1
|
Yang L, Li F, Guo L, Qi S, Liu P. Upregulation of miR-22-3p Alleviates Hyperalgesia and Neuroinflammation Caused by Migraine. Synapse 2025; 79:e70017. [PMID: 40293433 DOI: 10.1002/syn.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025]
Abstract
OBJECTIVE Migraines profoundly impact patients' quality of life. This study seeks to investigate the relationship between dysregulated miR-22-3p and the neuroinflammation and central sensitization associated with migraine. METHODS Initially, the level of miR-22-3p in migraine patients were analyzed using RT-qPCR. Subsequently, a migraine model was established by administering nitroglycerin (NTG) to mice. To modulate the levels of miR-22-3p within this model, agomir was utilized. Following this intervention, mechanical and thermal pain sensitivity were evaluated by Von Frey filament and radiant heat. The levels of c-Fos, CGRP, TNF-α, IL-1β, and IL-6 in trigeminal nucleus caudalis (TNC) were detected by RT-qPCR and ELISA. Furthermore, dual luciferase reporting assays were conducted to ascertain whether miR-22-3p could target KLF6. Moreover, the influence of KLF6 on inflammatory cytokines and central sensitization were further studied. RESULTS miR-22-3p was significantly reduced in migraine patients and NTG mice. In animals, overexpression of miR-22-3p significantly alleviated hyperalgesia and neuroinflammation induced by NTG. Following the overexpression of miR-22-3p, we observed an increase in thermal withdrawal latency, paw mechanical threshold, and periorbital mechanical threshold. Conversely, levels of c-Fos, CGRP, TNF-α, IL-1β, and IL-6 exhibited a significant reduction. We found that miR-22-3p can inhibit KLF6 expression. Additionally, further findings indicated that the suppression of KLF6 resulted in decreased pain sensitivity along with diminished expression of c-Fos, CGRP, TNF-α, IL-1β, and IL-6. CONCLUSION In the context of migraine, miR-22-3p may play a pivotal role in mitigating neuroinflammation and alleviating central sensitization through the inhibition of KLF6.
Collapse
Affiliation(s)
- Lijun Yang
- Department of Neurology, Jinan Zhangqiu District People's Hospital, Jinan, China
| | - Feng Li
- Department of Neurology, Jinan Zhangqiu District People's Hospital, Jinan, China
| | - Linlin Guo
- Department of Neurology, Jinan Zhangqiu District People's Hospital, Jinan, China
| | - Shengnan Qi
- Department of Neurology, Jinan Zhangqiu District People's Hospital, Jinan, China
| | - Pengcheng Liu
- Department of Neurology, Jinan Zhangqiu District People's Hospital, Jinan, China
| |
Collapse
|
2
|
Wright A, Murphy SF, VandeVord PJ. Glial activation and nociceptive neuropeptide elevation associated with the development of chronic post-traumatic headache following repetitive blast exposure. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2025; 17:100178. [PMID: 39850976 PMCID: PMC11754688 DOI: 10.1016/j.ynpai.2024.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/25/2025]
Abstract
Chronic headaches and pain are prevalent in those who are exposure to blast events, yet there is a gap in fundamental data that identifies the pathological mechanism for the chronification of pain. Blast-related post-traumatic headaches (PTH) are understudied and chronic pain behaviors in preclinical models can be vital to help elucidate PTH mechanisms. The descending pain modulatory system controls pain perception and involves specific brain regions such as the cortex, thalamus, pons, and medulla. In this study, male rats were exposed to repeated blast events to induce traumatic brain injury (bTBI) and subsequently assessed for the development of PTH by testing for chronic pain behaviors and examining the neuropathology of the descending pain pathway. The results demonstrated that facial hypersensitivity developed as early as week two following bTBI and persisted throughout the study (12 weeks). Depressive-like behaviors were observed at 12 weeks following bTBI, and these behaviors were associated with neuropathologies such as microglia ramification and neuropeptide elevation (Calcitonin Gene-Related Peptide, CGRP; Substance P, SP). Overall, these findings support the hypothesis that bTBI causes the activation of microglia and elevation of neuropeptides, which contribute to the development of chronic PTH behaviors.
Collapse
Affiliation(s)
- Amirah Wright
- Virginia Polytechnic Institute and State University. Department of Biomedical Engineering, 325 Stranger St., Blacksburg, VA 24060, United States
| | - Susan F. Murphy
- Virginia Polytechnic Institute and State University. Department of Biomedical Engineering, 325 Stranger St., Blacksburg, VA 24060, United States
| | - Pamela J. VandeVord
- Virginia Polytechnic Institute and State University. Department of Biomedical Engineering, 325 Stranger St., Blacksburg, VA 24060, United States
- Salem Veterans Affairs Medical Center, 1970 Roanoke Blvd, Salem, VA, 24153, United States
| |
Collapse
|
3
|
Liu Q, Yan R, Wang L, Li R, Zhang D, Liao C, Mao S. Alpha-asarone alleviates cutaneous hyperalgesia by inhibiting hyperexcitability and neurogenic inflammation via TLR4/NF-κB/NLRP3 signaling pathway in a female chronic migraine rat model. Neuropharmacology 2024; 261:110158. [PMID: 39276863 DOI: 10.1016/j.neuropharm.2024.110158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Migraine is a highly prevalent neurological disorder. Alpha-asarone (ASA), a major active component found in Acorus tatarinowii, plays a crucial role in analgesia and anti-inflammation for neuropathic pain. This study aimed to assess the efficacy of ASA against migraine and elucidate its potential mechanisms using a well-established inflammatory soup (IS) migraine female rat model. Mechanical pain thresholds were assessed daily before IS infusion, followed by post-infusion administration of ASA. Subsequently, spontaneous locomotor activities, exploratory behavior, short-term spatial memory, and photophobia were blindly evaluated after the final drug administration. The rats were then sacrificed for investigation into the underlying mechanisms of action. Network pharmacology was also employed to predict potential targets and pathways of ASA against migraine. The anti-inflammatory activity of ASA and pathway-related proteins were examined in BV2 cells stimulated with lipopolysaccharides (LPS). The results demonstrated that ASA ameliorated cutaneous hyperalgesia and photophobia while improving spatial memory and increasing exploratory behavior in IS rats. ASA attenuated central sensitization-related indicators and excessive glutamate levels while enhancing GABA synthesis. ASA rescued neuronal loss in the cortex and hippocampus of IS rats. Notably, the ability of ASA to improve spatial memory performance in the Y maze test was not observed with sumatriptan, a first-line treatment drug, suggesting the potential involvement of the TLR4 pathway. Moreover, ASA suppressed microglial activation, reduced pro-inflammatory factors, and downregulated TLR4, MyD88, p-NF-κB/NF-κB, NLRP3, caspase-1, IL-1β, and IL-18. Overall, ASA demonstrated its potential to alleviate hyperalgesia and improve behavioral performance in migraine rats by inhibiting hyperexcitability and microglia-related inflammation.
Collapse
Affiliation(s)
- Qi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ruijie Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ling Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Di Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Can Liao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Fan Z, Su D, Li ZC, Sun S, Ge Z. Metformin attenuates central sensitization by regulating neuroinflammation through the TREM2-SYK signaling pathway in a mouse model of chronic migraine. J Neuroinflammation 2024; 21:318. [PMID: 39627853 PMCID: PMC11613737 DOI: 10.1186/s12974-024-03313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Chronic migraine (CM) is a serious neurological disorder. Central sensitization is one of the important pathophysiological mechanisms underlying CM, and microglia-induced neuroinflammation conduces to central sensitization. Triggering receptor expressed on myeloid cells 2 (TREM2) is presented solely in microglia residing within the central nervous system and plays a key role in neuroinflammation. Metformin has been shown to regulate inflammatory responses and exert analgesic effects, but its relationship with CM remains unclear. In the study, we investigated whether metformin modulates TREM2 to improve central sensitization of CM and clarified the potential molecular mechanisms. METHODS A CM mouse model was induced by administration of nitroglycerin (NTG). Behavioral evaluations were conducted using von Frey filaments and hot plate experiments. Western blot and immunofluorescence techniques were employed to investigate the molecular mechanisms. Metformin and the SYK inhibitor R406 were administered to mice to assess their regulatory effects on neuroinflammation and central sensitization. To explore the role of TREM2-SYK in regulating neuroinflammation with metformin, a lentivirus encoding TREM2 was injected into the trigeminal nucleus caudalis (TNC). In vitro experiments were conducted to evaluate the regulation of TREM2-SYK by metformin, involving interventions with LPS, metformin, R406, siTREM2, and TREM2 plasmids. RESULTS Metformin and R406 pretreatment can effectively improve hyperalgesia in CM mice. Both metformin and R406 significantly inhibit c-fos and CGRP expression in CM mice, effectively suppressing the activation of microglia and NLRP3 inflammasome induced by NTG. With the administration of NTG, TREM2 expression gradually increased in TNC microglia. Additionally, we observed that metformin significantly inhibits TREM2 and SYK expression in CM mice. Lv-TREM2 attenuated metformin-mediated anti-inflammatory responses. In vitro experiments, knockdown of TREM2 inhibited LPS-induced SYK pathway activation and alleviated inflammatory responses. After the sole overexpression of TREM2, the SYK signaling pathway is activated, resulting in the activation of the NLRP3 inflammasome and an increased expression of pro-inflammatory cytokines; nevertheless, this consequence can be reversed by R406. The overexpression of TREM2 attenuates the inhibition of SYK activity mediated by metformin, and this effect can be reversed by R406. CONCLUSIONS Our findings suggest that metformin attenuates central sensitization in CM by regulating the activation of microglia and NLRP3 inflammasome through the TREM2-SYK pathway.
Collapse
Affiliation(s)
- Zhenzhen Fan
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Dandan Su
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Zi Chao Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Songtang Sun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China.
| | - Zhaoming Ge
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China.
- Gansu Provincial Neurology Clinical Medical Research Center, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Expert Workstation of Academician Wang Longde, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Barnet M, Descheemaeker A, Favier L, Moisset X, Schopp J, Dallel R, Artola A, Monconduit L, Antri M. Estrous cycle regulates cephalic mechanical sensitivity and sensitization of the trigemino-cervical complex in a female rat model of chronic migraine. Pain 2024:00006396-990000000-00761. [PMID: 39480245 DOI: 10.1097/j.pain.0000000000003459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024]
Abstract
ABSTRACT The higher incidence of migraines in women compared with men has led to the inclusion of female animals in pain research models. However, the critical role of the hormonal cycle is frequently overlooked, despite its clear correlation with migraine occurrences. In this study, we show in a rat model of migraine induced by repeated dural infusions of an inflammatory soup (IS) that a second IS (IS2) injection performed in proestrus/estrus (PE, high estrogen) female rats evokes higher cephalic mechanical hypersensitivities than when performed in metestrus/diestrus (MD, low estrogen) or ovariectomized (OV) rats. This hypersensitivity induced by IS2 correlates with increased c-Fos expression in outer lamina II (IIo) neurons located in the periorbital projection area of the trigemino-cervical complex (TCC), in PE only. Four IS (IS4) repetition induced an enlargement of c-Fos expression in adjacent territories areas in PE, but not MD or OV animals. Unexpectedly, c-Fos expression in locus coeruleus neurons does not potentiate after IS2 or IS4 injections. To examine the impacts of the hormonal cycle on the physiology of lamina IIo TCC neurons, we performed whole-cell patch-clamp recordings. Second inflammatory soup depolarizes neurons in PE and MD but not in OV rats and enhances excitatory synaptic inputs in PE animals to a greater extent compared with MD and OV rats. These findings show that central TCC sensitization triggered by meningeal nociceptor activation and the resulting cephalic hypersensitivity are modulated by the estrous cycle. This highlights the crucial need to account for not just sex, but also the female estrous cycle in pain research.
Collapse
Affiliation(s)
- Maxime Barnet
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Deodato M, Granato A, Martini M, Sabot R, Buoite Stella A, Manganotti P. Instrumental assessment of pressure pain threshold over trigeminal and extra-trigeminal area in people with episodic and chronic migraine: a cross-sectional observational study. Neurol Sci 2024; 45:3923-3929. [PMID: 38396170 PMCID: PMC11254968 DOI: 10.1007/s10072-024-07372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/28/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Central and peripheral sensitization are characterized by widespread hyperalgesia that is manifested by larger pain extent area and reduction in pressure pain threshold (PPT). PPT decreases in patients with migraine not only over the trigeminal cervical complex but also throughout the body. METHODS A cross-sectional study was adopted to assess the local and widespread hyperalgesia in chronic and episodic migraine patients respect to healthy controls. The guidelines of Andersen's were used to evaluate the PPT bilaterally over 3 muscles in the trigemino-cervical complex (temporalis, sub-occipitalis, trapezius) and over 1 muscle far from this area (tensor fasciae latae). RESULTS Thirty subjects with episodic migraine (35.8 ± 2.82 years), 30 with chronic migraine (53.03 ± 19.79 years), and 30 healthy controls (29.06 ± 14.03 years) were enrolled. The interaction effect was present for the trapezius muscle with a significant difference between the right and the left side in episodic group (p = 0.003). A group effect was highlighted in all four muscles analyzed such as suboccipital (p < 0.001), temporalis (p > 0.001), trapezius (p < 0.001), and TFL (p < 0.001). PPT was usually higher in the control group than in the episodic group which in turn was characterized by higher PPT values than the chronic group. CONCLUSIONS People with chronic and episodic migraine presented lower PPT than healthy controls both in the trigeminal and in the extra-trigeminal area. People with chronic migraine presented lower PPT than episodic migraine only in the trigeminal area. Temporalis and sub-occipitalis are the most sensitive muscles in people with chronic and episodic migraine.
Collapse
Affiliation(s)
- Manuela Deodato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Via Pascoli 31, 34100, Trieste, Italy.
