1
|
Liu Q, Hu M, Li S, Zhang X, Zhang R, Lyu H, Xiao S, Guo D, Chen XZ, Tang J, Zhou C. TRPM channels in human cancers: regulatory mechanism and therapeutic prospects. Biomark Res 2024; 12:152. [PMID: 39633507 PMCID: PMC11616203 DOI: 10.1186/s40364-024-00699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
The transient receptor potential melastatin (TRPM) channel family has been previously implicated in various diseases, including those related to temperature sensing, cardiovascular health, and neurodegeneration. Nowadays, increasing evidence indicates that TRPM family members also play significant roles in various types of cancers, exhibiting both pro- and anti-tumorigenic functions. They are involved in tumor cell proliferation, survival, invasion, and metastasis, serving as potential diagnostic and prognostic biomarkers for cancer. This paper begins by describing the structure and physiological functions of the TRPM family members. It then outlines their roles in several common malignancies, including pancreatic, prostate, colorectal, breast, brain cancer, and melanoma. Subsequently, we focused on investigating the specific mechanisms by which TRPM family members are involved in tumorigenesis and development from both the tumor microenvironment (TME) and intracellular signaling. TRPM channels not only transmit signals from the TME to regulate tumor cell functions, but also mediate extracellular matrix remodeling, which is conducive to the malignant transformation of tumor cells. Importantly, TRPM channels depend on the regulation of the inflow of various ions in cells, and participate in key signaling pathways involved in tumor progression, such as Wnt/β-catenin, MAPK, PI3K/AKT, p53, and autophagy. Finally, we summarize the current strategies and challenges of targeting TRPM channels in tumor treatment, and discuss the feasibility of combining targeted TRPM channel drugs with cancer immunotherapy.
Collapse
Affiliation(s)
- Qinfeng Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430074, China
| | - Mengyu Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430074, China
| | - Shi Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430074, China
| | - Xin Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430074, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430074, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430074, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430074, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430074, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430074, China
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430074, China.
| |
Collapse
|
2
|
Li Y, Xu C, Han H, Pascual-Sabater S, Fillat C, Goel A. Aronia Berry Extract Modulates MYD88/NF-kB/P-Glycoprotein Axis to Overcome Gemcitabine Resistance in Pancreatic Cancer. Pharmaceuticals (Basel) 2024; 17:911. [PMID: 39065761 PMCID: PMC11279572 DOI: 10.3390/ph17070911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with poor survival rates, primarily due to the limited effectiveness of gemcitabine (Gem)-based chemotherapy, as well as the acquisition of chemotherapeutic resistance. Aronia berry extracts (ABEs), abundant in phenolic constituents, have been recently recognized for their anticancer properties as well as their encouraging potential to help overcome chemoresistance in various cancers. In the present study, we explored ABE's potential to overcome Gem resistance in PDAC and identify specific growth regulatory pathways responsible for its anticancer activity. Through a series of in vitro experiments in gemcitabine-resistant (Gem-R) cells, we elucidated the synergistic interactions between Gem and ABE treatments. Using advanced transcriptomic analysis and network pharmacology, we revealed key molecular pathways linked to chemoresistance and potential therapeutic targets of ABE in Gem-R PDAC cells. Subsequently, the findings from cell culture studies were validated in patient-derived 3D tumor organoids (PDOs). The combination treatment of ABE and Gem demonstrated significant synergism and anticancer effects on cell viability, proliferation, migration, and invasion in Gem-R cells. Transcriptomic analysis revealed a correlation between the NF-Κb signaling pathway and Gem-R (p < 0.05), exhibiting a marked upregulation of MYD88. Additionally, MYD88 exhibited a significant correlation with the overall survival rates in patients with PDAC patients in the TCGA cohort (HR = 1.58, p < 0.05). The MYD88/NF-Κb pathway contributes to chemoresistance by potentially upregulating efflux transporters like P-glycoprotein (P-gp). Our findings revealed that the combined treatment with ABE suppressed the NF-Κb pathway by targeting MYD88 and reducing P-gp expression to overcome Gem resistance. Lastly, the combination therapy proved highly effective in PDOs in reducing both their number and size (p < 0.05). Our study offers previously unrecognized insights into the ability of ABE to overcome Gem resistance in PDAC cells through its targeting of the MYD88/NF-κb/P-gp axis, hence providing a safe and cost-effective adjunctive therapeutic strategy to improve treatment outcomes in PDAC.
Collapse
Affiliation(s)
- Yuan Li
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA; (Y.L.); (C.X.)
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA; (Y.L.); (C.X.)
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116004, China
| | - Haiyong Han
- Division of Molecular Medicine, The Translational Genomics Research Institute, Phoenix, AZ 85004, USA;
| | - Silvia Pascual-Sabater
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-S.); (C.F.)
| | - Cristina Fillat
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-S.); (C.F.)
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA; (Y.L.); (C.X.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
3
|
Qiao S, Wu F, Wang H. Genetic and immune identification and functional analysis of TRPM8 as a potential biomarker for pancreatic adenocarcinoma proliferation. Cancer Rep (Hoboken) 2024; 7:e2108. [PMID: 38837874 PMCID: PMC11150080 DOI: 10.1002/cnr2.2108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/26/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD), a member of highly lethal malignant tumors, has a poor outcome and extremely poor prognosis. The transient receptor potential (TRP) superfamily, a group of nonselective cation channels, is capable of influencing cellular functions by regulating calcium homeostasis. In addition, it has been shown that TRP channels can also affect various cellular phenotypes by regulating gene transcription levels and are involved in the development of a variety of malignant tumors. AIMS In order to find new therapeutic targets and biomarkers to improve the clinical prognosis of pancreatic cancer, we performed genetic and immunological characterization of TRP channels in PAAD, as well as related functional and prognostic analyses. METHODS AND RESULTS We investigated the expression, genetic alterations, methylation levels, and immune infiltration levels of TRP channels in PAAD, and further also analyzed the function of TRP channels in PAAD and their prognostic value for PAAD patients. Our results suggest that TRPM8 may contribute to tumor proliferation by controlling the PI3K-AKT-mTOR signaling pathway in PAAD. CONCLUSION After careful evaluation of the accumulated data, we concluded that TRPM8 has potential as a prognostic indicator and prospective therapeutic target in PAAD.
