences, Medical School, Johannesburg, South Africa
| |
Collapse
|
33
|
Lanza G, Bachmann CG, Ghorayeb I, Wang Y, Ferri R, Paulus W. Central and peripheral nervous system excitability in restless legs syndrome. Sleep Med 2017; 31:49-60. [PMID: 27745789 DOI: 10.1016/j.sleep.2016.05.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 02/07/2023]
Abstract
Neurophysiological techniques have been applied in restless legs syndrome (RLS) to obtain direct and indirect measures of central and peripheral nervous system excitability, as well as to probe different neurotransmission pathways. Data converge on the hypothesis that, from a pure electrophysiological perspective, RLS should be regarded as a complex sensorimotor disorder in which cortical, subcortical, spinal cord, and peripheral nerve generators are all involved in a network disorder, resulting in an enhanced excitability and/or decreased inhibition. Although the spinal component may have dominated in neurophysiological assessment, possibly because of better accessibility compared to the brainstem or cerebral components of a hypothetical dysfunction of the diencephalic A11 area, multiple mechanisms, such as reduced central inhibition and abnormal peripheral nerve function, contribute to the pathogenesis of RLS similarly to some chronic pain conditions. Dopamine transmission dysfunction, either primary or triggered by low iron and ferritin concentrations, may also bridge the gap between RLS and chronic pain entities. Further support of disturbed central and peripheral excitability in RLS is provided by the effectiveness of nonpharmacological tools, such as repetitive transcranial magnetic stimulation and transcutaneous spinal direct current stimulation, in transiently modulating neural excitability, thereby extending the therapeutic repertoire. Understanding the complex interaction of central and peripheral neuronal circuits in generating the symptoms of RLS is mandatory for a better refinement of its therapeutic support.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Sleep Research Center, I.R.C.C.S. "Oasi Maria SS.", Troina, Italy.
| | | | - Imad Ghorayeb
- Department of Clinical Neurophysiology, CHU de Bordeaux, Bordeaux, France; CNRS, INCIA, CNRS UMR 5287, Université de Bordeaux, Bordeaux, France
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Raffale Ferri
- Sleep Research Center, I.R.C.C.S. "Oasi Maria SS.", Troina, Italy
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg August University Göttingen, Göttingen, Germany
| |
Collapse
|
34
|
Cho YW, Kang MS, Kim KT, Do SY, Lim JG, Lee SY, Motamedi GK. Quantitative sensory test for primary restless legs syndrome/Willis–Ekbom disease using the current perception threshold test. Sleep Med 2017; 30:19-23. [DOI: 10.1016/j.sleep.2016.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/02/2016] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
|
35
|
Dorsal root ganglion neurons and tyrosine hydroxylase--an intriguing association with implications for sensation and pain. Pain 2016; 157:314-320. [PMID: 26447702 DOI: 10.1097/j.pain.0000000000000381] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Hoogwout SJ, Paananen MV, Smith AJ, Beales DJ, O'Sullivan PB, Straker LM, Eastwood PR, McArdle N, Champion D. Musculoskeletal pain is associated with restless legs syndrome in young adults. BMC Musculoskelet Disord 2015; 16:294. [PMID: 26467305 PMCID: PMC4607251 DOI: 10.1186/s12891-015-0765-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 10/08/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND In recent years, there is considerable evidence of a relationship between the sensorimotor disorder restless legs syndrome (RLS) and pain disorders, including migraine and fibromyalgia. An association between multi-site pain and RLS has been reported in adult women. In the current study, we explored the association between musculoskeletal (MSK) pain and RLS in a large cohort of young adults. METHODS Twenty two year olds (n = 1072), followed since birth of part of the Western Australian Pregnancy Cohort (Raine) Study, provided data on MSK pain (duration, severity, frequency, number of pain sites). RLS was considered present when 4 diagnostic criteria recommended by the International Restless Legs Syndrome Study Group were met (urge to move, dysaesthesia, relief by movement, worsening symptoms during the evening/night) and participants had these symptoms at least 5 times per month. Associations between MSK pain and RLS were analyzed by multivariable logistic regression with bias-corrected bootstrapped confidence intervals, with final models adjusted for sex, psychological distress and sleep quality. RESULTS The prevalence of RLS was 3.0 % and MSK pain was reported by 37.4 % of the participants. In multivariable logistic regression models, strong associations were found between RLS-diagnosis and long duration (three months or more) of MSK pain (odds ratio 3.6, 95 % confidence interval 1.4-9.2) and reporting three or more pain sites (4.9, 1.6-14.6). CONCLUSIONS Different dimensions of MSK pain were associated with RLS in young adults, suggestive of shared pathophysiological mechanisms. Overlap between these conditions requires more clinical and research attention.