- Azienda Sanitaria Universitaria Giuliano Isontina, Via Pascoli 31, 34100, Trieste, Italy.
| | - Antonio Granato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Via Pascoli 31, 34100, Trieste, Italy
- Azienda Sanitaria Universitaria Giuliano Isontina, Via Pascoli 31, 34100, Trieste, Italy
| | - Miriam Martini
- Department of Medical, Surgical and Health Sciences, University of Trieste, Via Pascoli 31, 34100, Trieste, Italy
- Azienda Sanitaria Universitaria Giuliano Isontina, Via Pascoli 31, 34100, Trieste, Italy
| | - Raffaele Sabot
- Department of Medical, Surgical and Health Sciences, University of Trieste, Via Pascoli 31, 34100, Trieste, Italy
| | - Alex Buoite Stella
- Department of Medical, Surgical and Health Sciences, University of Trieste, Via Pascoli 31, 34100, Trieste, Italy
| | - Paolo Manganotti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Via Pascoli 31, 34100, Trieste, Italy
- Azienda Sanitaria Universitaria Giuliano Isontina, Via Pascoli 31, 34100, Trieste, Italy
| |
Collapse
|
7
|
Zhang X, Zhang W, Wang Y, Zhang Y, Zhang D, Qin G, Zhou J, Chen L. SIRT1-regulated ROS generation activates NMDAR2B phosphorylation to promote central sensitization and allodynia in a male chronic migraine rat model. Front Mol Neurosci 2024; 17:1387481. [PMID: 38840778 PMCID: PMC11150646 DOI: 10.3389/fnmol.2024.1387481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024] Open
Abstract
Background Central sensitization is one of the pivotal pathological mechanisms in chronic migraine (CM). Silent information regulator 1 (SIRT1) was shown to be involved in CM, but its specific mechanism is unclear. Reactive oxygen species (ROS) are increasingly regarded as important signaling molecules in several models of pain. However, studies about the role of ROS in the central sensitization of CM model are rare. We thus explored the specific process of SIRT1 involvement in the central sensitization of CM, focusing on the ROS pathway. Methods Inflammatory soup was repeatedly administered to male Sprague-Dawley rats to establish a CM model. The SIRT1 expression level in trigeminal nucleus caudalis (TNC) tissues was assessed by qRT-PCR and Western blotting analysis. The levels of ROS were detected by a Tissue Reactive Oxygen Detection Kit, DHE staining, and the fluorescence signal intensity of 8-OHdG. A ROS scavenger (tempol), a SIRT1 activator (SRT1720), a SIRT1 inhibitor (EX527), and a mitochondrial fission inhibitor (Mdivi-1) were used to investigate the specific molecular mechanisms involved. NMDAR2B, CGRP, ERK, and mitochondrial fission-related protein were evaluated by Western blotting, and the CGRP level in frozen sections of the TNC was detected via immunofluorescence staining. Results After repeated inflammatory soup infusion and successful establishment of the CM rat model, SIRT1 expression was found to be significantly reduced, accompanied by elevated ROS levels. Treatment with Tempol, SRT1720, or Mdivi-1 alleviated allodynia and reduced the increase in NMDAR2B phosphorylation and CGRP and ERK phosphorylation in the CM rat. In contrast, EX527 had the opposite effect in CM rat. SRT1720 and EX527 decreased and increased ROS levels, respectively, in CM rats, and tempol reversed the aggravating effect of EX527 in CM rats. Furthermore, the regulatory effect of SIRT1 on ROS may include the involvement of the mitochondrial fission protein DRP1. Conclusion The results indicate the importance of SIRT1 in CM may be due to its role in regulating the production of ROS, which are involved in modulating central sensitization in CM. These findings could lead to new ideas for CM treatment with the use of SIRT1 agonists and antioxidants.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanyun Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Rattanawong W, Rapoport A, Srikiatkhachorn A. Medication "underuse" headache. Cephalalgia 2024; 44:3331024241245658. [PMID: 38613233 DOI: 10.1177/03331024241245658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
BACKGROUND Many risk factors have been associated with migraine progression, including insufficient and ineffective utilization of migraine medications; however, they have been inadequately explored. This has resulted in suboptimal usage of medications without effective altering of prescribing recommendations for patients, posing a risk for migraine chronification. METHODS Our aim is to conduct a comprehensive review of the available evidence regarding the underuse of migraine medications, both acute and preventive. The term "underuse" includes, but is not limited to: (1) ineffective use of appropriate and inappropriate medication; (2) underutilization; (3) inappropriate timing of usage; and (4) patient dissatisfaction with medication. RESULTS The underuse of both acute and preventive medications has been shown to contribute to the progression of migraine. In terms of acute medication, chronification occurs as a result of insufficient drug use, including failure of the prescriber to select the appropriate type based on pain intensity and disability, patients taking medication too late (more than 60 minutes after the onset or after central sensitization has occurred as evidenced by allodynia), and discontinuation because of lack of effect or intolerable side effects. The underlying cause of inadequate effectiveness of acute medication lies in its inability to halt the propagation of peripheral activation to central sensitization in a timely manner. For oral and injectable preventive migraine medications, insufficient efficacy and intolerable side effects have led to poor adherence and discontinuation with subsequent progression of migraine. The underlying pathophysiology here is rooted in the repetitive stimulation of afferent sensory pain fibers, followed by ascending brainstem pain pathways plus dysfunction of the endogenous descending brainstem pain inhibitory pathway. Although anti-calcitonin gene-related peptide (CGRP) medications partially address pain caused by the above factors, including decreased efficacy and tolerability from conventional therapy, some patients do not respond well to this treatment. Research suggests that initiating preventive anti-CGRP treatment at an early stage (during low frequency episodic migraine attacks) is more beneficial than commencing it during high frequency episodic attacks or when chronic migraine has begun. CONCLUSIONS The term "medication underuse" is underrecognized, but it holds significant importance. Optimal usage of acute care and preventive migraine medications could potentially prevent migraine chronification and improve the treatment of migraine attacks.
Collapse
Affiliation(s)
- Wanakorn Rattanawong
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Alan Rapoport
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Anan Srikiatkhachorn
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| |
Collapse
|
9
|
Stephens E, Dhanasekara CS, Montalvan V, Zhang B, Bassett A, Hall R, Rodaniche A, Robohm-Leavitt C, Shen CL, Kahatuduwa CN. Utility of Repetitive Transcranial Magnetic Stimulation for Chronic Daily Headache Prophylaxis: A Systematic Review and Meta-Analysis. Curr Pain Headache Rep 2024; 28:149-167. [PMID: 38277066 DOI: 10.1007/s11916-024-01210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
PURPOSE OF REVIEW Management of chronic daily headaches (CDH) remains challenging due to the limited efficacy of standard prophylactic pharmacological measures. Several studies have reported that repetitive transcranial magnetic stimulation (rTMS) can effectively treat chronic headaches. The objective was to determine the utility of rTMS for immediate post-treatment and sustained CDH prophylaxis. RECENT FINDINGS All procedures were conducted per PRISMA guidelines. PubMed, Scopus, Web of Science, and ProQuest databases were searched for controlled clinical trials that have tested the efficacy of rTMS on populations with CDH. DerSimonian-Laird random-effects meta-analyses were performed using the 'meta' package in R to examine the post- vs. pre-rTMS changes in standardized headache intensity and frequency compared to sham-control conditions. Thirteen trials were included with a combined study population of N = 538 patients with CDH (rTMS, N = 284; Sham, N = 254). Patients exposed to rTMS had significantly reduced standardized CDH intensity and frequency in the immediate post-treatment period (Hedges' g = -1.16 [-1.89, -0.43], p = 0.002 and Δ = -5.07 [-10.05, -0.11], p = 0.045 respectively). However, these effects were sustained marginally in the follow-up period (Hedges' g = -0.43 [-0.76, -0.09], p = 0.012 and Δ = -3.33 [-5.52, -1.14], p = 0.003). Significant between-study heterogeneity was observed, at least partially driven by variations in rTMS protocols. Despite the observed clinically meaningful and statistically significant benefits in the immediate post-treatment period, the prophylactic effects of rTMS on CDH do not seem to sustain with discontinuation. Thus, the cost-effectiveness of the routine use of rTMS for CDH prophylaxis remains questionable. REGISTRATION Protocol preregistered in PROSPERO International Prospective Register of Systematic Reviews (CRD42021250100).
Collapse
Affiliation(s)
- Emily Stephens
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Chathurika S Dhanasekara
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Victor Montalvan
- Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
- Department of Neurology, Division of Vascular Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Bei Zhang
- Division of Physical Medicine and Rehabilitation, Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ashley Bassett
- Department of Laboratory Science and Primary Care, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Rebecca Hall
- Department of Laboratory Science and Primary Care, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Alyssa Rodaniche
- Department of Laboratory Science and Primary Care, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Christina Robohm-Leavitt
- Department of Laboratory Science and Primary Care, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Chwan-Li Shen
- Department of Pathology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Chanaka N Kahatuduwa
- Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA.
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Psychiatry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
10
|
Rossignol J, Ouimet T, Poras H, Dallel R, Luccarini P. Synergistic effect of combining dual enkephalinase inhibitor PL37 and sumatriptan in a preclinical model of migraine. Headache 2024; 64:243-252. [PMID: 38385629 DOI: 10.1111/head.14681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVE The aim of this study was to test whether a combination of sumatriptan with dual enkephalinase inhibitor PL37 would result in an additive or a synergistic effect. BACKGROUND Combination treatment is frequently used to improve the therapeutic efficacy of drugs. The co-administration of two drugs may result in efficacy at lower doses than those needed for either drug alone, thus minimizing side effects. Here, we tested the effect of the co-administration of two drugs on cutaneous mechanical hypersensitivity (MH), a symptom often affecting cephalic regions in patients with migraine: dual enkephalinase inhibitor PL37, a small molecule that protects enkephalins from rapid degradation, and sumatriptan, a serotonin 5-HT1B/1D receptor agonist. METHODS We investigated the effects of oral administrations of sumatriptan, PL37, or their combination on changes in cutaneous mechanical sensitivity induced by a single intraperitoneal administration of the nitric oxide donor, isosorbide dinitrate (ISDN) in male rats. Mechanical sensitivity was assessed using von Frey filaments applied to the face of animals to determine pain thresholds. Isobolographic analysis was performed to determine the nature of the interaction between sumatriptan and PL37. RESULTS Sumatriptan as well as PL37 each produced a dose-dependent inhibition of ISDN-induced cephalic MH. Median effective dose (ED50 ) values were 0.3 and 1.1 mg/kg for sumatriptan and PL37, respectively. An isobolographic analysis of the effect of combined doses of sumatriptan and PL37 based on their calculated ED50 values demonstrated a synergistic effect of the combination on cephalic MH, with an interaction index of 0.14 ± 0.04. CONCLUSION These results suggest that PL37 acts synergistically with sumatriptan to produce an anti-allodynic effect in a rat model of migraine. Thus, combining PL37 and sumatriptan may be a useful therapeutic strategy in the management of migraine. PLAIN LANGUAGE SUMMARY There have been many advances in migraine treatment, but we still need more options that are effective and have few side effects. Sumatriptan is one available drug for acute treatment of migraine, but it does not work for every patient and is not suitable for some people. We tested a new drug called PL37 (that blocks enkephalinases) together with sumatriptan and the combination minimized side effects and allowed lower doses of the drugs for effective migraine treatment in an animal model.
Collapse
Affiliation(s)
- Jeanne Rossignol
- Neuro-Dol, Inserm, CHU Clermont-Ferrand, Université Clermont Auvergne, Clermont-Ferrand, France
- R & D Department, Pharmaleads SA, Paris, France
| | | | - Hervé Poras
- R & D Department, Pharmaleads SA, Paris, France
| | - Radhouane Dallel
- Neuro-Dol, Inserm, CHU Clermont-Ferrand, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Philippe Luccarini
- Neuro-Dol, Inserm, CHU Clermont-Ferrand, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
11
|
Ak AK, Gemici YI, Batum M, Karakaş B, Özmen EY, Gökçay F, Çelebisoy N. Calcitonin gene-related peptide (CGRP) levels in peripheral blood in patients with idiopathic intracranial hypertension and migraine. Clin Neurol Neurosurg 2024; 237:108136. [PMID: 38308939 DOI: 10.1016/j.clineuro.2024.108136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) plays a dominant role in migraine. This prospective study was designed to investigate CGRP levels in patients with idiopathic intracranial hypertension (IIH) and compare the results of migraine patients and healthy controls (HC). As a second objective, CGRP levels obtained from IIH patients defining sustained headache after the resolution of papilledema were compared with those not defining post-IIH headache. METHODS Thirty-six patients with IIH, 36 with episodic migraine (EM), 18 with chronic migraine (CM), and 36 HC were included in the study. CGRP levels were studied from blood samples obtained from the antecubital vein by using a commercial ELISA kit. RESULTS Serum CGRP levels of the patient groups were significantly higher than the HC (p < 0.001). As compared with controls, both CM (p Adj<0.001) and IIH (p Adj=0.039) had significantly increased levels of CGRP. Levels recorded from EM patients did not differ from the HC (p Adj=0.661). In 16 IIH patients, persistent headache was reported after the normalization of intracranial pressure (ICP). Twenty patients did not report post-IIH headaches. Comparison of serum CGRP levels of these two groups revealed significantly higher CGRP levels in patients with sustained headaches obtained from blood samples both at the initial and control visit (p Adj <0.001). CONCLUSIONS CGRP levels of the patient groups were higher than the HC. High levels recorded in patients with IIH indicates the role of CGRP in IIH related headache and even higher levels in patients with sustained headache after normalization of ICP strengthens this finding.
Collapse
Affiliation(s)
- Ayşın Kısabay Ak
- Celal Bayar University, Department of Neurology, Manisa 45000, Turkey.
| | | | - Melike Batum
- Celal Bayar University, Department of Neurology, Manisa 45000, Turkey.
| | - Burak Karakaş
- Celal Bayar University, Department of Neurology, Manisa 45000, Turkey.
| | - Eser Yıldırım Özmen
- Ege University Department of Clinical Biochemistry, Bornova, Izmir 35000, Turkey.
| | - Figen Gökçay
- Ege University Department of Neurology, Bornova, Izmir 35000, Turkey.
| | - Neşe Çelebisoy
- Ege University Department of Neurology, Bornova, Izmir 35000, Turkey.
| |
Collapse
|
12
|
Sun S, Fan Z, Liu X, Wang L, Ge Z. Microglia TREM1-mediated neuroinflammation contributes to central sensitization via the NF-κB pathway in a chronic migraine model. J Headache Pain 2024; 25:3. [PMID: 38177990 PMCID: PMC10768449 DOI: 10.1186/s10194-023-01707-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Neuroinflammation, mediated by the activation of microglia, contributes to central sensitization, which is associated with the development of chronic migraine (CM). TREM1 receptors amplify the inflammatory response. However, their relationship to CM is unclear. Thus, this study endeavoured to elucidate the exact role of TREM1 in CM. METHODS Nitroglycerin (NTG) was repeatedly administered intraperitoneally to establish the CM model. Mechanical and thermal sensitivities were assessed using von Frey filaments and hot plate assays. Using Western blotting, TREM1, NF-κB pathway, NLRP3 inflammasome components, and proinflammatory cytokines were all detected. Immunofluorescence was used to examine the cellular distribution of TREM1 and NLRP3, the number of microglia, immunoreactivity, and morphological changes. We examined the effects of TREM1 antagonists (LR12) and NF-κB inhibitors (PDTC) on pain behaviour, as well as the production of c-fos and CGRP. Additionally, we investigated whether LR12 and PDTC affect the activation of microglia and the NLRP3 inflammasome. We synthesized siRNA and TREM1-overexpressing plasmids to transfect BV2 cells treated with LPS and normal BV2 cells and treated TREM1-overexpressing BV2 cells with PDTC. The NF-κB pathway, NLRP3 inflammasome components, and proinflammatory cytokines were quantified using Western blotting. RESULTS Following NTG administration, the expression of TREM1 was significantly upregulated and exclusively localized in microglia in the TNC, and was well co-localized with NLRP3. Furthermore, activation of the classical NF-κB pathway was observed. Pre-treatment with LR12 and PDTC effectively attenuated mechanical hypersensitivity, suppressed the expression of c-fos and CGRP, and inhibited NF-κB activity in CM mice. Additionally, inhibition of TREM1 and NF-κB activity mitigated NTG-induced microglia and NLRP3 activation, as well as proinflammatory cytokines production. In vitro, knockdown of TREM1 resulted in attenuated activation of the NF-κB pathway following lipopolysaccharide (LPS) treatment and reduced expression of NLRP3 inflammasome components as well as proinflammatory cytokines. After TREM1 overexpression, the NF-κB pathway was activated, NLRP3 inflammasome components and proinflammatory cytokines were upregulated, and PDTC reversed this phenomenon. CONCLUSIONS Our findings suggest that TREM1 regulates microglia and NLRP3 activation via the NF-κB pathway, thereby contributing to central sensitization and implicating its involvement in chronic migraine pathogenesis.