Collapse
Affiliation(s)
- Sen Qiao
- Assisted Reproduction CenterNorthwest Women's and Children's HospitalXi'anChina
| | - Fengming Wu
- School of MedicineSoutheast UniversityNanjingJiangsuChina
| | - Hongmei Wang
- School of MedicineSoutheast UniversityNanjingJiangsuChina
- Shaanxi University of Chinese MedicineXianyangChina
| |
Collapse
|
4
|
Zhang B, Liu J, Li H, Huang B, Zhang B, Song B, Bao C, Liu Y, Wang Z. Integrated multi-omics identified the novel intratumor microbiome-derived subtypes and signature to predict the outcome, tumor microenvironment heterogeneity, and immunotherapy response for pancreatic cancer patients. Front Pharmacol 2023; 14:1244752. [PMID: 37745080 PMCID: PMC10512958 DOI: 10.3389/fphar.2023.1244752] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Background: The extremely malignant tumour known as pancreatic cancer (PC) lacks efficient prognostic markers and treatment strategies. The microbiome is crucial to how cancer develops and responds to treatment. Our study was conducted in order to better understand how PC patients' microbiomes influence their outcome, tumour microenvironment, and responsiveness to immunotherapy. Methods: We integrated transcriptome and microbiome data of PC and used univariable Cox regression and Kaplan-Meier method for screening the prognostic microbes. Then intratumor microbiome-derived subtypes were identified using consensus clustering. We utilized LASSO and Cox regression to build the microbe-related model for predicting the prognosis of PC, and utilized eight algorithms to assess the immune microenvironment feature. The OncoPredict package was utilized to predict drug treatment response. We utilized qRT-PCR to verify gene expression and single-cell analysis to reveal the composition of PC tumour microenvironment. Results: We obtained a total of 26 prognostic genera in PC. And PC samples were divided into two microbiome-related subtypes: Mcluster A and B. Compared with Mcluster A, patients in Mcluster B had a worse prognosis and higher TNM stage and pathological grade. Immune analysis revealed that neutrophils, regulatory T cell, CD8+ T cell, macrophages M1 and M2, cancer associated fibroblasts, myeloid dendritic cell, and activated mast cell had remarkably higher infiltrated levels within the tumour microenvironment of Mcluster B. Patients in Mcluster A were more likely to benefit from CTLA-4 blockers and were highly sensitive to 5-fluorouracil, cisplatin, gemcitabine, irinotecan, oxaliplatin, and epirubicin. Moreover, we built a microbe-derived model to assess the outcome. The ROC curves showed that the microbe-related model has good predictive performance. The expression of LAMA3 and LIPH was markedly increased within pancreatic tumour tissues and was linked to advanced stage and poor prognosis. Single-cell analysis indicated that besides cancer cells, the tumour microenvironment of PC was also rich in monocytes/macrophages, endothelial cells, and fibroblasts. LIPH and LAMA3 exhibited relatively higher expression in cancer cells and neutrophils. Conclusion: The intratumor microbiome-derived subtypes and signature in PC were first established, and our study provided novel perspectives on PC prognostic indicators and treatment options.
Collapse
Affiliation(s)
- Biao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jifeng Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Han Li
- Department of Oncology, Southwest Medical University, Luzhou, China
| | - Bingqian Huang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Bolin Zhang
- Department of Visceral, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, Halle, Germany
| | - Binyu Song
- Department of Plastic Surgery, Xijing Hospital, Xi’an, China
| | - Chongchan Bao
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yunfei Liu
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Zhizhou Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Wang Y, Zhang M, Zhang L, Zhou M, Wang E. Nanoparticles loaded with circ_0086375 for suppressing the tumorigenesis of pancreatic cancer by targeting the miR-646/SLC4A4 axis. Clin Exp Metastasis 2023; 40:53-67. [PMID: 36479657 DOI: 10.1007/s10585-022-10197-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/12/2021] [Indexed: 12/12/2022]
Abstract
Nanoparticles possess the ability to adsorb and load other compounds. This study aimed to synthesize a gene carrier with polyethyleneimine (PEI), hyaluronic acid (HA) and mesoporous silica nanoparticles (MSNs) for circ_0086375 delivery to investigate the role and mechanism of circ_0086375 in pancreatic cancer (PC) progression. The expression of genes and proteins was detected by quantitative real-time polymerase chain reaction and Western blot. In vitro experiments were performed by cell counting Kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, transwell assay, and wound healing assay, respectively. Dual-luciferase activity assay was used to investigate the target relationship between miR-646 and circ_0086375 or SLC4A4 (solute carrier family 4 member 4). Circ_0086375 loaded PEI/HA-based mesoporous silica nanoparticles (MSNs) were prepared, and in vivo assay was performed by using xenograft tumor model. Circ_0086375 expression was decreased in PC tissues and cells. Restoration of circ_0086375 suppressed PC cell proliferation, migration and invasion in vitro and in vivo. Mechanistically, circ_0086375 acted as a sponge for miR-646 to elevate SLC4A4 expression, which was confirmed to be a target of miR-646. The prepared circ_0086375/MSN/PEI/HA nanocomplexes showed excellent fluorescent properties and a higher cellular uptake of circ_0086375 in PC cells. Moreover, circ_0086375/MSN/PEI/HA showed relatively more anticancer effects in PC than that of circ_0086375 alone in vitro and in vivo. Delivery of circ_0086375 by nanoparticles suppresses the tumorigenicity of pancreatic cancer by miR-646/SLC4A4 axis, suggesting a new potential target for future pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yunjian Wang
- Surgery Department of Hepatobiliary and Pancreatic, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008, Henan Province, China.
| | - Min Zhang
- Surgery Department of Hepatobiliary and Pancreatic, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008, Henan Province, China
| | - Luyang Zhang
- Surgery Department of Hepatobiliary and Pancreatic, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008, Henan Province, China
| | - Minghe Zhou
- Surgery Department of Hepatobiliary and Pancreatic, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008, Henan Province, China
| | - Enze Wang
- Surgery Department of Hepatobiliary and Pancreatic, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, 450008, Henan Province, China
| |
Collapse
|
6
|
Ochoa SV, Casas Z, Albarracín SL, Sutachan JJ, Torres YP. Therapeutic potential of TRPM8 channels in cancer treatment. Front Pharmacol 2023; 14:1098448. [PMID: 37033630 PMCID: PMC10073478 DOI: 10.3389/fphar.2023.1098448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/20/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer is a multifactorial process associated with changes in signaling pathways leading to cell cycle variations and gene expression. The transient receptor potential melastatin 8 (TRPM8) channel is a non-selective cation channel expressed in neuronal and non-neuronal tissues, where it is involved in several processes, including thermosensation, differentiation, and migration. Cancer is a multifactorial process associated with changes in signaling pathways leading to variations in cell cycle and gene expression. Interestingly, it has been shown that TRPM8 channels also participate in physiological processes related to cancer, such as proliferation, survival, and invasion. For instance, TRPM8 channels have an important role in the diagnosis, prognosis, and treatment of prostate cancer. In addition, it has been reported that TRPM8 channels are involved in the progress of pancreatic, breast, bladder, colon, gastric, and skin cancers, glioblastoma, and neuroblastoma. In this review, we summarize the current knowledge on the role of TRPM8 channels in cancer progression. We also discuss the therapeutic potential of TRPM8 in carcinogenesis, which has been proposed as a molecular target for cancer therapy.