Collapse
Affiliation(s)
- Stijn J Hoogwout
- Faculty of Medical Sciences, University of Groningen, PO Box 72, 9700 AB, Groningen, The Netherlands.
- , Offenbachlaan 14, 2253 CR, Voorschoten, The Netherlands.
| | - Markus V Paananen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 8000, FI-90014, Oulu, Finland.
| | - Anne J Smith
- School of Physiotherapy and Exercise Science, Curtin University, GPO Box U1987, Perth, Western Australia, 6845, Australia.
| | - Darren J Beales
- School of Physiotherapy and Exercise Science, Curtin University, GPO Box U1987, Perth, Western Australia, 6845, Australia.
| | - Peter B O'Sullivan
- School of Physiotherapy and Exercise Science, Curtin University, GPO Box U1987, Perth, Western Australia, 6845, Australia.
| | - Leon M Straker
- School of Physiotherapy and Exercise Science, Curtin University, GPO Box U1987, Perth, Western Australia, 6845, Australia.
| | - Peter R Eastwood
- Centre for Sleep Science, School of Anatomy, Physiology & Human Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| | - Nigel McArdle
- Centre for Sleep Science, School of Anatomy, Physiology & Human Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| | - David Champion
- Department of Anaesthesia and Pain Medicine, Sydney Children's Hospital, High Street, Randwick, NSW, 2031, Australia.
- University of New South Wales, UNSW, Sydney, NSW, 2052, Australia.
| |
Collapse
|
37
|
|
38
|
Schrimpf M, Liegl G, Boeckle M, Leitner A, Geisler P, Pieh C. The effect of sleep deprivation on pain perception in healthy subjects: a meta-analysis. Sleep Med 2015; 16:1313-1320. [PMID: 26498229 DOI: 10.1016/j.sleep.2015.07.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/17/2015] [Accepted: 07/23/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND There is strong evidence indicating an interaction between sleep and pain. However, the size of this effect, as well as the clinical relevance, is unclear. Therefore, this meta-analysis was conducted to quantify the effect of sleep deprivation on pain perception. METHODS A systematic literature search was conducted using the electronic databases PubMed, Cochrane, Psyndex, Psycinfo, and Scopus. By conducting a random-effect model, the pooled standardized mean differences (SMDs) of sleep deprivation on pain perception was calculated. Studies that investigated any kind of sleep deprivation in conjunction with a pain measurement were included. In cases of several pain measurements within a study, the average effect size of all measures was calculated. RESULTS Five eligible studies (N = 190) for the between-group analysis and ten studies (N = 266) for the within-group analysis were identified. Sleep deprivation showed a medium effect in the between-group analysis (SMD = 0.62; CI95: 0.12, 1.12; z = 2.43; p = 0.015) and a large effect in the within-group analysis (SMD = 1.49; CI95: 0.82, 2.17; z = 4.35; p <0.0001). The test for heterogeneity was not significant in the between-group analysis (Q = 5.29; df = 4; p = 0.2584), but it was significant in the within-group analysis (Q = 53.49; df = 9; p <0.0001). CONCLUSION This meta-analysis confirms a medium effect (SMD = 0.62) of sleep deprivation on pain perception. As this meta-analysis is based on experimental studies in healthy subjects, the clinical relevance should be clarified.