Collapse
Affiliation(s)
- Songtang Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Zhenzhen Fan
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Xuejiao Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Longde Wang
- Expert Workstation of Academician Wang Longde, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Zhaoming Ge
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China.
- Gansu Provincial Neurology Clinical Medical Research Center, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Expert Workstation of Academician Wang Longde, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
13
|
Moreau N, Peirs C, Dallel R, Boucher Y. [Specificities of orofacial neuropathic pain]. Med Sci (Paris) 2024; 40:64-71. [PMID: 38299905 DOI: 10.1051/medsci/2023197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Head pain and notably orofacial pain differs from spinal pain on pathophysiological, clinical, therapeutic and prognostic levels. Its high prevalence, important impact on quality of life and significant socio-economical burden justify specific study of such type of pain. Among them, neuropathic orofacial pain resulting from disease or trauma of the trigeminal nervous system is among the most difficult types of pain to diagnose and to treat. Deciphering of underlying peripheral and central mechanisms has allowed numerous conceptual, clinical and therapeutic advances, notably the role of neural and non neural cell types, such as glia, immunocytes, vascular endothelial cells or the role of trigeminal sensory complex neural circuitry reconfiguration in the development of post-traumatic trigeminal neuropathic pain. Cellular interactions within the trigeminal ganglion, allowing a better understanding of several painful dental, ocular or cephalalgic comorbidities, are also described.
Collapse
Affiliation(s)
- Nathan Moreau
- Laboratoire de neurobiologie orofaciale, EA 7543, Université Paris Cité, Paris, France - Hôpital Bretonneau, Service de médecine bucco-dentaire, AP-HP, Paris, France
| | - Cédric Peirs
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France
| | - Radhouane Dallel
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France
| | - Yves Boucher
- Laboratoire de neurobiologie orofaciale, EA 7543, Université Paris Cité, Paris, France - Hôpital Pitié-Salpêtrière, Service de médecine bucco-dentaire, AP-HP, Paris, France
| |
Collapse
|
14
|
Signoret-Genest J, Barnet M, Gabrielli F, Aissouni Y, Artola A, Dallel R, Antri M, Tovote P, Monconduit L. Compromised trigemino-coerulean coupling in migraine sensitization can be prevented by blocking beta-receptors in the locus coeruleus. J Headache Pain 2023; 24:165. [PMID: 38062355 PMCID: PMC10704784 DOI: 10.1186/s10194-023-01691-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/11/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Migraine is a disabling neurological disorder, characterized by recurrent headaches. During migraine attacks, individuals often experience sensory symptoms such as cutaneous allodynia which indicates the presence of central sensitization. This sensitization is prevented by oral administration of propranolol, a common first-line medication for migraine prophylaxis, that also normalized the activation of the locus coeruleus (LC), considered as the main origin of descending noradrenergic pain controls. We hypothesized that the basal modulation of trigeminal sensory processing by the locus coeruleus is shifted towards more facilitation in migraineurs and that prophylactic action of propranolol may be attributed to a direct action in LC through beta-adrenergic receptors. METHODS We used simultaneous in vivo extracellular recordings from the trigeminocervical complex (TCC) and LC of male Sprague-Dawley rats to characterize the relationship between these two areas following repeated meningeal inflammatory soup infusions. Von Frey Hairs and air-puff were used to test periorbital mechanical allodynia. RNAscope and patch-clamp recordings allowed us to examine the action mechanism of propranolol. RESULTS We found a strong synchronization between TCC and LC spontaneous activities, with a precession of the LC, suggesting the LC drives TCC excitability. Following repeated dural-evoked trigeminal activations, we observed a disruption in coupling of activity within LC and TCC. This suggested an involvement of the two regions' interactions in the development of sensitization. Furthermore, we showed the co-expression of alpha-2A and beta-2 adrenergic receptors within LC neurons. Finally propranolol microinjections into the LC prevented trigeminal sensitization by desynchronizing and decreasing LC neuronal activity. CONCLUSIONS Altogether these results suggest that trigemino-coerulean coupling plays a pivotal role in migraine progression, and that propranolol's prophylactic effects involve, to some extent, the modulation of LC activity through beta-2 adrenergic receptors. This insight reveals new mechanistic aspects of LC control over sensory processing.
Collapse
Affiliation(s)
- Jérémy Signoret-Genest
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078, Würzburg, Germany
- Department of Psychiatry, Center of Mental Health, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Maxime Barnet
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France
| | - François Gabrielli
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France
| | - Youssef Aissouni
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France
| | - Alain Artola
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France
| | - Radhouane Dallel
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France
| | - Myriam Antri
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France
| | - Philip Tovote
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Lénaïc Monconduit
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France.
| |
Collapse
|
15
|
Kim SJ, Yeo JH, Yoon SY, Roh DH. GV16 acupoint stimulation with bee venom reduces peripheral hypersensitivity via activation of α2 adrenoceptors in a nitroglycerin-induced migraine mouse model. Integr Med Res 2023; 12:100999. [PMID: 37953754 PMCID: PMC10638029 DOI: 10.1016/j.imr.2023.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/23/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Background Peripheral hypersensitivities develop in the face and hindpaws of mice with nitroglycerin (NTG)-induced migraine. We evaluated whether diluted bee venom (DBV) injections at acupoints prevented these peripheral hypersensitivities and c-Fos expression in the trigeminal nucleus caudalis (TNC). Methods NTG (10 mg/kg, intraperitoneal, i.p.) was administered every other day for nine days. DBV (0.1 mg/kg) was subcutaneously injected into the ST36 (Zusanli), LI4 (Hegu), or GV16 (Fengfu) acupoints 75 min after each NTG injection. Mice were pretreated with naloxone (5 mg/kg, i.p.) or yohimbine (5 mg/kg, i.p.) 30 min before the DBV injections. Results NTG injection caused facial cold allodynia, hindpaw mechanical allodynia, and increased c-Fos-immunoreactive (ir) cells in the TNC. Repetitive DBV injections at GV16, but not the ST36, or LI4 acupoints, suppressed NTG-induced hindpaw mechanical allodynia and facial cold allodynia. The number of c-Fos-ir cells also decreased in response to DBV injections at the GV16 acupoint. Remarkably, pretreatment with yohimbine reversed the anti-allodynic effects of DBV injections and attenuated the decreased c-Fos expression in response to GV16 DBV treatment. Naloxone did not block the effects of GV16 DBV stimulation. Conclusion These findings demonstrate that repetitive DBV treatment at the GV16 acupoint relieves NTG-induced facial and hindpaw hypersensitivities and decreases in c-Fos expression in the TNC via activation of the alpha-2 adrenoceptors, but not the opioid receptors.
Collapse
Affiliation(s)
- Sol-Ji Kim
- Department of Oral Physiology, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Hee Yeo
- Department of Oral Physiology, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seo-Yeon Yoon
- Department of Companion Animals, Yuhan University, Bucheon-si, Gyeonggi-do 14780, Republic of Korea
| | - Dae-Hyun Roh
- Department of Oral Physiology, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
16
|
Blumenfeld AM, Lipton RB, Silberstein S, Tepper SJ, Charleston L, Landy S, Kuruvilla DE, Manack Adams A. Multimodal Migraine Management and the Pursuit of Migraine Freedom: A Narrative Review. Neurol Ther 2023; 12:1533-1551. [PMID: 37542624 PMCID: PMC10444724 DOI: 10.1007/s40120-023-00529-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/21/2023] [Indexed: 08/07/2023] Open
Abstract
Migraine is a neurologic disease with a complex pathophysiology that can be controlled with current treatment options but not cured. Therefore, treatment expectations are highly variable. The concept of migraine freedom was recently introduced and can mean different things, with some, for example, expecting complete freedom from headache and associated symptoms and others accepting the occasional migraine attack if it does not impact functioning. Therefore, migraine management should be optimized so that patients can have the best opportunity to achieve their optimal treatment goals. With migraine freedom as a goal and, given the complex pathophysiology of migraine and the high incidence of comorbidities among individuals with migraine, treatment with a single modality may be insufficient, as it may not achieve migraine freedom in those with more frequent or disabling attacks. In this clinical perspective article, we have identified four key, partially overlapping principles of multimodal migraine treatment: (1) manage common comorbidities; (2) control modifiable risk factors for progression by addressing medication and caffeine overuse; (3) diagnose and treat secondary causes of headache, if present; and (4) individualize acute and preventive treatments to minimize pain, functional disability, and allodynia. There are many barriers to pursuing migraine freedom, and strategies to overcome them should be optimized. Migraine freedom should be an aspirational goal both at the individual attack level and for the disease overall. We believe that a comprehensive and multimodal approach that addresses all barriers people with migraine face could move patients closer to migraine freedom.
Collapse
Affiliation(s)
| | | | | | - Stewart J Tepper
- New England Institute for Neurology and Headache, Stamford, CT, USA
| | - Larry Charleston
- Department of Neurology and Ophthalmology, Michigan State University College of Human Medicine, East Lansing, MI, USA
| | | | | | | |
Collapse
|
17
|
Yang L, Zhou Y, Zhang L, Wang Y, Zhang Y, Xiao Z. Aryl hydrocarbon receptors improve migraine-like pain behaviors in rats through the regulation of regulatory T cell/T-helper 17 cell-related homeostasis. Headache 2023; 63:1045-1060. [PMID: 37539825 DOI: 10.1111/head.14599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/30/2023] [Accepted: 05/26/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVE To investigate the effect of the aryl hydrocarbon receptor (AHR)/regulatory T cell (Treg)/T-helper 17 (Th17) cell pathway on the pathogenesis of migraine. BACKGROUND Migraine is a disabling neurovascular disease that imposes an enormous burden on both individuals and society. The pathophysiological mechanisms of migraine remain controversial. Recent studies have suggested that immune dysfunction may be involved in the pathogenesis of migraine. The AHR, a receptor expressed on most immune cells, has been implicated in the occurrence of many autoimmune diseases; however, whether it is involved in the pathogenesis of migraine is unclear. METHODS A chronic migraine rat model was established through repeated intraperitoneal injection of nitroglycerin (NTG). The mechanical and thermal pain thresholds were assessed using von Frey filaments and radiant heat. Next, the protein expression levels of AHR in the trigeminal nucleus caudalis (TNC) region of chronic migraine (CM)-like rats were quantified and the changes in Treg/Th17-related transcription factors and inflammatory factors in the TNC were explored. To determine the role of AHR in CM, we examined the effects of the AHR agonist 2-(1'-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), and AHR antagonist CH-223191 on pain behavior, c-Fos, calcitonin gene-related peptide (CGRP), AHR, and Treg/Th17-related factor expression in CM-like rats. RESULTS Repeated administration of NTG significantly enhanced nociceptive hypersensitivity and increased expression of c-Fos and CGRP in rats, while AHR was significantly decreased in the TNC. In addition, the expression of the transcription factor forkhead box protein P3 and the signal transducer and activator of transcription 5 decreased significantly. In contrast, the expression of the transcription factor retinoic acid receptor-related orphan receptor γ t and signal transducer and activator of transcription 3 were significantly increased. Moreover, the mRNA level of transforming growth factor beta-1 was decreased, while that of interleukin (IL)-10 and IL-22 was increased in the TNC. The AHR agonist ITE alleviated migraine-like pain behaviors in rats, activated the AHR signaling pathway, and improved the imbalance of Treg/Th17-related transcription factors and inflammatory factors. Conversely, the AHR antagonist CH-223191 did not alleviate migraine-like pain behaviors in rats; and even exacerbated them. CONCLUSIONS The AHR participates in the development of CM by regulating Treg/Th17-related homeostasis. Therefore, treatments targeting the AHR/Treg/Th17 signaling pathway could be new effective interventions for CM treatment.
Collapse
Affiliation(s)
- Liu Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yanjie Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Lily Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yue Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
18
|
He W, Wang Y, Zhang Y, Zhang Y, Zhou J. The status of knowledge on migraines: The role of microglia. J Neuroimmunol 2023; 381:578118. [PMID: 37295033 DOI: 10.1016/j.jneuroim.2023.578118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/01/2023] [Accepted: 05/28/2023] [Indexed: 06/11/2023]
Abstract
Migraines are a considerable social problem and economic burden worldwide. Current acute treatments are based on inhibiting meningeal neurogenic inflammation which has poor results in some patients, whereas the site of action of prophylactic medicines are unknown; therefore, exploring new treatment mechanisms and methods is increasingly needed. Recent evidence suggests that microglia and microglia-mediated neuroinflammation are important in migraine pathogenesis. In the cortical spreading depression (CSD) migraine model, microglia were activated after multiple CSD stimulations, suggesting that microglial activation may be associated with recurrent attacks of migraine with aura. In the nitroglycerin-induced chronic migraine model, the microglial response to extracellular stimuli leads to the activation of surface purine receptors P2X4、P2X7、P2Y12, which mediate signal transduction through intracellular signalling cascades, such as the BDNF/TrkB, NLRP3/IL-1β and RhoA/ROCK signalling pathways, and release inflammatory mediators and cytokines that enhance pain by increasing the excitability of nearby neurons. Inhibition of the expression or function of these microglial receptors and pathways inhibits the abnormal excitability of TNC (trigeminal nucleus caudalis) neurons and intracranial as well as extracranial hyperalgesia in migraine animal models. These findings suggest that microglia may be central in migraine recurrent attacks and a potential target for the treatment of chronic headaches.