Collapse
Affiliation(s)
- Sara V. Ochoa
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
- Semillero de Investigación, Biofísica y Fisiología de Canales Iónicos, Pontificia Universidad Javeriana, Bogotá, Colombia
- *Correspondence: Sara V. Ochoa, ; Yolima P. Torres,
| | - Zulma Casas
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sonia L. Albarracín
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jhon Jairo Sutachan
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Yolima P. Torres
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
- *Correspondence: Sara V. Ochoa, ; Yolima P. Torres,
| |
Collapse
|
7
|
Romito O, Guéguinou M, Raoul W, Champion O, Robert A, Trebak M, Goupille C, Potier-Cartereau M. Calcium signaling: A therapeutic target to overcome resistance to therapies in cancer. Cell Calcium 2022; 108:102673. [PMID: 36410063 DOI: 10.1016/j.ceca.2022.102673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Innate and acquired resistances to therapeutic agents are responsible for the failure of cancer treatments. Due to the multifactorial nature of resistance, the identification of new therapeutic targets is required to improve cancer treatment. Calcium is a universal second messenger that regulates many cellular functions such as proliferation, migration, and survival. Calcium channels, pumps and exchangers tightly regulate the duration, location and magnitude of calcium signals. Many studies have implicated dysregulation of calcium signaling in several pathologies, including cancer. Abnormal calcium fluxes due to altered channel expression or activation contribute to carcinogenesis and promote tumor development. However, there is limited information on the role of calcium signaling in cancer resistance to therapeutic drugs. This review discusses the role of calcium signaling as a mediator of cancer resistance, and assesses the potential value of combining anticancer therapy with calcium signaling modulators to improve the effectiveness of current treatments.
Collapse
Affiliation(s)
- Olivier Romito
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - Maxime Guéguinou
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - William Raoul
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - Ophélie Champion
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - Alison Robert
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - Mohamed Trebak
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Caroline Goupille
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France; CHRU de Tours, hôpital Bretonneau, Tours, France.
| | - Marie Potier-Cartereau
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| |
Collapse
|
8
|
Li L, Xiao Z, He P, Zou W, Deng Z, Zhang G, Liu R. Molecular subtyping based on TRP family and prognostic assessment for TRP-associated lncRNAs in pancreatic adenocarcinoma. BMC Gastroenterol 2022; 22:454. [PMID: 36371178 PMCID: PMC9652922 DOI: 10.1186/s12876-022-02552-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2022] Open
Abstract
Background Transient receptor potential (TRP) channels have high permeability to Ca2+ ions because they are non-selective ion channels. TRP channels have been implicated in tumor onset and progression, proliferation, and migration in recent years. However, the prognostic value of genes related to TRP and their specific mechanism in pancreatic adenocarcinoma (PAAD) are yet to be understood. Methods Public databases such as TCGA and GEO were used to retrieve data on gene expression and clinical information of patients with pancreatic adenocarcinoma for our study. ConsensusClusterPlus package was used for unsupervised clustering analysis. The microenvironment cell population (MCP)-counter approach was employed to measure the immune cells infiltration status. The Pearson correlation was performed to identify TRP-associated lncRNAs. Results Initially, we separated PAAD patients into three clusters depending on TRP-related genes, and of the three clusters, cluster B showed the least immune cell infiltration, which was correlated with poor prognosis. Moreover, GSVA enrichment analysis further revealed that cluster A was subjected to a considerable enrichment in carcinogenic signaling pathways, whereas cluster C was enriched in immune-related pathways. Then, using TRP-associated lncRNAs as a starting point, we constructed a prognostic risk model for PAAD patients that could efficiently predict their prognosis. Further, GSEA revealed that cancer-related pathways, for instance, the cell cycle, p53 signaling pathway, etc. were considerably enriched in the high-risk group. In addition, we looked into the link between the prognostic model and the immunological microenvironment. Lower cytotoxic lymphocytes, NK cells, CD8 T cells, and endothelial cells infiltration were found to be associated with high risk using the MCP-counter algorithm. The expression of CD274, POLE2, MCM6, and LOXL2 was also found to be higher in the high-risk group. TMB was also considerably greater in high-risk individuals, indicating that immune checkpoint inhibitors (ICIs) therapy may benefit them more. Lastly, qRT-PCR further confirmed the differential expression of these prognostic TRP-associated lncRNAs, indicating that these lncRNAs play an imperative role in PAAD tumorigenesis. Conclusion TRP family genes may represent a new class of candidate molecular markers of the occurrence and progression of PAAD. Risk models based on TRP-associated lncRNAs could provide important new references for immunotargeted therapy of pancreatic adenocarcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02552-y.
Collapse
|
9
|
The Association between TRP Channels Expression and Clinicopathological Characteristics of Patients with Pancreatic Adenocarcinoma. Int J Mol Sci 2022; 23:ijms23169045. [PMID: 36012311 PMCID: PMC9408824 DOI: 10.3390/ijms23169045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 12/15/2022] Open
Abstract
Pancreatic adenocarcinoma (PDAC) has low survival rates worldwide due to its tendency to be detected late and its characteristic desmoplastic reaction, which slows the use of targeted therapies. As such, the discovery of new connections between genes and the clinicopathological parameters contribute to the search for new biomarkers or targets for therapy. Transient receptor potential (TRP) channels are promising tools for cancer therapy or markers for PDAC. Therefore, in this study, we selected several genes encoding TRP proteins previously reported in cellular models, namely, Transient Receptor Potential Cation Channel Subfamily V Member 6 (TRPV6), Transient receptor potential ankyrin 1 (TRPA1), and Transient receptor potential cation channel subfamily M (melastatin) member 8 (TRPM8), as well as the TRPM8 Channel Associated Factor 1 (TCAF1) and TRPM8 Channel Associated Factor 2 (TCAF2) proteins, as regulatory factors. We analyzed the expression levels of tumors from patients enrolled in public datasets and confirmed the results with a validation cohort of PDAC patients enrolled in the Clinical Institute Fundeni, Romania. We found significantly higher expression levels of TRPA1, TRPM8, and TCAF1/F2 in tumoral tissues compared to normal tissues, but lower expression levels of TRPV6, suggesting that TRP channels have either tumor-suppressive or oncogenic roles. The expression levels were correlated with the tumoral stages and are related to the genes involved in calcium homeostasis (Calbindin 1 or S100A4) or to proteins participating in metastasis (PTPN1). We conclude that the selected TRP proteins provide new insights in the search for targets and biomarkers needed for therapeutic strategies for PDAC treatment.