Collapse
Affiliation(s)
- Marlene Schrimpf
- Department of Psychotherapy and Biopsychosocial Health, Danube-University Krems, Dr. Karl Dorrek Straße 30, A-3500 Krems, Austria
| | - Gregor Liegl
- Department of Psychotherapy and Biopsychosocial Health, Danube-University Krems, Dr. Karl Dorrek Straße 30, A-3500 Krems, Austria; Medical Clinic, Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Markus Boeckle
- Department of Psychotherapy and Biopsychosocial Health, Danube-University Krems, Dr. Karl Dorrek Straße 30, A-3500 Krems, Austria
| | - Anton Leitner
- Department of Psychotherapy and Biopsychosocial Health, Danube-University Krems, Dr. Karl Dorrek Straße 30, A-3500 Krems, Austria
| | - Peter Geisler
- Department of Psychiatry and Psychotherapy, University Hospital Regensburg, Universitätsstraße 84, 93053 Regensburg, Germany
| | - Christoph Pieh
- Department of Psychotherapy and Biopsychosocial Health, Danube-University Krems, Dr. Karl Dorrek Straße 30, A-3500 Krems, Austria; Department of Psychosomatic Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500 Krems, Austria.
| |
Collapse
|
39
|
Transcranial direct current stimulation on primary sensorimotor area has no effect in patients with drug-naïve restless legs syndrome: a proof-of-concept clinical trial. Sleep Med 2015; 16:280-7. [DOI: 10.1016/j.sleep.2014.07.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/07/2014] [Accepted: 07/29/2014] [Indexed: 01/18/2023]
|
40
|
Abstract
It is evident that chronic pain can modify the excitability of central nervous system which imposes a specific challenge for the management and for the development of new analgesics. The central manifestations can be difficult to quantify using standard clinical examination procedures, but quantitative sensory testing (QST) may help to quantify the degree and extend of the central reorganization and effect of pharmacological interventions. Furthermore, QST may help in optimizing the development programs for new drugs.Specific translational mechanistic QST tools have been developed to quantify different aspects of central sensitization in pain patients such as threshold ratios, provoked hyperalgesia/allodynia, temporal summation (wind-up like pain), after sensation, spatial summation, reflex receptive fields, descending pain modulation, offset analgesia, and referred pain areas. As most of the drug development programs in the area of pain management have not been very successful, the pharmaceutical industry has started to utilize the complementary knowledge obtained from QST profiling. Linking patients QST profile with drug efficacy profile may provide the fundamentals for developing individualized, targeted pain management programs in the future. Linking QST-assessed pain mechanisms with treatment outcome provides new valuable information in drug development and for optimizing the management regimes for chronic pain.
Collapse
Affiliation(s)
- Lars Arendt-Nielsen
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, School of Medicine, Aalborg University, Fredrik Bajers Vej 7-D3, 9220, Aalborg, Denmark,
| |
Collapse
|
41
|
Goulart LI, Delgado Rodrigues RN, Prieto Peres MF. Restless Legs Syndrome and Pain Disorders: What’s in common? Curr Pain Headache Rep 2014; 18:461. [DOI: 10.1007/s11916-014-0461-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
|
43
|
Cobacho N, de la Calle JL, Paíno CL. Dopaminergic modulation of neuropathic pain: analgesia in rats by a D2-type receptor agonist. Brain Res Bull 2014; 106:62-71. [PMID: 24959942 DOI: 10.1016/j.brainresbull.2014.06.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 11/28/2022]
Abstract
Experimental studies have shown that dopaminergic mechanisms can modulate both nociception and chronic pain perception, but such property is not exploited pharmacologically at the clinical level. We have previously shown that levodopa produces D2-receptor-mediated antiallodynic effects in rats with peripheral mononeuropathy. Here, we test the effects of a D2-type receptor (D2R) agonist, quinpirole, on neuropathic pain in rats. Allodynic responses to cooling and light touch were measured in the hind limbs of rats with chronic constriction injury of one sciatic nerve. Single intraperitoneal injection of quinpirole (1 mg/kg) totally inhibited cold and tactile allodynic responses for over 3 and 48 h, respectively. At that dose, quinpirole had no effect on nocifensive responses to heat. Lumbar intrathecal injection of quinpirole produced short-term inhibition of the responses to cold and tactile stimuli, suggesting that spinal mechanisms may contribute to the antiallodynic activity of quinpirole. Chronic subcutaneous infusion of quinpirole by implanted Alzet pumps (0.025 mg/kg·day) provided a slowly progressing inhibition of cold and tactile allodynic responses, which re-emerged after the pumps were removed. These experiments show the involvement of dopaminergic systems in the modulation of chronic allodynias and provide experimental support for proposing the use of D2R agonists for neuropathic pain relief.