Collapse
Affiliation(s)
- Wei He
- Department of Neurology, The First Branch of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanyun Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yixin Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yinan Zhang
- Department of Neurology, The First Branch of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
19
|
Jordon M, Grubb M, Tudini F. Duration of Electro-Dry Needling Does Not Change the Pain Response After Repeated Nociceptive Thermal Stimuli in Asymptomatic Individuals: A Randomized Intervention Study. Arch Rehabil Res Clin Transl 2023; 5:100267. [PMID: 37312978 PMCID: PMC10258375 DOI: 10.1016/j.arrct.2023.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Objective To assess the effects of 5 different durations of electro-dry needling (EDN) on asymptomatic individuals' pain response after repeated noxious thermal stimuli. Design Randomized, non-controlled intervention trial. Setting University laboratory. Participants Asymptomatic participants (N=50) were recruited for the study and randomized into 5 groups. There were 33 women with an average age of 26.8 (±4.8) years. To participate in the study, individuals had to be between the ages of 18 and 40, free of any musculoskeletal injury which prevented participation of daily activities, and not pregnant or trying to become pregnant. Interventions Participants were randomly assigned to receive 5 different durations of EDN: 10, 15, 20, 25, and 30 minutes. To perform the EDN, 2 monofilament needles were inserted lateral to the lumbar spinous processes of L3 and L5 on the right. Needles were left in situ with electrical stimulation at a frequency of 2 Hz and an amplitude which resulted in a 3 to 6 out of 10 intensity pain rating by the participant. Main Outcome Measures The change in the magnitude of pain in response to repetitive heat-pulses before and after the EDN procedure. Results There was a significant reduction in the magnitude of pain in response across the groups after EDN (F(1,42)=94.12, P<.001, ƞp2=.691). However, the interaction between time and group was not significant (F(4,42)=1.019, P=.409, ƞp2=.088), indicating that no duration of EDN was superior to another in reducing temporal summation. Conclusions This study suggests that in asymptomatic individuals, performing EDN beyond 10 minutes does not provide any additional benefits in the reduction of the magnitude of pain in response to thermal nociceptive stimuli. Additional study in symptomatic populations is required for generalizability in clinical settings.
Collapse
Affiliation(s)
- Max Jordon
- Department of Physical Therapy, University of Tennessee at Chattanooga, Chattanooga, TN
| | - Matthew Grubb
- Department of Physical Therapy, University of Tennessee at Chattanooga, Chattanooga, TN
| | - Frank Tudini
- Department of Physical Therapy, University of Tennessee at Chattanooga, Chattanooga, TN
| |
Collapse
|
20
|
Zhou M, Pang F, Liao D, He X, Yang Y, Tang C. Electroacupuncture at Fengchi(GB20) and Yanglingquan(GB34) Ameliorates Paralgesia through Microglia-Mediated Neuroinflammation in a Rat Model of Migraine. Brain Sci 2023; 13:brainsci13040541. [PMID: 37190506 DOI: 10.3390/brainsci13040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Multiple studies have suggested that paralgesia (hyperalgesia and cutaneous allodynia) in migraine reflects the activation and sensitisation of the trigeminovascular system (TGVS). In particular, it reflects the second-order and higher nerve centre sensitisation, which is caused and maintained by neuroinflammation. Microglia activation leads to the release of proinflammatory cytokines involved in inflammatory responses. Accumulating evidence indicates that electroacupuncture (EA) is effective in ameliorating paralgesia, but the underlying mechanisms of EA in migraine attacks caused by microglia and microglia-mediated inflammatory responses are still unclear. The purpose of this study was to explore whether EA could ameliorate the dysregulation of pain sensation by suppressing microglial activation and the resulting neuroinflammatory response, and to evaluate whether this response was regulated by Toll-like receptor 4 (TLR4)/nuclear factor-kappa B(NF-κB) in the trigeminal nucleus caudalis (TNC) in a rat model of migraine. Methods: Repeated Inflammatory Soup (IS) was infused into the dura for seven sessions to establish a recurrent migraine-like rat model, and EA treatment was administered at Fengchi (GB20) and Yanglingquan (GB34) after daily IS infusion. Facial mechanical withdrawal thresholds were measured to evaluate the change in pain perception, and plasma samples and the TNC tissues of rats were collected to examine the changes in calcitonin gene-related peptide (CGRP), the Ibal-1-labelled microglial activation, and the resulting inflammatory response, including interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), and their regulatory molecules TLR4/NF-κB, via enzyme-linked immunosorbent assay (ELISA), real-time polymerase chain reaction (RT-PCR), immunohistochemistry (IHC) and Western blot analysis. Results: Repeated IS injections into the dura induced facial mechanical paralgesia, which is the manifestation of migraine attacks, and increased the expression of CGRP, Ibal-1, microglial mediated inflammatory cytokines (IL-1β, TNF-α, IL-6), and regulatory molecules TLR4/NF-κB. EA at GB20/34 significantly attenuated repetitive IS-induced pain hypersensitivity. This effect was consistent with decreased levels of CGRP and inflammatory cytokines in the plasma and the TNC via the inhibition of microglia activation, and this response may be regulated by TLR4/NF-κB. Conclusions: EA ameliorated paralgesia in repetitive IS-induced migraine-like rats, which was mainly mediated by a reduction in microglial activation and microglial-mediated inflammatory responses that could be regulated by TLR4/NF-κB.
Collapse
|
21
|
Gawde P, Shah H, Patel H, Bharathi KS, Patel N, Sethi Y, Kaka N. Revisiting Migraine: The Evolving Pathophysiology and the Expanding Management Armamentarium. Cureus 2023; 15:e34553. [PMID: 36879707 PMCID: PMC9985459 DOI: 10.7759/cureus.34553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Migraine affects about one billion people worldwide yearly and is one of the most common neurologic illnesses, with a high prevalence and morbidity, particularly among young adults and females. Migraine is associated with many comorbidities, including stress, sleep difficulties, and suicidal ideation. Migraine, despite its widespread occurrence, is underdiagnosed and undertreated. Because of the complicated and primarily unknown mechanisms of migraine formation, several social and biological risk factors, such as hormone imbalances, genetic and epigenetic impacts, and cardiovascular, neurological, and autoimmune illnesses, have been proposed. Through the mid-20th century diversion of the now-defunct vascular theory, the pathophysiology of migraine has developed from a historical study of the "humours" to a distinct entity as a neurological disorder. The range of therapeutic targets has broadened significantly, increasing the number of specialized clinical trials. Understanding the biology of migraine through careful research has resulted in the identification of major therapeutic classes: (i) triptans, serotonin 5-HT1B/1D receptor agonists, (ii) gepants, calcitonin gene-related peptide (CGRP) receptor antagonists, (iii) ditans, 5-HT1F receptor agonists, (iv) CGRP monoclonal antibodies, and (v) glurants, mGlu5 modulators, with further targets being explored. This review provides a comprehensive overview of the most recent literature on epidemiology and risk factors and exposes knowledge gaps.
Collapse
Affiliation(s)
- Prathamesh Gawde
- Medicine and Surgery, Lokmanya Tilak Municipal Medical College, Mumbai, IND
| | - Harsh Shah
- Medicine and Surgery, Pandit Deendayal Upadhyay Medical College, Rajkot, IND
| | - Harsh Patel
- Internal Medicine, GMERS (Gujarat Medical Education and Research Society) Medical College, Sola, Ahmedabad, IND
| | | | - Neil Patel
- Medicine and Surgery, GMERS (Gujarat Medical Education and Research Society) Medical College, Himmatnagar, IND
| | - Yashendra Sethi
- Medicine and Surgery, Government Doon Medical College, Dehradun, IND
| | - Nirja Kaka
- Medicine and Surgery, GMERS (Gujarat Medical Education and Research Society) Medical College, Himmatnagar, IND
| |
Collapse
|
22
|
Spekker E, Bohár Z, Fejes-Szabó A, Szűcs M, Vécsei L, Párdutz Á. Estradiol Treatment Enhances Behavioral and Molecular Changes Induced by Repetitive Trigeminal Activation in a Rat Model of Migraine. Biomedicines 2022; 10:biomedicines10123175. [PMID: 36551931 PMCID: PMC9776064 DOI: 10.3390/biomedicines10123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
A migraine is a neurological condition that can cause multiple symptoms. It is up to three times more common in women than men, thus, estrogen may play an important role in the appearance attacks. Its exact pathomechanism is still unknown; however, the activation and sensitization of the trigeminal system play an essential role. We aimed to use an animal model, which would better illustrate the process of repeated episodic migraine attacks to reveal possible new mechanisms of trigeminal pain chronification. Twenty male (M) and forty ovariectomized (OVX) female adult rats were used for our experiment. Male rats were divided into two groups (M + SIF, M + IS), while female rats were divided into four groups (OVX + SIF, OVX + IS, OVX + E2 + SIF, OVX + E2 + IS); half of the female rats received capsules filled with cholesterol (OVX + SIF, OVX + IS), while the other half received a 1:1 mixture of cholesterol and 17β-estradiol (OVX + E2 + SIF, OVX + E2 + IS). The animals received synthetic interstitial fluid (SIF) (M + SIF, OVX + SIF, OVX + E2 + SIF) or inflammatory soup (IS) (M + IS, OVX + IS, OVX + E2 + IS) treatment on the dural surface through a cannula for three consecutive days each week (12 times in total). Behavior tests and immunostainings were performed. After IS application, a significant decrease was observed in the pain threshold in the M + IS (0.001 < p < 0.5), OVX + IS (0.01 < p < 0.05), and OVX + E2 + IS (0.001 < p < 0.05) groups compared to the control groups (M + SIF; OVX + SIF, OVX + E2 + SIF). The locomotor activity of the rats was lower in the IS treated groups (M + IS, 0.01 < p < 0.05; OVX + IS, p < 0.05; OVX + E2 + IS, 0.001 < p < 0.05), and these animals spent more time in the dark room (M + IS, p < 0.05; OVX + IS, 0.01 < p < 0.05; OVX + E2 + IS, 0.001 < p < 0.01). We found a significant difference between M + IS and OVX + E2 + IS groups (p < 0.05) in the behavior tests. Furthermore, IS increased the area covered by calcitonin gene-related peptide (CGRP) immunoreactive (IR) fibers (M + IS, p < 0.01; OVX + IS, p < 0.01; OVX + E2 + IS, p < 0.001) and the number of neuronal nitric oxide synthase (nNOS) IR cells (M + IS, 0.001< p < 0.05; OVX + IS, 0.01 < p < 0.05; OVX + E2 + IS, 0.001 < p < 0.05) in the caudal trigeminal nucleus (TNC). There was no difference between M + IS and OVX + IS groups; however, the area was covered by CGRP IR fibers (0.01 < p < 0.05) and the number of nNOS IR cells was significantly higher in the OVX + E2 + IS (p < 0.05) group than the other two IS- (M + IS, OVX + IS) treated animals. Overall, repeated administration of IS triggers activation and sensitization processes and develops nociceptive behavior changes. CGRP and nNOS levels increased significantly in the TNC after IS treatments, and moreover, pain thresholds and locomotor activity decreased with the development of photophobia. In our model, stable high estradiol levels proved to be pronociceptive. Thus, repeated trigeminal activation causes marked behavioral changes, which is more prominent in rats treated with estradiol, also reflected by the expression of the sensitization markers of the trigeminal system.
Collapse
Affiliation(s)
- Eleonóra Spekker
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Zsuzsanna Bohár
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Annamária Fejes-Szabó
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Mónika Szűcs
- Department of Medical Physics and Informatics, University of Szeged, Korányi Fasor 9, H-6720 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Department of Neurology, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-351; Fax: +36-62-545-597
| | - Árpád Párdutz
- Department of Neurology, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
| |
Collapse
|
23
|
Cabañero D, Villalba-Riquelme E, Fernández-Ballester G, Fernández-Carvajal A, Ferrer-Montiel A. ThermoTRP channels in pain sexual dimorphism: new insights for drug intervention. Pharmacol Ther 2022; 240:108297. [PMID: 36202261 DOI: 10.1016/j.pharmthera.2022.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
Abstract
Chronic pain is a major burden for the society and remains more prevalent and severe in females. The presence of chronic pain is linked to persistent alterations in the peripheral and the central nervous system. One of the main types of peripheral pain transducers are the transient receptor potential channels (TRP), also known as thermoTRP channels, which intervene in the perception of hot and cold external stimuli. These channels, and especially TRPV1, TRPA1 and TRPM8, have been subjected to profound investigation because of their role as thermosensors and also because of their implication in acute and chronic pain. Surprisingly, their sensitivity to endogenous signaling has been far less studied. Cumulative evidence suggests that the function of these channels may be differently modulated in males and females, in part through sexual hormones, and this could constitute a significant contributor to the sex differences in chronic pain. Here, we review the exciting advances in thermoTRP pharmacology for males and females in two paradigmatic types of chronic pain with a strong peripheral component: chronic migraine and chemotherapy-induced peripheral neuropathy (CIPN). The possibilities of peripheral druggability offered by these channels and the differential exploitation for men and women represent a development opportunity that will lead to a significant increment of the armamentarium of analgesic medicines for personalized chronic pain treatment.
Collapse
Affiliation(s)
- David Cabañero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Eva Villalba-Riquelme
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Gregorio Fernández-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Asia Fernández-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain.
| |
Collapse
|
24
|
Molecular Mechanism of the Saposhnikovia divaricata–Angelica dahurica Herb Pair in Migraine Therapy Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1994575. [DOI: 10.1155/2022/1994575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/23/2022] [Accepted: 11/12/2022] [Indexed: 11/27/2022]
Abstract
Objective. This work studied the molecular mechanism of the Saposhnikovia divaricata–Angelica dahurica herb pair (SAHP) in migraine treatment. Methods. The active ingredients of drugs were screened, and potential targets were predicted by the Traditional Chinese Medicine Systems Pharmacology (TCMSP), TCMID, ETCM, and other databases. Migraine-related targets were obtained by harnessing the GeneCards, DrugBank, OMIM, TTD, and other databases. The protein-protein interaction (PPI) network was constructed with STRING software by performing a Venn analysis with bioinformatics. Gene Ontology (GO) functional enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed with the Metascape platform. The component-target-pathway (C-T-P) network was constructed with Cytoscape 3.7.2 software, and molecular docking was assessed with AutoDockVina software. Results. A total of 183 relevant targets and 39 active ingredients in migraine therapy were obtained from SAHP. The active ingredients and targets were screened according to topological parameters: wogonin, anomalin, imperatorin, prangenin, 2-linoleoylglycerol, and methylenetanshinquinone were identified as key active ingredients. PTGS2, PIK3CA, PIK3CB, PIK3CD, F2, and AR were identified as key targets. The molecular docking results demonstrated high binding activity between the key active ingredients and key targets. A total of 20 important signaling pathways, including neural signaling pathways, calcium signaling pathways, pathways in cancer, cAMP signaling pathways, and PI3K-Akt signaling pathways, were obtained through enrichment analysis. Conclusion. Migraine with SAHP is mainly treated through anti-inflammatory and analgesic effects. The herb pair can be used for migraine using “multicomponent, multitarget, and multipathway” approaches.