Collapse
|
10
|
Marin JJG, Monte MJ, Macias RIR, Romero MR, Herraez E, Asensio M, Ortiz-Rivero S, Cives-Losada C, Di Giacomo S, Gonzalez-Gallego J, Mauriz JL, Efferth T, Briz O. Expression of Chemoresistance-Associated ABC Proteins in Hepatobiliary, Pancreatic and Gastrointestinal Cancers. Cancers (Basel) 2022; 14:cancers14143524. [PMID: 35884584 PMCID: PMC9320734 DOI: 10.3390/cancers14143524] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary One-third of the approximately 10 million deaths yearly caused by cancer worldwide are due to hepatobiliary, pancreatic, and gastrointestinal tumors. One primary reason for this high mortality is the lack of response of these cancers to pharmacological treatment. More than 100 genes have been identified as responsible for seven mechanisms of chemoresistance, but only a few of them play a critical role. These include ABC proteins (mainly MDR1, MRP1-6, and BCRP), whose expression pattern greatly determines the individual sensitivity of each tumor to pharmacotherapy. Abstract Hepatobiliary, pancreatic, and gastrointestinal cancers account for 36% of the ten million deaths caused by cancer worldwide every year. The two main reasons for this high mortality are their late diagnosis and their high refractoriness to pharmacological treatments, regardless of whether these are based on classical chemotherapeutic agents, targeted drugs, or newer immunomodulators. Mechanisms of chemoresistance (MOC) defining the multidrug resistance (MDR) phenotype of each tumor depend on the synergic function of proteins encoded by more than one hundred genes classified into seven groups (MOC1-7). Among them, the efflux of active agents from cancer cells across the plasma membrane caused by members of the superfamily of ATP-binding cassette (ABC) proteins (MOC-1b) plays a crucial role in determining tumor MDR. Although seven families of human ABC proteins are known, only a few pumps (mainly MDR1, MRP1-6, and BCRP) have been associated with reducing drug content and hence inducing chemoresistance in hepatobiliary, pancreatic, and gastrointestinal cancer cells. The present descriptive review, which compiles the updated information on the expression of these ABC proteins, will be helpful because there is still some confusion on the actual relevance of these pumps in response to pharmacological regimens currently used in treating these cancers. Moreover, we aim to define the MOC pattern on a tumor-by-tumor basis, even in a dynamic way, because it can vary during tumor progression and in response to chemotherapy. This information is indispensable for developing novel strategies for sensitization.
Collapse
Affiliation(s)
- Jose J. G. Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-663056225 (O.B.)
| | - Maria J. Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Rocio I. R. Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Marta R. Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Elisa Herraez
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Sara Ortiz-Rivero
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Javier Gonzalez-Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 Leon, Spain
| | - Jose L. Mauriz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 Leon, Spain
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-663056225 (O.B.)
| |
Collapse
|
11
|
Zhong T, Zhang W, Guo H, Pan X, Chen X, He Q, Yang B, Ding L. The regulatory and modulatory roles of TRP family channels in malignant tumors and relevant therapeutic strategies. Acta Pharm Sin B 2022; 12:1761-1780. [PMID: 35847486 PMCID: PMC9279634 DOI: 10.1016/j.apsb.2021.11.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/11/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023] Open
Abstract
Transient receptor potential (TRP) channels are one primary type of calcium (Ca2+) permeable channels, and those relevant transmembrane and intracellular TRP channels were previously thought to be mainly associated with the regulation of cardiovascular and neuronal systems. Nowadays, however, accumulating evidence shows that those TRP channels are also responsible for tumorigenesis and progression, inducing tumor invasion and metastasis. However, the overall underlying mechanisms and possible signaling transduction pathways that TRP channels in malignant tumors might still remain elusive. Therefore, in this review, we focus on the linkage between TRP channels and the significant characteristics of tumors such as multi-drug resistance (MDR), metastasis, apoptosis, proliferation, immune surveillance evasion, and the alterations of relevant tumor micro-environment. Moreover, we also have discussed the expression of relevant TRP channels in various forms of cancer and the relevant inhibitors' efficacy. The chemo-sensitivity of the anti-cancer drugs of various acting mechanisms and the potential clinical applications are also presented. Furthermore, it would be enlightening to provide possible novel therapeutic approaches to counteract malignant tumors regarding the intervention of calcium channels of this type.
Collapse
Key Words
- 4α-PDD, 4α-phorbol-12,13-didecanoate
- ABCB, ATP-binding cassette B1
- AKT, protein kinase B
- ALA, alpha lipoic acid
- AMPK, AMP-activated protein kinase
- APB, aminoethoxydiphenyl borate
- ATP, adenosine triphosphate
- CBD, cannabidiol
- CRAC, Ca2+ release-activated Ca2+ channel
- CaR, calcium-sensing receptor
- CaSR, calcium sensing receptor
- Cancer progression
- DAG, diacylglycerol
- DBTRG, Denver Brain Tumor Research Group
- ECFC, endothelial colony-forming cells
- ECM, enhanced extracellular matrix
- EGF, epidermal growth factor
- EMT, epithelial–mesenchymal transition
- ER, endoplasmic reticulum
- ERK, extracellular signal-regulated kinase
- ETS, erythroblastosis virus E26 oncogene homolog
- FAK, focal adhesion kinase
- GADD, growth arrest and DNA damage-inducible gene
- GC, gastric cancer
- GPCR, G-protein coupled receptor
- GSC, glioma stem-like cells
- GSK, glycogen synthase kinase
- HCC, hepatocellular carcinoma
- HIF, hypoxia-induced factor
- HSC, hematopoietic stem cells
- IP3R, inositol triphosphate receptor
- Intracellular mechanism
- KO, knockout
- LOX, lipoxygenase
- LPS, lipopolysaccharide
- LRP, lipoprotein receptor-related protein
- MAPK, mitogen-activated protein kinase
- MLKL, mixed lineage kinase domain-like protein
- MMP, matrix metalloproteinases
- NEDD4, neural precursor cell expressed, developmentally down-regulated 4
- NFAT, nuclear factor of activated T-cells
- NLRP3, NLR family pyrin domain containing 3
- NO, nitro oxide
- NSCLC, non-small cell lung cancer
- Nrf2, nuclear factor erythroid 2-related factor 2
- P-gp, P-glycoprotein
- PCa, prostate cancer
- PDAC, pancreatic ductal adenocarcinoma
- PHD, prolyl hydroxylases
- PI3K, phosphoinositide 3-kinase
- PKC, protein kinase C
- PKD, polycystic kidney disease
- PLC, phospholipase C
- Programmed cancer cell death
- RNS/ROS, reactive nitrogen species/reactive oxygen species
- RTX, resiniferatoxin
- SMAD, Caenorhabditis elegans protein (Sma) and mothers against decapentaplegic (Mad)
- SOCE, store operated calcium entry
- SOR, soricimed
- STIM1, stromal interaction molecules 1
- TEC, tumor endothelial cells
- TGF, transforming growth factor-β
- TNF-α, tumor necrosis factor-α
- TRP channels
- TRPA/C/M/ML/N/P/V, transient receptor potential ankyrin/canonical/melastatin/mucolipon/NOMPC/polycystin/vanilloid
- Targeted tumor therapy