Collapse
Affiliation(s)
- Nuria Cobacho
- Service of Neurobiology-Research, IRYCIS, Hospital Ramón y Cajal, Carretera de Colmenar km 9, 28034 Madrid, Spain
| | | | - Carlos Luis Paíno
- Service of Neurobiology-Research, IRYCIS, Hospital Ramón y Cajal, Carretera de Colmenar km 9, 28034 Madrid, Spain.
| |
Collapse
|
44
|
An improved model of heat-induced hyperalgesia--repetitive phasic heat pain causing primary hyperalgesia to heat and secondary hyperalgesia to pinprick and light touch. PLoS One 2014; 9:e99507. [PMID: 24911787 PMCID: PMC4050052 DOI: 10.1371/journal.pone.0099507] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/02/2014] [Indexed: 01/31/2023] Open
Abstract
This study tested a modified experimental model of heat-induced hyperalgesia, which improves the efficacy to induce primary and secondary hyperalgesia and the efficacy-to-safety ratio reducing the risk of tissue damage seen in other heat pain models. Quantitative sensory testing was done in eighteen healthy volunteers before and after repetitive heat pain stimuli (60 stimuli of 48°C for 6 s) to assess the impact of repetitive heat on somatosensory function in conditioned skin (primary hyperalgesia area) and in adjacent skin (secondary hyperalgesia area) as compared to an unconditioned mirror image control site. Additionally, areas of flare and secondary hyperalgesia were mapped, and time course of hyperalgesia determined. After repetitive heat pain conditioning we found significant primary hyperalgesia to heat, and primary and secondary hyperalgesia to pinprick and to light touch (dynamic mechanical allodynia). Acetaminophen (800 mg) reduced pain to heat or pinpricks only marginally by 11% and 8%, respectively (n.s.), and had no effect on heat hyperalgesia. In contrast, the areas of flare (−31%) and in particular of secondary hyperalgesia (−59%) as well as the magnitude of hyperalgesia (−59%) were significantly reduced (all p<0.001). Thus, repetitive heat pain induces significant peripheral sensitization (primary hyperalgesia to heat) and central sensitization (punctate hyperalgesia and dynamic mechanical allodynia). These findings are relevant to further studies using this model of experimental heat pain as it combines pronounced peripheral and central sensitization, which makes a convenient model for combined pharmacological testing of analgesia and anti-hyperalgesia mechanisms related to thermal and mechanical input.
Collapse
|
45
|
Gupta R, Spence D, BaHammam A, Monti J, Pandi-Perumal S. Association between migraine and restless legs syndrome. SOMNOLOGIE 2014. [DOI: 10.1007/s11818-013-0650-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
[Practical guidelines for diagnosis and therapy of restless legs syndrome]. DER NERVENARZT 2014; 85:9-10, 12-4, 16-8. [PMID: 24414246 DOI: 10.1007/s00115-013-3888-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Restless legs syndrome (RLS) is the most common neurological sleep disorder affecting 10 % of the Caucasian population. The disorder is characterized by painful sensations in the lower limbs, especially during the evening, at night and during rest, resulting in an urge to move the legs and insomnia. As a result the quality of life is significantly reduced. Dopaminergic agents, opioids and anticonvulsants have proven to be effective for RLS with only the former being currently licensed; however, affected patients have to be identified, which is not always the case, especially in outpatient settings. Possible impediments to the adequate management of patients with RLS may include a lack of awareness, comorbidities and other medical conditions mimicking RLS. To overcome some of these difficulties practical guidelines for the diagnosis and therapy of RLS are provided.
Collapse
|
47
|
Gemignani F. Letter to the Editor. Pain 2014; 155:198-200. [DOI: 10.1016/j.pain.2013.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/27/2013] [Accepted: 09/04/2013] [Indexed: 11/27/2022]
|
48
|
Response to Letter to the Editor. Pain 2014; 155:200-201. [DOI: 10.1016/j.pain.2013.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 09/29/2013] [Indexed: 11/22/2022]
|