Collapse
|
25
|
Different Involvement of ASIC and TRPA1 in Facial and Hindpaw Allodynia in Nitroglycerin-Induced Peripheral Hypersensitivities in Mice. Life (Basel) 2022; 12:life12091294. [PMID: 36143331 PMCID: PMC9502551 DOI: 10.3390/life12091294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
The pathophysiological mechanism underlying migraine-associated peripheral hypersensitivity remains unclear. Acid-sensing ion channels (ASICs) and transient receptor potential ankyrin 1 (TRPA1) are known to be causative pathogenic factors of mechanical and cold allodynia, respectively. Here, we sought to investigate their involvement in cold and mechanical allodynia of the face and hindpaws, respectively, in a mouse model of repetitive nitroglycerin (NTG)-induced migraine. NTG (10 mg/kg) was administered to the mice every other day for 9 days, followed 90 min later by HC-030031 (a TRPA1 blocker) or amiloride (a non-selective ASIC blocker). Mechanical or cold sensitivity of the hindpaw and facial regions was quantified using von-Frey filaments or acetone solution, respectively. Immunohistochemistry revealed that c-Fos expression was significantly increased in the trigeminal nucleus caudalis region but not in the spinal cord. Amiloride treatment only reduced NTG-induced hindpaw mechanical allodynia, whereas HC-030031 treatment only improved facial cold allodynia. Interestingly, the number of c-Fos positive cells decreased to a similar level in each drug treatment group. These findings demonstrate that facial cold allodynia and hindpaw mechanical allodynia are differentially mediated by activation of TRPA1 and ASIC, respectively, in mice with repetitive NTG-induced hypersensitivity.
Collapse
|
26
|
Pei P, Cui S, Zhang S, Hu S, Wang L, Yang W. Effect of Electroacupuncture at Fengchi on Facial Allodynia, Microglial Activation, and Microglia-Neuron Interaction in a Rat Model of Migraine. Brain Sci 2022; 12:brainsci12081100. [PMID: 36009163 PMCID: PMC9405615 DOI: 10.3390/brainsci12081100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of the work was to investigate whether electroacupuncture (EA) could ameliorate migraine central sensitization by modulating microglial activation and the subsequent release of inflammatory cytokines in the trigeminal nucleus caudalis (TNC) in a rat model. Establishment of a rat model of recurrent migraine was achieved through repeated dural electrical stimulation (DES). After nine sessions of acupuncture treatment at Fengchi (GB20), facial mechanical thresholds were measured by electronic von Frey measurements. Microglial activation and cytokine receptors of TNC were evaluated by immunofluorescence staining. The expression of microglial biological marker Ibal-1, proinflammatory cytokines, and cytokine receptors in the TNC were evaluated by Western blot and/or real-time polymerase chain reaction. In addition, the effects of inhibition of microglial activation on facial thresholds and neuronal activation (i.e., expression of c-Fos in the TNC) induced by DES were observed. After consecutive EA-GB20 treatments, the facial withdrawal threshold was significantly higher than in the model group at different time points (p < 0.05). The hyperreactivity of microglia induced by DES was significantly inhibited, and the expressions of Ibal-1, interleukin-1β, tumor necrosis factor-α, and their receptors in the TNC were also significantly decreased (p < 0.05). Inhibition of microglia by minocycline demonstrated an acupuncture-like role, which was manifested by ameliorated mechanical hyperalgesia and decreased neuronal expression of c-Fos, Iba-1, and inflammatory factors. EA at GB20 could ameliorate migraine facial allodynia by inhibiting microglial activation and the subsequent release of inflammatory cytokines and their receptors in the TNC.
Collapse
Affiliation(s)
- Pei Pei
- Neurology Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Shengwei Cui
- Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei 230012, China
| | - Shuaishuai Zhang
- Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei 230012, China
| | - Sheng Hu
- Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei 230012, China
| | - Linpeng Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Correspondence: (L.W.); (W.Y.)
| | - Wenming Yang
- Neurology Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
- Correspondence: (L.W.); (W.Y.)
| |
Collapse
|
27
|
Zhang W, Lei M, Wen Q, Zhang D, Qin G, Zhou J, Chen L. Dopamine receptor D2 regulates GLUA1-containing AMPA receptor trafficking and central sensitization through the PI3K signaling pathway in a male rat model of chronic migraine. J Headache Pain 2022; 23:98. [PMID: 35948867 PMCID: PMC9364568 DOI: 10.1186/s10194-022-01469-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background The pathogenesis of chronic migraine remains unresolved. Recent studies have affirmed the contribution of GLUA1-containing AMPA receptors to chronic migraine. The dopamine D2 receptor, a member of G protein-coupled receptor superfamily, has been proven to have an analgesic effect on pathological headaches. The present work investigated the exact role of the dopamine D2 receptor in chronic migraine and its effect on GLUA1-containing AMPA receptor trafficking. Methods A chronic migraine model was established by repeated inflammatory soup stimulation. Mechanical, periorbital, and thermal pain thresholds were assessed by the application of von Frey filaments and radiant heat. The mRNA and protein expression levels of the dopamine D2 receptor were analyzed by qRT‒PCR and western blotting. Colocalization of the dopamine D2 receptor and the GLUA1-containing AMPAR was observed by immunofluorescence. A dopamine D2 receptor agonist (quinpirole) and antagonist (sulpiride), a PI3K inhibitor (LY294002), a PI3K pathway agonist (740YP), and a GLUA1-containing AMPAR antagonist (NASPM) were administered to confirm the effects of the dopamine D2 receptor, the PI3K pathway and GULA1 on central sensitization and the GLUA1-containing AMPAR trafficking. Transmission electron microscopy and Golgi-Cox staining were applied to assess the impact of the dopamine D2 receptor and PI3K pathway on synaptic morphology. Fluo-4-AM was used to clarify the role of the dopamine D2 receptor and PI3K signaling on neuronal calcium influx. The Src family kinase (SFK) inhibitor PP2 was used to explore the effect of Src kinase on GLUA1-containing AMPAR trafficking and the PI3K signaling pathway. Results Inflammatory soup stimulation significantly reduced pain thresholds in rats, accompanied by an increase in PI3K-P110β subunit expression, loss of dopamine receptor D2 expression, and enhanced GLUA1-containing AMPA receptor trafficking in the trigeminal nucleus caudalis (TNC). The dopamine D2 receptor colocalized with the GLUA1-containing AMPA receptor in the TNC; quinpirole, LY294002, and NASPM alleviated pain hypersensitivity and reduced GLUA1-containing AMPA receptor trafficking in chronic migraine rats. Sulpiride aggravated pain hypersensitivity and enhanced GLUA1 trafficking in CM rats. Importantly, the anti-injury and central sensitization-mitigating effects of quinpirole were reversed by 740YP. Both quinpirole and LY294002 inhibited calcium influx to neurons and modulated the synaptic morphology in the TNC. Additional results suggested that DRD2 may regulate PI3K signaling through Src family kinases. Conclusion Modulation of GLUA1-containing AMPA receptor trafficking and central sensitization by the dopamine D2 receptor via the PI3K signaling pathway may contribute to the pathogenesis of chronic migraine in rats, and the dopamine D2 receptor could be a valuable candidate for chronic migraine treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01469-x.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yu Zhong District, Chongqing, 400016, China
| | - Ming Lei
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yu Zhong District, Chongqing, 400016, China
| | - Qianwen Wen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yu Zhong District, Chongqing, 400016, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yu Zhong District, Chongqing, 400016, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yu Zhong District, Chongqing, 400016, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yu Zhong District, Chongqing, 400016, China.
| |
Collapse
|
28
|
Reducha PV, Edvinsson L, Haanes KA. Could Experimental Inflammation Provide Better Understanding of Migraines? Cells 2022; 11:cells11152444. [PMID: 35954288 PMCID: PMC9368653 DOI: 10.3390/cells11152444] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Migraines constitute a common neurological and headache disorder affecting around 15% of the world’s population. In addition to other mechanisms, neurogenic neuroinflammation has been proposed to play a part in migraine chronification, which includes peripheral and central sensitization. There is therefore considerable evidence suggesting that inflammation in the intracranial meninges could be a key element in addition to calcitonin gene-related peptide (CGRP), leading to sensitization of trigeminal meningeal nociceptors in migraines. There are several studies that have utilized this approach, with a strong focus on using inflammatory animal models. Data from these studies show that the inflammatory process involves sensitization of trigeminovascular afferent nerve terminals. Further, by applying a wide range of different pharmacological interventions, insight has been gained on the pathways involved. Importantly, we discuss how animal models should be used with care and that it is important to evaluate outcomes in the light of migraine pathology.
Collapse
Affiliation(s)
- Philip Victor Reducha
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Rigshospitalet Glostrup, 2600 Glostrup, Denmark
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, 1017 Copenhagen, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Rigshospitalet Glostrup, 2600 Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, 221 00 Lund, Sweden
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Rigshospitalet Glostrup, 2600 Glostrup, Denmark
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, 1017 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
29
|
Dhondt E, Van Oosterwijck S, Van Branteghem T, Rhudy JL, Danneels L, Van Oosterwijck J. Modulation of the nociceptive flexion reflex by conservative therapy in patients and healthy people: a systematic review and meta-analysis. Pain 2022; 163:1446-1463. [PMID: 34813517 DOI: 10.1097/j.pain.0000000000002499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/15/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT The nociceptive flexion reflex (NFR) is a spinally mediated withdrawal response and is used as an electrophysiological marker of descending modulation of spinal nociception. Chemical and pharmacological modulation of nociceptive neurotransmission at the spinal level has been evidenced by direct effects of neurotransmitters and pharmacological agents on the NFR. Largely unexplored are, however, the effects of nonpharmacological noninvasive conservative interventions on the NFR. Therefore, a systematic review and meta-analysis was performed and reported following the PRISMA guidelines to determine whether and to what extent spinal nociception measured through the assessment of the NFR is modulated by conservative therapy in patients and healthy individuals. Five electronic databases were searched to identify relevant articles. Retrieved articles were screened on eligibility using the predefined inclusion criteria. Risk of bias was investigated according to Version 2 of the Cochrane risk-of-bias assessment tool for randomized trials. The evidence synthesis for this review was conducted in accordance with the Grading of Recommendations Assessment, Development and Evaluation. Thirty-six articles were included. Meta-analyses provided low-quality evidence showing that conservative therapy decreases NFR area and NFR magnitude and moderate-quality evidence for increases in NFR latency. This suggests that conservative interventions can exert immediate central effects by activating descending inhibitory pathways to reduce spinal nociception. Such interventions may help prevent and treat chronic pain characterized by enhanced spinal nociception. Furthermore, given the responsiveness of the NFR to conservative interventions, the NFR assessment seems to be an appropriate tool in empirical evaluations of treatment strategies.PROSPERO registration number: CRD42020164495.
Collapse
Affiliation(s)
- Evy Dhondt
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Pain in Motion International Research Group
| | - Sophie Van Oosterwijck
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Pain in Motion International Research Group
- Research Foundation-Flanders (FWO), Brussels, Belgium
| | - Thomas Van Branteghem
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jamie L Rhudy
- Department of Psychology, University of Tulsa, Tulsa, OK, United States
| | - Lieven Danneels
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jessica Van Oosterwijck
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Pain in Motion International Research Group
- Research Foundation-Flanders (FWO), Brussels, Belgium
| |
Collapse
|
30
|
Sevivas H, Fresco P. Treatment of resistant chronic migraine with anti-CGRP monoclonal antibodies: a systematic review. Eur J Med Res 2022; 27:86. [PMID: 35659086 PMCID: PMC9167529 DOI: 10.1186/s40001-022-00716-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/15/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Resistant chronic migraine is a highly disabling condition which is very difficult to treat. The majority of the treatments for migraine prophylaxis are nonspecific and present weak safety profiles, leading to low adherence and discontinuation. Currently, monoclonal antibodies (mAb) targeting the trigeminal sensory neuropeptide, calcitonin gene-related peptide (CGRP), are available for migraine prophylaxis being the first drugs developed specifically to target migraine pathogenesis. The main objective of the current work is to carry out a systematic review of randomised controlled trials that specifically analyse the effectivity and safety of anti-CGRP mAb, comparatively to placebo, in patients with resistant chronic migraine and possibly fill the literature gap or be a source of information to health professionals. Additionally the current knowledge on migraine, particularly resistant chronic migraine, was revisited and summarised. METHODS Literature search was carried out on MEDLINE, Scopus, Science Direct and ClinicalTrials.gov database, from inception to December 2021. Articles were selected according to prespecified criteria of inclusion and exclusion. Efficacy and safety outcomes included were: change from baseline in monthly migraine days (MMD); ≥50% reduction of MMD values from baseline; change from baseline in monthly acute migraine-specific medication days (MAMD); Migraine-specific Quality of Life Questionnaire (MSQ); and registered adverse events. Additionally, we used the Cochrane risk of bias tool (RoB 2) to assess the risk of bias of the included studies. RESULTS Four studies were included in this systematic review, involving 2811 resistant chronic migraine patients, 667 in a study using erenumab, 838 in a study using fremanezumab and 1306 in two studies using galcanezumab. When compared to placebo, all investigated anti-CGRP mAb and respective doses demonstrate effectiveness in decreasing MMD, reducing acute medication use and improving the MSQ scores, including, sometimes, reversion of chronic to episodic migraine (efficacy outcomes). Regarding the safety outcomes, the number and type of adverse events did not differ between anti-CGRP mAb-treated and placebo groups. CONCLUSIONS Anti-CGRP or anti-CGRP receptor monoclonal antibodies are a promising preventive migraine therapy which can be particularly useful for resistant chronic migraine patients.