- Tumor microenvironment
- Tumor-associated immunocytes
- UPR, unfolded protein response
- VEGF, vascular endothelial growth factor
- VIP, vasoactive intestinal peptide
- VPAC, vasoactive intestinal peptide receptor subtype
- mTOR, mammalian target of rapamycin
- pFRG/RTN, parafacial respiratory group/retrotrapezoid nucleus
Collapse
|
12
|
AMTB, a TRPM8 antagonist, suppresses growth and metastasis of osteosarcoma through repressing the TGFβ signaling pathway. Cell Death Dis 2022; 13:288. [PMID: 35361751 PMCID: PMC8971393 DOI: 10.1038/s41419-022-04744-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022]
Abstract
Since its first identification in prostate cancers and prostate tissues, transient receptor potential melastatin-subfamily member 8 (TRPM8) is subsequently found to be overexpressed in a wide range of cancers and is shown to be implicated in tumorigenesis and tumor progression. Here, we used N-(3-aminopropyl)-2-[(3-methylphenyl) methoxy] -N-(2-thienylmethyl) benzamide hydrochloride (AMTB), a specific TRPM8 antagonist, to explore its antitumoral effect on osteosarcoma. We find that AMTB suppresses osteosarcoma cell proliferation, metastasis and induces cellular apoptosis. Xenograft model in nude mice experiments also define that AMTB can increase the sensitivity of tumor cells to cisplatin, the cytotoxic chemotherapeutic regimens in treating osteosarcoma. Molecularly, AMTB specifically antagonizes TRPM8 which is upregulated in osteosarcoma and its expression level in osteosarcoma tissues is negatively related to patients’ prognosis. Finally, RNA sequencing analysis was performed to explore the mechanism underlying the antitumoral effect of AMTB on osteosarcoma cells and the results prove that AMTB suppresses the Transforming Growth Factor β (TGFβ) signaling pathway. Our study provides evidence that TRPM8 could be a potential therapeutic target and AMTB can suppress growth and metastasis of osteosarcoma cells through repressing the TGFβ signaling pathway and increase the sensitivity of tumor cells to cisplatin.
Collapse
|
13
|
Ion Channel Involvement in Tumor Drug Resistance. J Pers Med 2022; 12:jpm12020210. [PMID: 35207698 PMCID: PMC8878471 DOI: 10.3390/jpm12020210] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
Over 90% of deaths in cancer patients are attributed to tumor drug resistance. Resistance to therapeutic agents can be due to an innate property of cancer cells or can be acquired during chemotherapy. In recent years, it has become increasingly clear that regulation of membrane ion channels is an important mechanism in the development of chemoresistance. Here, we review the contribution of ion channels in drug resistance of various types of cancers, evaluating their potential in clinical management. Several molecular mechanisms have been proposed, including evasion of apoptosis, cell cycle arrest, decreased drug accumulation in cancer cells, and activation of alternative escape pathways such as autophagy. Each of these mechanisms leads to a reduction of the therapeutic efficacy of administered drugs, causing more difficulty in cancer treatment. Thus, targeting ion channels might represent a good option for adjuvant therapies in order to counteract chemoresistance development.
Collapse
|
14
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
15
|
Saldías MP, Maureira D, Orellana-Serradell O, Silva I, Lavanderos B, Cruz P, Torres C, Cáceres M, Cerda O. TRP Channels Interactome as a Novel Therapeutic Target in Breast Cancer. Front Oncol 2021; 11:621614. [PMID: 34178620 PMCID: PMC8222984 DOI: 10.3389/fonc.2021.621614] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is one of the most frequent cancer types worldwide and the first cause of cancer-related deaths in women. Although significant therapeutic advances have been achieved with drugs such as tamoxifen and trastuzumab, breast cancer still caused 627,000 deaths in 2018. Since cancer is a multifactorial disease, it has become necessary to develop new molecular therapies that can target several relevant cellular processes at once. Ion channels are versatile regulators of several physiological- and pathophysiological-related mechanisms, including cancer-relevant processes such as tumor progression, apoptosis inhibition, proliferation, migration, invasion, and chemoresistance. Ion channels are the main regulators of cellular functions, conducting ions selectively through a pore-forming structure located in the plasma membrane, protein–protein interactions one of their main regulatory mechanisms. Among the different ion channel families, the Transient Receptor Potential (TRP) family stands out in the context of breast cancer since several members have been proposed as prognostic markers in this pathology. However, only a few approaches exist to block their specific activity during tumoral progress. In this article, we describe several TRP channels that have been involved in breast cancer progress with a particular focus on their binding partners that have also been described as drivers of breast cancer progression. Here, we propose disrupting these interactions as attractive and potential new therapeutic targets for treating this neoplastic disease.
Collapse
Affiliation(s)
- María Paz Saldías
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Diego Maureira
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Octavio Orellana-Serradell
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Ian Silva
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Boris Lavanderos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Pablo Cruz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Camila Torres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Mónica Cáceres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment, and Health (WoRTH) Initiative, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment, and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|
16
|
Mesquita G, Prevarskaya N, Schwab A, Lehen’kyi V. Role of the TRP Channels in Pancreatic Ductal Adenocarcinoma Development and Progression. Cells 2021; 10:cells10051021. [PMID: 33925979 PMCID: PMC8145744 DOI: 10.3390/cells10051021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022] Open
Abstract
The transient receptor potential channels (TRPs) have been related to several different physiologies that range from a role in sensory physiology (including thermo- and osmosensation) to a role in some pathologies like cancer. The great diversity of functions performed by these channels is represented by nine sub-families that constitute the TRP channel superfamily. From the mid-2000s, several reports have shown the potential role of the TRP channels in cancers of multiple origin. The pancreatic cancer is one of the deadliest cancers worldwide. Its prevalence is predicted to rise further. Disappointingly, the treatments currently used are ineffective. There is an urgency to find new ways to counter this disease and one of the answers may lie in the ion channels belonging to the superfamily of TRP channels. In this review, we analyse the existing knowledge on the role of TRP channels in the development and progression of pancreatic ductal adenocarcinoma (PDAC). The functions of these channels in other cancers are also considered. This might be of interest for an extrapolation to the pancreatic cancer in an attempt to identify potential therapeutic interventions.
Collapse
Affiliation(s)
- Gonçalo Mesquita
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France; (G.M.); (N.P.)
- PHYCELL—Laboratoire de Physiologie Cellulaire, INSERM U1003, University of Lille, 59655 Villeneuve d’Ascq, France
- Institute of Physiology II, University Münster, 48149 Münster, Germany;
| | - Natalia Prevarskaya
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France; (G.M.); (N.P.)
- PHYCELL—Laboratoire de Physiologie Cellulaire, INSERM U1003, University of Lille, 59655 Villeneuve d’Ascq, France
| | - Albrecht Schwab
- Institute of Physiology II, University Münster, 48149 Münster, Germany;
| | - V’yacheslav Lehen’kyi
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France; (G.M.); (N.P.)
- PHYCELL—Laboratoire de Physiologie Cellulaire, INSERM U1003, University of Lille, 59655 Villeneuve d’Ascq, France
- Correspondence: ; Tel.: +33-(0)-3-20-33-70-78; Fax: +33-(0)-3-20-43-40-66
| |
Collapse
|
17
|
Hofschröer V, Najder K, Rugi M, Bouazzi R, Cozzolino M, Arcangeli A, Panyi G, Schwab A. Ion Channels Orchestrate Pancreatic Ductal Adenocarcinoma Progression and Therapy. Front Pharmacol 2021; 11:586599. [PMID: 33841132 PMCID: PMC8025202 DOI: 10.3389/fphar.2020.586599] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is a devastating disease with a dismal prognosis. Therapeutic interventions are largely ineffective. A better understanding of the pathophysiology is required. Ion channels contribute substantially to the "hallmarks of cancer." Their expression is dysregulated in cancer, and they are "misused" to drive cancer progression, but the underlying mechanisms are unclear. Ion channels are located in the cell membrane at the interface between the intracellular and extracellular space. They sense and modify the tumor microenvironment which in itself is a driver of PDAC aggressiveness. Ion channels detect, for example, locally altered proton and electrolyte concentrations or mechanical stimuli and transduce signals triggered by these microenvironmental cues through association with intracellular signaling cascades. While these concepts have been firmly established for other cancers, evidence has emerged only recently that ion channels are drivers of PDAC aggressiveness. Particularly, they appear to contribute to two of the characteristic PDAC features: the massive fibrosis of the tumor stroma (desmoplasia) and the efficient immune evasion. Our critical review of the literature clearly shows that there is still a remarkable lack of knowledge with respect to the contribution of ion channels to these two typical PDAC properties. Yet, we can draw parallels from ion channel research in other fibrotic and inflammatory diseases. Evidence is accumulating that pancreatic stellate cells express the same "profibrotic" ion channels. Similarly, it is at least in part known which major ion channels are expressed in those innate and adaptive immune cells that populate the PDAC microenvironment. We explore potential therapeutic avenues derived thereof. Since drugs targeting PDAC-relevant ion channels are already in clinical use, we propose to repurpose those in PDAC. The quest for ion channel targets is both motivated and complicated by the fact that some of the relevant channels, for example, KCa3.1, are functionally expressed in the cancer, stroma, and immune cells. Only in vivo studies will reveal which arm of the balance we should put our weights on when developing channel-targeting PDAC therapies. The time is up to explore the efficacy of ion channel targeting in (transgenic) murine PDAC models before launching clinical trials with repurposed drugs.
Collapse
Affiliation(s)
| | - Karolina Najder
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Micol Rugi
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Rayhana Bouazzi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Marco Cozzolino
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Münster, Germany
| |
Collapse
|
18
|
Liu JJ, Li LZ, Xu P. Upregulation of TRPM8 can promote the colon cancer liver metastasis through mediating Akt/GSK-3 signal pathway. Biotechnol Appl Biochem 2021; 69:230-239. [PMID: 33432591 DOI: 10.1002/bab.2102] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/06/2021] [Indexed: 01/06/2023]
Abstract
This study aims to clarify the function of transient receptor potential melastatin 8 (TRPM8) in colon cancer liver metastasis. First, TRPM8 expression was determined by Western blotting in colon cancer patients with/without liver metastasis. Second, colon cancer cells were grouped into Mock, siCON, and siTRPM8 groups. Then, a series of in vitro experiments were conducted. Last, CT26 cells were used to construct colon cancer liver metastasis models on mice in vivo, followed by comparison of liver metastasis and determination of AKT/glycogen synthase kinase-3β (GSK-3β) pathway. Consequently, TRPM8 was upregulated in both colon cancer patients with/without liver metastasis, especially in those with metastasis. Compared with Mock and siCON groups, cells in siTRPM8 group demonstrated significant decreases in clone numbers, cell invasion, and migration; and obvious downregulations of p-AKT/AKT, p-GSK3β/GSK3β, Snail, and Vimentin, with an upregulation of E-cadherin. For in vivo experiments, a sharp decrease was observed in metastatic liver of mice in siTRPM8 group, with significant downregulations of p-AKT/AKT, p-GSK3β/GSK3β, Snail, and Vimentin and an upregulation of E-cadherin, as compared with Mock and siCON groups. Thus, TRPM8 was upregulated in colon cancer patients with liver metastasis, and silencing TRPM8 may suppress the progression and epithelial-mesenchymal transition of colon cancer cells to block its liver metastasis possibly by inhibiting AKT/GSK-3β pathway.