Collapse
Affiliation(s)
- Hugo Sevivas
- Faculdade de Medicina da Universidade Do Porto (FMUP), Al. Prof. Hernâni Monteiro, 4200 - 319, Porto, Portugal.
| | - Paula Fresco
- Laboratório de Farmacologia, Departamento de Ciências Do Medicamento, Faculdade de Farmácia da Universidade Do Porto (FFUP), Porto, Portugal
- I3S, Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
| |
Collapse
|
31
|
Descheemaeker A, Poras H, Wurm M, Luccarini P, Ouimet T, Dallel R. Dual enkephalinase inhibitor PL37 as a potential novel treatment of migraine: evidence from a rat model. Brain 2022; 145:2664-2670. [PMID: 35411377 DOI: 10.1093/brain/awac139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 11/14/2022] Open
Abstract
The dual enkephalinase inhibitor PL37, a small molecule that protects enkephalins from their rapid degradation, has demonstrated analgesic properties in animal pain models and in early human clinical trials. This study tested the antimigraine potential of PL37 on cutaneous mechanical hypersensitivity affecting cephalic regions in migraineurs. Using behavioral testing and c-Fos immunoreactivity in male rats, we investigated the effects of single (oral or intravenous) and repeated oral administration of PL37 on changes in cutaneous mechanical sensitivity and sensitization of the trigeminocervical complex induced by repeated administration of the nitric oxide donor, isosorbide dinitrate. In naive rats, single or repeated administration of PL37 or vehicle had no effect on cephalic mechanical sensitivity. However, single oral PL37 treatment effectively inhibited isosorbide dinitrate-induced acute cephalic mechanical hypersensitivity. Single intravenous but not oral PL37 administration inhibited chronic cephalic mechanical hypersensitivity. Daily oral administration of PL37 prevented cephalic mechanical hypersensitivity and decreased touch-induced c-Fos expression in trigeminocervical complex following repeated isosorbide dinitrate administration. These data reveal the therapeutic potential of the dual enkephalinase inhibitor PL37 as an acute and prophylactic treatment for migraine. Protecting enkephalins from their degrading enzymes therefore appears as an innovative approach to treat migraine.
Collapse
Affiliation(s)
- Amélie Descheemaeker
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | | | | | - Philippe Luccarini
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | | | - Radhouane Dallel
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| |
Collapse
|
32
|
Deodato M, Granato A, Ceschin M, Galmonte A, Manganotti P. Algometer Assessment of Pressure Pain Threshold After Onabotulinumtoxin-A and Physical Therapy Treatments in Patients With Chronic Migraine: An Observational Study. FRONTIERS IN PAIN RESEARCH 2022; 3:770397. [PMID: 35295800 PMCID: PMC8915742 DOI: 10.3389/fpain.2022.770397] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
The purpose of this study was to evaluate pain hypersensitivity in chronic migraine patients 3 months after undergoing onabotulinumtoxin-A therapy, physical therapy (PT), or the combination of the two. Pressure pain threshold (PPT) was assessed in accordance with Andersen's guidelines, focusing on five muscles in the trigeminocervical area (namely, trapezius, levator scapulae, temporalis, sub-occipitalis, and scalenus medius) and one muscle outside of the area, (i.e., tensor fasciae latae). Moreover, three headache parameters, namely, attack frequency, duration, and pain intensity, were recorded in an ad hoc diary kept by the patients. A total of 30 patients were included in three treatment groups: 1. onabotulinumtoxin-A therapy, 2. PT, and 3. a combination of onabotulinumtoxin-A and PT. The results show that, at the final assessment, the PPT was significantly reduced in the combined treatment group compared to the two single-therapy groups. As regards headache parameters, frequency and duration of the attacks were decreased significantly in all three treatment groups, whereas in pain intensity, the reduction was statistically significant in the combined treatment group and the onabotulinumtoxin-A therapy. Results suggest that a better pain modulation in patients with chronic migraine can be achieved with a combined treatment of onabotulinumtoxin-A and physical therapy. Indeed, the combination of both pharmacological and non-pharmacological treatments results in the reduction of both headache-related parameters and widespread pressure hyperalgesia.
Collapse
Affiliation(s)
- Manuela Deodato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
- *Correspondence: Manuela Deodato
| | - Antonio Granato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Marta Ceschin
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Alessandra Galmonte
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Paolo Manganotti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| |
Collapse
|
33
|
Gottschalk C, Basu A, Blumenfeld A, Torphy B, Marmura MJ, Pavlovic JM, Dumas PK, Lalvani N, Buse DC. The importance of an early onset of migraine preventive disease control: A roundtable discussion. CEPHALALGIA REPORTS 2022. [DOI: 10.1177/25158163221134593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: Newly approved migraine preventive therapies have allowed for rapid control of migraine activity, offering potential to minimize the burden of migraine. This report summarizes a roundtable discussion convened to analyze evidence for early onset of prevention, ascertain its clinical relevance, and provide guidance for healthcare professionals in crafting goals and treatment expectations for patients with migraine initiating preventive therapy. Methods: A virtual roundtable meeting of migraine clinicians, researchers, and patient advocates convened in October 2020. Participants reviewed and discussed data summarizing patient and healthcare professional perceptions of migraine prevention and evidence from the peer-reviewed and gray literature to develop corresponding recommendations. Summary: Evidence from clinical studies of anti-calcitonin gene-related peptide monoclonal antibodies (erenumab, fremanezumab, galcanezumab, and eptinezumab) and the chemodenervation agent onabotulinumtoxinA indicate that patients may experience reduction of migraine activity within 7 days of drug administration and early attainment of disease control is associated with improvements in clinically important outcomes. The roundtable of experts proposes that early onset be defined as demonstration of preventive benefits within 1 week of treatment initiation. We recommend focusing discussion with patients around “disease control” and potential benefits of early onset of prevention, so patients can set realistic preventive therapy goals and expectations.
Collapse
Affiliation(s)
| | - Anirban Basu
- The CHOICE Institute, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Andrew Blumenfeld
- Headache Center of Southern California, The Neurology Center, Carlsbad, CA, USA
| | - Bradley Torphy
- Chicago Headache Center and Research Institute, Chicago, IL, USA
| | - Michael J Marmura
- Jefferson Headache Center, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jelena M Pavlovic
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Nim Lalvani
- American Migraine Foundation, Mount Royal, NJ, USA
| | - Dawn C Buse
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
34
|
Varangot-Reille C, Suso-Martí L, Romero-Palau M, Suárez-Pastor P, Cuenca-Martínez F. Effects of Different Therapeutic Exercise Modalities on Migraine or Tension-Type Headache: A Systematic Review and Meta-Analysis with a Replicability Analysis. THE JOURNAL OF PAIN 2021; 23:1099-1122. [PMID: 34929374 DOI: 10.1016/j.jpain.2021.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/09/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
The primary aim of this study was to review the effect of exercise in comparison with a non-active treatment on pain intensity, frequency of headache episodes, headache duration, quality of life, medication use, and psychological symptoms, in patients with migraine or tension-type headache (TTH). A systematic search was conducted in various electronic databases to identify all relevant studies: Medline (PubMed), PEDro, EBSCO and Google Scholar. Clinical trials assessing the effects of exercise interventions in patients with primary headaches were selected. Methodological quality was evaluated using the Cochrane Risk of Bias Tool and PEDro scale and qualitative analysis was based on classifying the results into levels of evidence according to the GRADE. 19 studies (2776 participants; 85% female) were included. The meta-analysis showed statistically significant differences in pain intensity for aerobic training in patients with migraine (SMD = -0.65; 95% CI = -1.07 to -0.22, very low certainty evidence) and for strength training in patients with TTH (SMD = -0.84; 95% CI = -1.68 to- -0.01, very low certainty evidence). Statistically significant differences were also found in the medication use (SMD = -0.51; 95% CI = -0.85 to -0.17, low certainty evidence). Low transparency, replicability and high risk of bias were found. Aerobic training has a small to moderate clinical effect on pain intensity and medication use on migraine patients, with very low to low certainty of evidence. Strength training showed a moderate clinical effect with very low quality of evidence in patients with TTH. Exercise could be considered as clinically relevant for the management of patients with primary headaches, but the presence of low certainty of evidence and low transparency and replicability limited its clinical application. PERSPECTIVE: This article presents current evidence about exercise interventions in patients with primary headaches, including migraine and tension-type headache. Existing findings are reviewed, and relevant data are provided on the effectiveness of each exercise modality, as well as its certainty of evidence and clinical applicability.
Collapse
Affiliation(s)
- Clovis Varangot-Reille
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Luis Suso-Martí
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain.
| | | | - Pablo Suárez-Pastor
- Deparment of Physiotherapy, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ferran Cuenca-Martínez
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| |
Collapse
|
35
|
Duan LL, Qiu XY, Wei SQ, Su HY, Bai FR, Traub RJ, Zhou Q, Cao DY. Spinal CCK contributes to somatic hyperalgesia induced by orofacial inflammation combined with stress in adult female rats. Eur J Pharmacol 2021; 913:174619. [PMID: 34748768 DOI: 10.1016/j.ejphar.2021.174619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022]
Abstract
In some chronic primary pain conditions such as temporomandibular disorder (TMD) and fibromyalgia syndrome (FMS), mild or chronic stress enhances pain. TMD and FMS often occur together, but the underlying mechanisms are unclear. The purpose of this study was to investigate the role of cholecystokinin (CCK) in the spinal cord in somatic hyperalgesia induced by orofacial inflammation combined with stress. Somatic hyperalgesia was detected by the thermal withdrawal latency and mechanical withdrawal threshold. The expression of CCK1 receptors, CCK2 receptors, ERK1/2 and p-ERK1/2 in the spinal cord was examined by Western blot. After the stimulation of orofacial inflammation combined with 3 day forced swim, the expression of CCK2 receptors and p-ERK1/2 protein in the L4-L5 spinal dorsal horn increased significantly, while the expression of CCK1 receptors and ERK1/2 protein remained unchanged. Intrathecal injection of the CCK2 receptor antagonist YM-022 or mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor PD98059 blocked somatic hyperalgesia induced by orofacial inflammation combined with stress. Intrathecal administration of the MEK inhibitor blocked somatic sensitization caused by the CCK receptor agonist CCK8. The CCK2 receptor antagonist YM-022 significantly reduced the expression of p-ERK1/2. These data indicate that upregulation of CCK2 receptors through the MAPK pathway contributes to somatic hyperalgesia in this comorbid pain model. Thus, CCK2 receptors and MAPK pathway may be potential targets for the treatment of TMD comorbid with FMS.
Collapse
Affiliation(s)
- Lu-Lu Duan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China; Department of Implant Dentistry, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Xin-Yi Qiu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Si-Qi Wei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Han-Yu Su
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Fu-Rong Bai
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China
| | - Richard J Traub
- Department of Neural and Pain Sciences, UM Center to Advance Chronic Pain Research, University of Maryland School of Dentistry, Baltimore MD, 21201, USA
| | - Qin Zhou
- Department of Implant Dentistry, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China.
| | - Dong-Yuan Cao
- Department of Implant Dentistry, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
36
|
Sugimoto M, Takahashi Y, Sugimura YK, Tokunaga R, Yajima M, Kato F. Active role of the central amygdala in widespread mechanical sensitization in rats with facial inflammatory pain. Pain 2021; 162:2273-2286. [PMID: 33900711 PMCID: PMC8280967 DOI: 10.1097/j.pain.0000000000002224] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/01/2021] [Accepted: 01/26/2021] [Indexed: 01/19/2023]
Abstract
ABSTRACT Widespread or ectopic sensitization is a hallmark symptom of chronic pain, characterized by aberrantly enhanced pain sensitivity in multiple body regions remote from the site of original injury or inflammation. The central mechanism underlying widespread sensitization remains unidentified. The central nucleus of the amygdala (also called the central amygdala, CeA) is well situated for this role because it receives nociceptive information from diverse body sites and modulates pain sensitivity in various body regions. In this study, we examined the role of the CeA in a novel model of ectopic sensitization of rats. Injection of formalin into the left upper lip resulted in latent bilateral sensitization in the hind paw lasting >13 days in male Wistar rats. Chemogenetic inhibition of gamma-aminobutyric acid-ergic neurons or blockade of calcitonin gene-related peptide receptors in the right CeA, but not in the left, significantly attenuated this sensitization. Furthermore, chemogenetic excitation of gamma-aminobutyric acid-ergic neurons in the right CeA induced de novo bilateral hind paw sensitization in the rats without inflammation. These results indicate that the CeA neuronal activity determines hind paw tactile sensitivity in rats with remote inflammatory pain. They also suggest that the hind paw sensitization used in a large number of preclinical studies might not be simply a sign of the pain at the site of injury but rather a representation of the augmented CeA activity resulting from inflammation/pain in any part of the body or from activities of other brain regions, which has an active role of promoting defensive/protective behaviors to avoid further bodily damage.
Collapse
Affiliation(s)
- Mariko Sugimoto
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
- Department of Anesthesiology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yukari Takahashi
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Yae K. Sugimura
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryota Tokunaga
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Manami Yajima
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
- Department of Dental Anesthesiology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Fusao Kato
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
37
|
Moisset X, Giraud P, Dallel R. Migraine in multiple sclerosis and other chronic inflammatory diseases. Rev Neurol (Paris) 2021; 177:816-820. [PMID: 34325914 DOI: 10.1016/j.neurol.2021.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
Migraine is a very prevalent disease worldwide and is a major cause of disability. As known for a long time, migraine is associated with neurogenic inflammation. Epidemiological studies have shown that migraine is comorbid with several chronic inflammatory diseases, including multiple sclerosis (MS), chronic inflammatory rheumatic diseases (CIRDs) and inflammatory bowel diseases (IBDs). This brief narrative review highlights some recent data supporting a link between migraine and these three chronic inflammatory diseases. Studies found that migraine prevalence is approximately two-fold higher in these diseases compared to the general population. The causal link between migraine and these chronic inflammatory diseases has not been identified yet. Here, we suggest that systemic mediators (such as cytokines) and gut microbiome make migraine worse or add significant risks. Systemic inflammation biomarkers and gut microbiome modification are certainly avenues worth exploring.
Collapse
Affiliation(s)
- X Moisset
- Inserm, Neuro-Dol, Université Clermont-Auvergne, CHU de Clermont-Ferrand, 63000 Clermont-Ferrand, France.
| | - P Giraud
- Annecy-Genevois Hospital, 74370 Annecy, France
| | - R Dallel
- Inserm, Neuro-Dol, Université Clermont-Auvergne, CHU de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| |
Collapse
|
38
|
Benbow T, Cairns BE. Dysregulation of the peripheral glutamatergic system: A key player in migraine pathogenesis? Cephalalgia 2021; 41:1249-1261. [PMID: 34148407 PMCID: PMC8504403 DOI: 10.1177/03331024211017882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background Although the role of glutamate in migraine pathogenesis remains uncertain, there has been significant interest in the development of drug candidates that target glutamate receptors. Activation of trigeminovascular afferent fibers is now recognized as a crucial step to the onset of a migraine episode. New evidence suggests a dysfunction in peripheral glutamate regulation may play a role in this process. Objective To provide a narrative review of the role of peripheral glutamate dysfunction in migraine. Method A review of recent literature from neurobiological, pharmacological and genomic studies was conducted to support peripheral glutamate dysfunction as a potential element in migraine pathogenesis. Results Studies in rats suggest that elevated blood glutamate mechanically sensitizes trigeminal afferent fibers and stimulates the release of calcitonin-gene related peptide and other neuropeptides to promote and maintain neurogenic inflammation. These effects may be driven by upregulation of glutamate receptors, and modifications to reuptake and metabolic pathways of glutamate. Furthermore, genome wide association studies have found polymorphisms in glutamate receptor and transporter genes that are associated with migraine. Conclusion The role of peripheral glutamate signalling in the onset and maintenance of migraine is not completely elucidated and future studies are still needed to confirm its role in migraine pathogenesis.