Collapse
Affiliation(s)
- Jia-Jun Liu
- Department of Gastroenterology, Shiyan Hospital of Traditional Chinese Medicine, Shiyan, Hubei Province, People's Republic of China
| | - Long-Zhu Li
- Department of Gastroenterology, Shiyan Hospital of Traditional Chinese Medicine, Shiyan, Hubei Province, People's Republic of China
| | - Peng Xu
- Department of Gastroenterology, Shiyan Hospital of Traditional Chinese Medicine, Shiyan, Hubei Province, People's Republic of China
| |
Collapse
|
19
|
Schnipper J, Dhennin-Duthille I, Ahidouch A, Ouadid-Ahidouch H. Ion Channel Signature in Healthy Pancreas and Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2020; 11:568993. [PMID: 33178018 PMCID: PMC7596276 DOI: 10.3389/fphar.2020.568993] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of cancer-related deaths in United States and Europe. It is predicted that PDAC will become the second leading cause of cancer-related deaths during the next decades. The development of PDAC is not well understood, however, studies have shown that dysregulated exocrine pancreatic fluid secretion can contribute to pathologies of exocrine pancreas, including PDAC. The major roles of healthy exocrine pancreatic tissue are secretion of enzymes and bicarbonate rich fluid, where ion channels participate to fine-tune these biological processes. It is well known that ion channels located in the plasma membrane regulate multiple cellular functions and are involved in the communication between extracellular events and intracellular signaling pathways and can function as signal transducers themselves. Hereby, they contribute to maintain resting membrane potential, electrical signaling in excitable cells, and ion homeostasis. Despite their contribution to basic cellular processes, ion channels are also involved in the malignant transformation from a normal to a malignant phenotype. Aberrant expression and activity of ion channels have an impact on essentially all hallmarks of cancer defined as; uncontrolled proliferation, evasion of apoptosis, sustained angiogenesis and promotion of invasion and migration. Research indicates that certain ion channels are involved in the aberrant tumor growth and metastatic processes of PDAC. The purpose of this review is to summarize the important expression, localization, and function of ion channels in normal exocrine pancreatic tissue and how they are involved in PDAC progression and development. As ion channels are suggested to be potential targets of treatment they are furthermore suggested to be biomarkers of different cancers. Therefore, we describe the importance of ion channels in PDAC as markers of diagnosis and clinical factors.
Collapse
Affiliation(s)
- Julie Schnipper
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| | - Isabelle Dhennin-Duthille
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| | - Ahmed Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France.,Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
20
|
An N, Zheng B. MiR-203a-3p Inhibits Pancreatic Cancer Cell Proliferation, EMT, and Apoptosis by Regulating SLUG. Technol Cancer Res Treat 2020; 19:1533033819898729. [PMID: 32301392 PMCID: PMC7168776 DOI: 10.1177/1533033819898729] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The aim of the present research is to study the roles of miR-203a-3p on cell proliferation, migration, invasion, and epithelial-mesenchymal transition in pancreatic cancer. METHODS Transcription profiles were acquired from Gene Expression Omnibus database, which was used to screen out the differentially expressed microRNAs and messenger RNAs in pancreatic cancer. Pancreatic cancer tissues were used to verify the bioinformatics results by quantitative real-time polymerase chain reaction. The relationship between miR-203a-3p and SLUG was examined by TargetScan software, dual-luciferase reporter assay, and RNA immunoprecipitation. The Cell Counting Kit-8, wound healing, and transwell assays were conducted to investigate the proliferation, migration, and invasion capability of pancreatic cancer cells, respectively. The expression of epithelial-mesenchymal transition-related proteins was determined by the Western blot assay. Xenograft assay was performed to verify findings from in vitro assays. RESULTS Bioinformatic analysis found that a total of 113 microRNAs and 1749 messenger RNAs expressed differentially in pancreatic cancer tissues. Among these microRNAs, the expression of miR-203a-3p was significantly decreased in both pancreatic cancer tissues and cells. On the other hand, the SLUG expression was remarkably upregulated in pancreatic cancer tissues and cells in comparison with normal tissues and cells. Moreover, TargetScan software, dual-luciferase reporter assay, and RNA immunoprecipitation revealed that SLUG was a target of miR-203a-3p. The upregulation of miR-203a-3p expression inhibited the proliferation, migration, and invasion ability of pancreatic cancer cells by suppressing the epithelial-mesenchymal transition process via sponging SLUG. CONCLUSION These findings indicate that downregulation of miR-203a-3p in pancreatic cancer cells leads to high expression of SLUG, which promotes epithelial-mesenchymal transition process and induces cancer progression.
Collapse
Affiliation(s)
- Ning An
- Department of Hepatological Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Bo Zheng
- Department of Hepatological Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
21
|
Lai H, Liu C, Hou L, Lin W, Chen T, Hong A. TRPM8-regulated calcium mobilization plays a critical role in synergistic chemosensitization of Borneol on Doxorubicin. Theranostics 2020; 10:10154-10170. [PMID: 32929340 PMCID: PMC7481425 DOI: 10.7150/thno.45861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Lung cancer has a high mortality rate and is resistant to multiple chemotherapeutics. Natural Borneol (NB) is a monoterpenoid compound that facilitates the bioavailability of drugs. In this study, we investigated the effects of NB on chemosensitivity in the A549 human lung adenocarcinoma cell line and to elucidate therapeutic molecular target of NB. Methods: The chemosensitivity effects of NB in A549 cells were examined by MTT assay. The mechanism of NB action was evaluated using flow cytometry and Western blotting assays. Surface plasmon resonance (SPR) and LC-MS combined analysis (MS-SPRi) was performed to elucidate the candidate molecular target of NB. The chemosensitizing capacity of NB in vivo was assessed in nude mice bearing A549 tumors. Results: NB pretreatment sensitized A549 cells to low doxorubicin (DOX) dosage, leading to a 15.7% to 41.5% increase in apoptosis. This increase was correlated with ERK and AKT inactivation and activation of phospho-p38 MAPK, phospho-JNK, and phosphor-p53. Furthermore, this synergism depends on reactive oxygen species (ROS) generation. MS-SPRi analysis revealed that transient receptor potential melastatin-8 (TRPM8) is the candidate target of NB in potentiating DOX killing potency. Genetically, TRPM8 knock-down significantly suppresses the chemosensitizing effects of NB and inhibits ROS generation through restraining calcium mobilization. Moreover, pretreatment with NB synergistically enhances the anticancer effects of DOX to delay tumor progression in vivo. Conclusions: These results suggest that TRPM8 may be a valid therapeutic target in the potential application of NB, and show that NB is a chemosensitizer for lung cancer treatment.
Collapse
Affiliation(s)
- Haoqiang Lai
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Chang Liu
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Liyuan Hou
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Wenwei Lin
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - An Hong
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
22
|
Abstract
Ion channels and transporters (ICT) play important roles in almost all basic cellular processes. During last decades, abundant evidences have been provided that ICT (e.g., Ca2+ and K+ channels) are notable for regulating physiological pancreatic duct cellular function and deregulation of ICT is closely associated with the widely accepted hallmarks of pancreatic ductal adenocarcinoma (PDAC) such as proliferation, apoptosis resistance, invasion, and metastasis. Hence this review focuses on the role of ICT malfunctions in context with the hallmarks of PDAC. After briefly introducing epidemiology and history of molecular oncology of PDAC and summarizing the recent studies on molecular classification systems, we focus then on the exocrine pancreas as a very active secretory gland which considerably impacts the changes in the ion transport system (the transportome) upon malignant transformation. We highlight multiplicity of ICT members (H+ transporters, Ca2+, K+, Na+ and Cl- channels) and their functional impact in PDAC. We also present some selective therapeutic options to interfere with transportome functions and thereby with key mechanisms of malignant progression. This will hopefully contribute to a better clinical outcome based on improved therapeutic strategies for this still extremely deadly disease.
Collapse
|
23
|
Liu Y, Mikrani R, He Y, Faran Ashraf Baig MM, Abbas M, Naveed M, Tang M, Zhang Q, Li C, Zhou X. TRPM8 channels: A review of distribution and clinical role. Eur J Pharmacol 2020; 882:173312. [PMID: 32610057 DOI: 10.1016/j.ejphar.2020.173312] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Ion channels are important therapeutic targets due to their plethoric involvement in physiological and pathological consequences. The transient receptor potential cation channel subfamily M member 8 (TRPM8) is a nonselective cation channel that controls Ca2+ homeostasis. It has been proposed to be the predominant thermoreceptor for cellular and behavioral responses to cold stimuli in the transient receptor potential (TRP) channel subfamilies and exploited so far to reach the clinical-stage of drug development. TRPM8 channels can be found in multiple organs and tissues, regulating several important processes such as cell proliferation, migration and apoptosis, inflammatory reactions, immunomodulatory effects, pain, and vascular muscle tension. The related disorders have been expanded to new fields ranging from cancer and migraine to dry eye disease, pruritus, irritable bowel syndrome (IBS), and chronic cough. This review is aimed to summarize the distribution of TRPM8 and disorders related to it from a clinical perspective, so as to broaden the scope of knowledge of researchers to conduct more studies on this subject.
Collapse
Affiliation(s)
- Yuqian Liu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Reyaj Mikrani
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Yanjun He
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Muhammad Abbas
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Muhammad Naveed
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Meng Tang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Qin Zhang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Cuican Li
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Xiaohui Zhou
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China; Department of Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, 210017, PR China; Department of Surgery, Nanjing Shuiximen Hospital, Jiangsu Province, 210017, PR China.
| |
Collapse
|
24
|
Stokłosa P, Borgström A, Kappel S, Peinelt C. TRP Channels in Digestive Tract Cancers. Int J Mol Sci 2020; 21:E1877. [PMID: 32182937 PMCID: PMC7084354 DOI: 10.3390/ijms21051877] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/24/2022] Open
Abstract
Cancers of the digestive tract are among the most prevalent types of cancer. These types of cancers are often diagnosed at a late stage, which results in a poor prognosis. Currently, many biomedical studies focus on the role of ion channels, in particular transient receptor potential (TRP) channels, in cancer pathophysiology. TRP channels show mostly non-selective permeability to monovalent and divalent cations. TRP channels are often dysregulated in digestive tract cancers, which can result in alterations of cancer hallmark functions, such as enhanced proliferation, migration, invasion and the inability to induce apoptosis. Therefore, TRP channels could serve as potential diagnostic biomarkers. Moreover, TRP channels are mostly expressed on the cell surface and ion channel targeting drugs do not need to enter the cell, making them attractive candidate drug targets. In this review, we summarize the current knowledge about TRP channels in connection to digestive tract cancers (oral cancer, esophageal cancer, liver cancer, pancreatic cancer, gastric cancer and colorectal cancer) and give an outlook on the potential of TRP channels as cancer biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Paulina Stokłosa
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, 3012 Bern, Switzerland; (A.B.); (S.K.); (C.P.)
| | | | | | | |
Collapse
|
25
|
Transient Receptor Potential Cation Channels in Cancer Therapy. Med Sci (Basel) 2019; 7:medsci7120108. [PMID: 31801263 PMCID: PMC6950741 DOI: 10.3390/medsci7120108] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
In mammals, the transient receptor potential (TRP) channels family consists of six different families, namely TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPML (mucolipin), TRPP (polycystin), and TRPA (ankyrin), that are strictly connected with cancer cell proliferation, differentiation, cell death, angiogenesis, migration, and invasion. Changes in TRP channels' expression and function have been found to regulate cell proliferation and resistance or sensitivity of cancer cells to apoptotic-induced cell death, resulting in cancer-promoting effects or resistance to chemotherapy treatments. This review summarizes the data reported so far on the effect of targeting TRP channels in different types of cancer by using multiple TRP-specific agonists, antagonists alone, or in combination with classic chemotherapeutic agents, microRNA specifically targeting the TRP channels, and so forth, and the in vitro and in vivo feasibility evaluated in experimental models and in cancer patients. Considerable efforts have been made to fight cancer cells, and therapies targeting TRP channels seem to be the most promising strategy. However, more in-depth investigations are required to completely understand the role of TRP channels in cancer in order to design new, more specific, and valuable pharmacological tools.
Collapse
|
26
|
Danggui Buxue Decoction Sensitizes the Response of Non-Small-Cell Lung Cancer to Gemcitabine via Regulating Deoxycytidine Kinase and P-glycoprotein. Molecules 2019; 24:molecules24102011. [PMID: 31130654 PMCID: PMC6572355 DOI: 10.3390/molecules24102011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/11/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
This study aimed to investigate whether the anti-tumor effect of gemcitabine (GEM) in non-small-cell lung cancer (NSCLC) treatment was affected by Danggui Buxue decoction (DBD), and explore the potential mechanisms. The combined use of GEM and DBD showed an enhanced tumor growth inhibition effect in a murine Lewis lung carcinoma (LLC) model. LC-MS/MS results showed that the pharmacokinetic behaviors of a GEM active metabolite, gemcitabine triphosphate (dFdCTP), were found to be altered remarkably in the peripheral blood mononuclear cells (PBMC) of DBD co-administration rats. In addition, after co-administration of DBD with GEM, Western Blot and qPCR results confirmed that the expression of deoxycytidine kinase (dCK) in tumor tissues of LLC-bearing mice were markedly increased. DBD co-administration also reversed the upregulation of P-glycoprotein (P-gp) in tumor tissues induced by GEM. Moreover, DBD could notably up-regulate the IL-12p70 and GM-CSF expression in mice serum, suggesting potential immunomodulatory activities in tumor-bearing mice. Meanwhile, DBD inhibited the P-gp efflux activity in A549 cells. Therefore, the regulation of dCK and P-gp played important roles in the alternation of GEM pharmacokinetics and the enhancement of the anti-tumor effect of GEM. DBD being a potential dCK promoter could work as an adjuvant agent to boost the anticancer effect of GEM.
Collapse
|