Collapse
Affiliation(s)
- Tarique Benbow
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Brian E Cairns
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
39
|
Liu L, Xu XB, Qu ZY, Zhao LP, Zhang CS, Li ZJ, Lyu TL, Wang XF, Jing XH, Li B. Determining 5HT 7R's Involvement in Modifying the Antihyperalgesic Effects of Electroacupuncture on Rats With Recurrent Migraine. Front Neurosci 2021; 15:668616. [PMID: 34163324 PMCID: PMC8215279 DOI: 10.3389/fnins.2021.668616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/20/2021] [Indexed: 01/14/2023] Open
Abstract
Electroacupuncture (EA) is widely used in clinical practice to relieve migraine pain. 5-HT7 receptor (5-HT7R) has been reported to play an excitatory role in neuronal systems and regulate hyperalgesic pain and neurogenic inflammation. 5-HT7R could influence phosphorylation of protein kinase A (PKA)- or extracellular signal-regulated kinase1 / 2 (ERK1 / 2)-mediated signaling pathways, which mediate sensitization of nociceptive neurons via interacting with cyclic adenosine monophosphate (cAMP). In this study, we evaluated the role of 5-HT7R in the antihyperalgesic effects of EA and the underlying mechanism through regulation of PKA and ERK1 / 2 in trigeminal ganglion (TG) and trigeminal nucleus caudalis (TNC). Hyperalgesia was induced in rats with dural injection of inflammatory soup (IS) to cause meningeal neurogenic inflammatory pain. Electroacupuncture was applied for 15 min every other day before IS injection. Von Frey filaments, tail-flick, hot-plate, and cold-plated tests were used to evaluate the mechanical and thermal hyperalgesia. Neuronal hyperexcitability in TNC was studied by an electrophysiological technique. The 5-HT7R antagonist (SB269970) or 5-HT7R agonist (AS19) was administered intrathecally before each IS application at 2-day intervals during the 7-day injection protocol. The changes in 5-HT7R and 5-HT7R-associated signaling pathway were examined by real-time polymerase chain reaction (RT-PCR), Western blot, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) analyses. When compared with IS group, mechanical and thermal pain thresholds of the IS + EA group were significantly increased. Furthermore, EA prevented the enhancement of both spontaneous activity and evoked responses of second-order trigeminovascular neurons in TNC. Remarkable decreases in 5-HT7R mRNA expression and protein levels were detected in the IS + EA group. More importantly, 5-HT7R agonist AS19 impaired the antihyperalgesic effects of EA on p-PKA and p-ERK1 / 2. Injecting 5-HT7R antagonist SB-269970 into the intrathecal space of IS rats mimicked the effects of EA antihyperalgesia and inhibited p-PKA and p-ERK1 / 2. Our findings indicate that 5-HT7R mediates the antihyperalgesic effects of EA on IS-induced migraine pain by regulating PKA and ERK1 / 2 in TG and TNC.
Collapse
Affiliation(s)
- Lu Liu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Xiao-Bai Xu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Zheng-Yang Qu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luo-Peng Zhao
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China.,Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Claire-Shuiqing Zhang
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Zhi-Juan Li
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Tian-Li Lyu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Xue-Fei Wang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Xiang-Hong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Li
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| |
Collapse
|
40
|
Gabrielli F, Megemont M, Dallel R, Luccarini P, Monconduit L. Model-based signal processing enables bidirectional inferring between local field potential and spikes evoked by noxious stimulation. Brain Res Bull 2021; 174:212-219. [PMID: 34089782 DOI: 10.1016/j.brainresbull.2021.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/27/2021] [Accepted: 05/28/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Recording spontaneous and evoked activities by means of unitary extracellular recordings and local field potential (LFP) are key understanding the mechanisms of neural coding. The LFP is one of the most popular and easy methods to measure the activity of a population of neurons. LFP is also a composite signal known to be difficult to interpret and model. There is a growing need to highlight the relationship between spiking activity and LFP. Here, we hypothesized that LFP could be inferred from spikes under evoked noxious conditions. METHOD Recording was performed from the medullary dorsal horn (MDH) in deeply anesthetized rats. We detail a process to highlight the C-fiber (nociceptive) evoked activity, by removing the A-fiber evoked activity using a model-based approach. Then, we applied the convolution kernel theory and optimization algorithms to infer the C-fiber LFP from the single cell spikes. Finally, we used a probability density function and an optimization algorithm to infer the spikes distribution from the LFP. RESULTS We successfully extracted C-fiber LFP in all data recordings. We observed that C-fibers spikes preceded the C-fiber LFP and were rather correlated to the LFP derivative. Finally, we inferred LFP from spikes with excellent correlation coefficient (r = 0.9) and reverse generated the spikes distribution from LFP with good correlation coefficients (r = 0.7) on spikes number. CONCLUSION We introduced the kernel convolution theory to successfully infer the LFP from spikes, and we demonstrated that we could generate the spikes distribution from the LFP.
Collapse
Affiliation(s)
- F Gabrielli
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, F-63000, Clermont-Ferrand, France
| | - M Megemont
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, F-63000, Clermont-Ferrand, France
| | - R Dallel
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, F-63000, Clermont-Ferrand, France
| | - P Luccarini
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, F-63000, Clermont-Ferrand, France
| | - L Monconduit
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, F-63000, Clermont-Ferrand, France
| |
Collapse
|
41
|
Soldatelli MD, Siepmann T, Illigens BMW, Souza dos Santos V, Lucena da S Torres I, Fregni F, Caumo W. Mapping of predictors of the disengagement of the descending inhibitory pain modulation system in fibromyalgia: an exploratory study. Br J Pain 2021; 15:221-233. [PMID: 34055343 PMCID: PMC8138619 DOI: 10.1177/2049463720920760] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The main symptoms of fibromyalgia comprise diffuse pain, disability, depressive symptoms, catastrophizing, sleep disruption and fatigue, associated with dysfunction of the descending pain-modulating system (DPMS). OBJECTIVES We aimed to identify patterns of main symptoms of fibromyalgia and neuroplasticity biomarkers (i.e. brain-derived neurotrophic factor (BDNF) and S100B protein) in non-responders to the conditioned pain modulation task (CPM-task) induced by immersion of hand in cold water (0-1°C). Furthermore, we evaluated if these patterns predict responsiveness to CPM-task. METHODS This cross-sectional study included 117 women with fibromyalgia ((n = 60) non-responders and (n = 57) responders), with age ranging from 30 to 65 years old. We analysed changes in numerical pain scale (NPS-10) during the CPM-task using a standardized protocol. RESULTS A hierarchical multivariate logistic regression analysis was used to construct a propensity score-adjusted index to identify non-responders compared to responders to CPM-task. The following variables were retained in the models: analgesic use four or more times per week, heat pain threshold (HPT), poor sleep quality, pain catastrophizing, serum levels of BDNF, number of psychiatric diagnoses and the impact of symptoms of fibromyalgia on quality of life. Receiver operator characteristics (ROC) analysis showed non-responders can be discriminated from responders by a composite index of more frequent symptoms of fibromyalgia and neuroplasticity markers (area under the curve (AUC) = 0.83, sensitivity = 100% and specificity = 98%). CONCLUSION Patterns of fibromyalgia symptoms and neuroplasticity markers may be helpful to predict responsiveness to the CPM-task which might help personalize treatment and thereby contribute to the care of patients with fibromyalgia.
Collapse
Affiliation(s)
- Matheus Dorigatti Soldatelli
- Graduate Program in Medical Science,
School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre,
Brazil
- Center for Clinical Research and
Management Education, Division of Health Care Sciences, Dresden International
University, Dresden, Germany
- Laboratory of Pain and Neuromodulation,
School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre,
Brazil
| | - Timo Siepmann
- Center for Clinical Research and
Management Education, Division of Health Care Sciences, Dresden International
University, Dresden, Germany
- Department of Neurology, University
Hospital Carl Gustav Carus Technische Universitat, Dresden, Germany
| | - Ben Min-Woo Illigens
- Center for Clinical Research and
Management Education, Division of Health Care Sciences, Dresden International
University, Dresden, Germany
- Department of Neurology, Beth Israel
Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vinicius Souza dos Santos
- Laboratory of Pain and Neuromodulation,
School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre,
Brazil
| | - Iraci Lucena da S Torres
- Graduate Program in Medical Science,
School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre,
Brazil
- Pain and Palliative Care Service at
Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Felipe Fregni
- Department of Neurology, Beth Israel
Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Wolnei Caumo
- Graduate Program in Medical Science,
School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre,
Brazil
- Laboratory of Pain and Neuromodulation,
School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre,
Brazil
- Pain and Palliative Care Service at
Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Surgery Department, School of Medicine,
Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
42
|
Effect of Occipital Nerve Stimulation (ONS) on the Orbicularis Oculi Reflex Triggered by a Standardized Air Flow in Patients with Chronic Migraine-A Prospective, Randomized, Interventional Study. Pain Ther 2021; 10:567-576. [PMID: 33630252 PMCID: PMC8119542 DOI: 10.1007/s40122-021-00242-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/04/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction Occipital nerve stimulation (ONS) is a specific form of peripheral neuromodulation used in the treatment of chronic pain disorders. A particular field of application is in the therapy of treatment-refractory headaches, especially of chronic migraine. The precise mode of action is unknown. It is presumed that central and peripheral sensitization are reduced in patients with chronic headache. The aim of this study was to examine the effect of ONS on pain-modulatory mechanisms in the trigeminocervical area in patients with chronic migraine. Methods In a balanced repeated measurements design in eight patients with chronic migraine with and without active ONS, we analyzed which effects ONS had on the orbicularis oculi reflex dynamically elicited by corneal air flow. Results The orbicularis oculi reflex in active ONS (7.38 ± 20.14 eyelid closures/minute) compared to inactive ONS (18.73 ± 14.30 eyelid closures/minute) is significantly reduced (p = 0.021). Conclusions The results show that under active ONS compared to inactive ONS in patients with chronic migraine, the orbicularis oculi reflex, dynamically triggered by a standardized air flow, is significantly reduced. This suggests that ONS is able to directly counteract the trigeminally mediated central sensitization in chronic migraine and protectively reduce the effects of aversive peripheral stimulation.
Collapse
|
43
|
Jiang L, Zhang Y, Jing F, Long T, Qin G, Zhang D, Chen L, Zhou J. P2X7R-mediated autophagic impairment contributes to central sensitization in a chronic migraine model with recurrent nitroglycerin stimulation in mice. J Neuroinflammation 2021; 18:5. [PMID: 33402188 PMCID: PMC7786980 DOI: 10.1186/s12974-020-02056-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/09/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Central sensitization is an important pathophysiological mechanism of chronic migraine (CM). According to our previous studies, microglial activation and subsequent inflammation in the trigeminal nucleus caudalis (TNC) contribute to the central sensitization. The P2X7 receptor (P2X7R) is a purinergic receptor expressed in microglia and participates in central sensitization in chronic pain, but its role in CM is unclear. Numerous studies have shown that P2X7R regulates the level of autophagy and that autophagy affects the microglial activation and inflammation. Recently, autophagy has been shown to be involved in neuropathic pain, but there is no information about autophagy in CM. Therefore, the current study investigated the role of P2X7R in CM and its underlying mechanism, focusing on autophagy regulation. METHODS The CM model was established by repeated intraperitoneal injection of nitroglycerin (NTG) in mice. A Von Frey filament and radiant heat were used to assess the mechanical and thermal hypersensitivity. Western blotting and immunofluorescence assays were performed to detect the expression of P2X7R, autophagy-related proteins, and the cellular localization of P2X7R. To determine the role of P2X7R and autophagy in CM, we detected the effects of the autophagy inducer, rapamycin (RAPA) and P2X7R antagonist, Brilliant Blue G (BBG), on pain behavior and the expression of calcitonin gene-related peptide (CGRP) and c-fos. In addition, the effect of RAPA and BBG on microglial activation and subsequent inflammation were investigated. RESULTS The expression of P2X7R was increased and was mainly colocalized with microglia in the TNC following recurrent NTG administration. The autophagic flux was blocked in CM, which was characterized by upregulated LC3-II, and accumulated autophagy substrate protein, p62. RAPA significantly improved the basal rather than acute hyperalgesia. BBG alleviated both basal and acute hyperalgesia. BBG activated the level of autophagic flux. RAPA and BBG inhibited the activation of microglia, limited the inflammatory response, and reduced the expression of CGRP and c-fos. CONCLUSIONS Our results demonstrate the dysfunction of the autophagic process in CM. Activated autophagy may have a preventive effect on migraine chronification. P2X7R contributes to central sensitization through mediating autophagy regulation and might become a potential target for CM.
Collapse
Affiliation(s)
- Li Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China
| | - Yixin Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China
| | - Feng Jing
- Department of Neurology, Chongqing General Hospital, Chongqing, China
| | - Ting Long
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
44
|
Niu Y, Zeng X, Zhao L, Zhou Y, Qin G, Zhang D, Fu Q, Zhou J, Chen L. Metabotropic glutamate receptor 5 regulates synaptic plasticity in a chronic migraine rat model through the PKC/NR2B signal. J Headache Pain 2020; 21:139. [PMID: 33276724 PMCID: PMC7716451 DOI: 10.1186/s10194-020-01206-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Background The mechanism of chronic migraine (CM) is complex, central sensitization is considered as one of the pathological mechanism. Synaptic plasticity is the basis of central sensitization. Metabotropic glutamate receptor 5 (mGluR5) plays a vital role in the synaptic plasticity of the central nervous system. However, whether mGluR5 can promote the central sensitization by regulating synaptic plasticity in CM is unknown. Methods Male Wistar rats were used to establish a CM rat model, and the expression of mGluR5 mRNA and protein were detected by qRT-PCR and western blot. The allodynia was assessed by mechanical and thermal thresholds, and central sensitization was assessed by expression of the phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) at Serine 133(pCREB-S133) and c-Fos. The synaptic-associated protein postsynaptic density protein 95 (PSD), synaptophysin (Syp), and synaptophysin-1(Syt-1), synaptic ultrastructure, and dendritic spines were detected to explore synaptic plasticity. The expression of PKC, total NR2B(tNR2B), and phosphorylation of NR2B at Tyr1472(pNR2B-Y1472) were detected by western blot. Results We found that the expression of mGluR5 was upregulated in CM rats. Downregulated the mGluR5 with MPEP alleviated the allodynia and reduced the expression of CGRP, pCREB-S133, c-Fos, PSD, Syp and Syt-1 and synaptic transmission. Moreover, the administration of MPEP inhibited the upregulation of PKC and pNR2B-Y1472. Conclusions These results indicate that mGluR5 contributes to central sensitization by regulating synaptic plasticity in CM through the PKC/NR2B signal, which suggests that mGluR5 may be a potential therapeutic candidate for CM.
Collapse
Affiliation(s)
- Yingying Niu
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoxu Zeng
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lilin Zhao
- Department of Stomatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Zhou
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingqing Fu
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
45
|
Wodehouse T, Bahra A, Mehta V. Changes in peripheral and central sensitization in patients undergoing occipital nerve stimulation. Br J Pain 2020; 14:250-255. [PMID: 33194189 DOI: 10.1177/2049463719860548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction Central sensitization and impaired conditioned pain modulation (CPM) response have been reported to contribute to migraine progression. Migraine patients can present with allodynia possibly attributed to increased sensitivity of peripheral ends of nociceptors with both peripheral and central sensitization. Occipital nerve stimulation (ONS) works by stimulating the distal branches of C1, C2 and C3 possibly altering the nociceptive traffic to the trigemino-cervical complex, brainstem and supranuclear connections. Aims This observational study explores peripheral and central sensitization in patients undergoing percutaneous ONS. Methods Following local regulatory approval, 13 patients undergoing ONS with dual Octrode 90 cm leads and rechargeable implantable pulse generator (IPG) (St Jude) were recruited to have quantitative sensory testing (QST) pre- and post-procedure 2 weeks, 1, 3, 6 and 12 months. Results Patients with intractable migraine demonstrated impaired CPM (mean baseline pressure pain thresholds (PPTs): 61.98 kPa vs 48.01 kPa cuff inflated) prior to ONS, reverting to an efficient CPM response within 2 weeks following ONS implant (68.9 kPa vs 104.5 kPa cuff inflated) and continuing positively over the next 12 months. In contrast, no statistical difference was observed in PPTs. Conclusion This is the first reported observation highlighting the effects on central sensitization following ONS. A consistent and sustained improvement in CPM was observed in contrast to PPT's where there was no difference. Normalisation of the CPM response following ONS indicates that the treatment may reduce central sensitization in the migraine population.
Collapse
Affiliation(s)
- Theresa Wodehouse
- Barts Neuromodulation Unit & Pain and Anaesthesia Research Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Anish Bahra
- Barts Neuromodulation Unit & Pain and Anaesthesia Research Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Vivek Mehta
- Barts Neuromodulation Unit & Pain and Anaesthesia Research Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
46
|
Beckmann Y, Çetin Üncü F, Kurt İncesu T, Türe S. Effectiveness, Safety, and Health-Related Quality of Life of Chronic Migraine Patients Treated with Onabotulinum Toxin A. Eur Neurol 2020; 83:517-522. [PMID: 32966982 DOI: 10.1159/000509853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/25/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The present study aims to describe the efficacy and safety of onabotulinum toxin A (BonT-A) with evaluation of treatment satisfaction and impact on quality of life in chronic migraine (CM) patients in real life. METHODS This study was conducted in CM patients who were treated with BoNT-A with 12 months of follow-up. Data about outcome, adverse events, and patients' pre- and post-treatment status including health-related quality of life data were analyzed. Health-related quality of life scores were measured at baseline and months 6 and 12 after the beginning of BoNT-A administration. RESULTS Of 42 enrolled patients, 30 were included in the analysis. At 12 months, all patients showed a reduction in number of headaches and analgesic use per month and none reported adverse events. After BoNT-A supplementation, health-related quality-of-life scores improved significantly. There was a direct association between health-related quality of life with reduction of headache days at the end of study. CONCLUSION This study confirms that BoNT-A treatment is effective on CM and improves the functional well-being and quality of life of patients.
Collapse
Affiliation(s)
- Yesim Beckmann
- Department of Neurology, Izmir Katip Çelebi University, Izmir, Turkey,
| | - Fatma Çetin Üncü
- Department of Neurology, Izmir Katip Çelebi University, Izmir, Turkey
| | - Tülay Kurt İncesu
- Department of Neurology, Izmir Katip Çelebi University, Izmir, Turkey
| | - Sabiha Türe
- Department of Neurology, Izmir Katip Çelebi University, Izmir, Turkey
| |
Collapse
|
47
|
Navratilova E, Behravesh S, Oyarzo J, Dodick DW, Banerjee P, Porreca F. Ubrogepant does not induce latent sensitization in a preclinical model of medication overuse headache. Cephalalgia 2020; 40:892-902. [PMID: 32615788 PMCID: PMC7412872 DOI: 10.1177/0333102420938652] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Ubrogepant, a small-molecule calcitonin gene-related peptide receptor antagonist, was recently approved as an oral medication for the acute treatment of migraine. This study aimed to determine whether ubrogepant shows efficacy in a preclinical model of migraine-like pain and whether repeated oral administration of ubrogepant induces latent sensitization relevant to medication overuse headache in rats. METHODS A "two-hit" priming model of medication overuse headache was used. Female Sprague-Dawley rats received six oral doses of sumatriptan 10 mg/kg over 2 weeks to induce latent sensitization (i.e. "priming"). Cutaneous allodynia was measured periodically over 20 days in the periorbital and hindpaw regions using von Frey filaments. The rats were then subjected to a 1-hour bright light stress challenge on two consecutive days. At the start of the second bright light stress exposure, oral sumatriptan 10 mg/kg, oral ubrogepant 25, 50, or 100 mg/kg, or vehicle was administered; thereafter, cephalic and hindpaw sensory thresholds were monitored hourly over 5 hours to determine the efficacy of ubrogepant in reversing bright light stress-induced cutaneous allodynia. A dose of ubrogepant effective in the medication overuse headache model (100 mg/kg) was then selected to determine if repeated administration would produce latent sensitization. Rats were administered six oral doses of ubrogepant 100 mg/kg, sumatriptan 10 mg/kg (positive control), or vehicle over 2 weeks, and cutaneous allodynia was evaluated regularly. Testing continued until mechanosensitivity returned to baseline levels. Rats were then challenged with bright light stress on days 20 and 21, and periorbital and hindpaw cutaneous allodynia was measured. On days 28 to 32, the same groups received a nitric oxide donor (sodium nitroprusside 3 mg/kg, i.p.), and cutaneous allodynia was assessed hourly over 5 hours. RESULTS Sumatriptan elicited cutaneous allodynia in both cephalic and hindpaw regions; cutaneous allodynia resolved to baseline levels after cessation of drug administration (14 days). Sumatriptan priming resulted in generalized and delayed cutaneous allodynia, evoked by either bright light stress (day 21) or nitric oxide donor (day 28). Ubrogepant dose-dependently blocked both stress- and nitric oxide donor-induced cephalic and hindpaw allodynia in the sumatriptan-induced medication overuse headache model with a 50% effective dose of ∼50 mg/kg. Unlike sumatriptan, ubrogepant 100 mg/kg in repeated effective doses did not produce cutaneous allodynia or latent sensitization. CONCLUSIONS Both ubrogepant and sumatriptan demonstrated efficacy as acute medications for stress- and nitric oxide donor-evoked cephalic allodynia in a preclinical model of medication overuse headache, consistent with their clinical efficacy in the acute treatment of migraine. However, in contrast to sumatriptan, repeated treatment with ubrogepant did not induce cutaneous allodynia or latent sensitization. These studies suggest ubrogepant may offer an effective acute treatment of migraine without risk of medication overuse headache.Trial Registration Number: Not applicable.
Collapse
Affiliation(s)
- Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Sasan Behravesh
- Department of Collaborative Research, Mayo Clinic, Scottsdale, AZ, USA
| | - Janice Oyarzo
- Department of Collaborative Research, Mayo Clinic, Scottsdale, AZ, USA
| | - David W Dodick
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA
| | | | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA.,Department of Collaborative Research, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
48
|
Rau JC, Navratilova E, Oyarzo J, Johnson KW, Aurora SK, Schwedt TJ, Dodick DW, Porreca F. Evaluation of LY573144 (lasmiditan) in a preclinical model of medication overuse headache. Cephalalgia 2020; 40:903-912. [PMID: 32580575 PMCID: PMC7412873 DOI: 10.1177/0333102420920006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Medication overuse is a significant issue that complicates the treatment of headache disorders. The most effective medications for the acute treatment of migraine all have the capacity to induce medication overuse headache (MOH). Novel acute migraine-specific treatments are being developed. However, because the mechanism(s) underlying medication overuse headache are not well understood, it is difficult to predict whether any particular acute medication will induce MOH in susceptible individuals. LY573144 (lasmiditan), a 5-HT1F receptor agonist, has recently been shown to be effective in the acute treatment of migraine in phase 3 trials. The aim of this study is to determine whether frequent administration of lasmiditan induces behaviors consistent with MOH in a pre-clinical rat model. METHODS Sprague Dawley rats were administered six doses of lasmiditan (10 mg/kg), sumatriptan (10 mg/kg), or sterile water orally over 2 weeks and cutaneous allodynia was evaluated regularly in the periorbital and hindpaw regions using von Frey filaments. Testing continued until mechanosensitivity returned to baseline levels. Rats were then submitted to bright light stress (BLS) or nitric oxide (NO) donor administration and were again evaluated for cutaneous allodynia in the periorbital and hindpaw regions hourly for 5 hours. RESULTS Both lasmiditan and sumatriptan exhibited comparable levels of drug-induced cutaneous allodynia in both the periorbital and hindpaw regions, which resolved after cessation of drug administration. Both lasmiditan and sumatriptan pre-treatment resulted in cutaneous allodynia that was evoked by either BLS or NO donor. CONCLUSIONS In a pre-clinical rat model of MOH, oral lasmiditan, like sumatriptan, induced acute transient cutaneous allodynia in the periorbital and hindpaw regions that after resolution could be re-evoked by putative migraine triggers. These results suggest that lasmiditan has the capacity to induce MOH through persistent latent peripheral and central sensitization mechanisms.
Collapse
Affiliation(s)
| | - Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | | - Frank Porreca
- Mayo Clinic, Scottsdale, AZ, USA.,Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
49
|
Zhang Y, Zhang Y, Tian K, Wang Y, Fan X, Pan Q, Qin G, Zhang D, Chen L, Zhou J. Calcitonin gene-related peptide facilitates sensitization of the vestibular nucleus in a rat model of chronic migraine. J Headache Pain 2020; 21:72. [PMID: 32522232 PMCID: PMC7288551 DOI: 10.1186/s10194-020-01145-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/01/2020] [Indexed: 12/23/2022] Open
Abstract
Background Vestibular migraine has recently been recognized as a novel subtype of migraine. However, the mechanism that relate vestibular symptoms to migraine had not been well elucidated. Thus, the present study investigated vestibular dysfunction in a rat model of chronic migraine (CM), and to dissect potential mechanisms between migraine and vertigo. Methods Rats subjected to recurrent intermittent administration of nitroglycerin (NTG) were used as the CM model. Migraine- and vestibular-related behaviors were analyzed. Immunofluorescent analyses and quantitative real-time polymerase chain reaction were employed to detect expressions of c-fos and calcitonin gene-related peptide (CGRP) in the trigeminal nucleus caudalis (TNC) and vestibular nucleus (VN). Morphological changes of vestibular afferent terminals was determined under transmission electron microscopy. FluoroGold (FG) and CTB-555 were selected as retrograde tracers and injected into the VN and TNC, respectively. Lentiviral vectors comprising CGRP short hairpin RNA (LV-CGRP) was injected into the trigeminal ganglion. Results CM led to persistent thermal hyperalgesia, spontaneous facial pain, and prominent vestibular dysfunction, accompanied by the upregulation of c-fos labeling neurons and CGRP immunoreactivity in the TNC (c-fos: vehicle vs. CM = 2.9 ± 0.6 vs. 45.5 ± 3.4; CGRP OD: vehicle vs. CM = 0.1 ± 0.0 vs. 0.2 ± 0.0) and VN (c-fos: vehicle vs. CM = 2.3 ± 0.8 vs. 54.0 ± 2.1; CGRP mRNA: vehicle vs. CM = 1.0 ± 0.1 vs. 2.4 ± 0.1). Furthermore, FG-positive neurons was accumulated in the superficial layer of the TNC, and the number of c-fos+/FG+ neurons were significantly increased in rats with CM compared to the vehicle group (vehicle vs. CM = 25.3 ± 2.2 vs. 83.9 ± 3.0). Meanwhile, CTB-555+ neurons dispersed throughout the VN. The structure of vestibular afferent terminals was less pronounced after CM compared with the peripheral vestibular dysfunction model. In vivo knockdown of CGRP in the trigeminal ganglion significantly reduced the number of c-fos labeling neurons (LV-CGRP vs. LV-NC = 9.9 ± 3.0 vs. 60.0 ± 4.5) and CGRP mRNA (LV-CGRP vs. LV-NC = 1.0 ± 0.1 vs. 2.1 ± 0.2) in the VN, further attenuating vestibular dysfunction after CM. Conclusions These data demonstrates the possibility of sensitization of vestibular nucleus neurons to impair vestibular function after CM, and anti-CGRP treatment to restore vestibular dysfunction in patients with CM.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yixin Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Ke Tian
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaoping Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qi Pan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
50
|
Abstract
Background The trigeminal nerve theory has been proposed as a pathophysiological mechanism of migraine; however, its association with the triggers of migraine remains unclear. Cervical disability such as neck pain and restricted cervical rotation, have been associated with not only cervicogenic headaches but also migraine. The presence of cervical disability could worsen of the migraine, and also the response to pharmacologic treatment may be reduced. The aim in this review is to highlight the involvement of cervical disability in migraine, considering contributing factors. Findings In recent years, evidence of neck pain complaints in migraine has been increasing. In addition, there is some recent evidence of cervical musculoskeletal impairments in migraine, as detected by physical assessment. However, the main question of whether neck pain or an associated cervical disability can act as an initial factor leading to migraine attacks still remains. Daily life imposes heavy loads on cervical structures (i.e. muscles, joints and ligaments), for instance, in the forward head position. The repetitive nociceptive stimulation initiating those cervical skeletal muscle positions may amplify the susceptibility to central migraine and contribute to chronicity via the trigeminal cervical complex. Conclusion Further studies are needed to explain the association between cervical disability as a source of pain and the development of migraine. However, evidence suggests that cervical disability needs to be considered in the prevention and treatment of migraine.
Collapse
Affiliation(s)
- Naoki Aoyama
- Department of Neurosurgery, JCHO Yokohama Central Hospital, Yokohama, Japan
| |
Collapse
|