1
|
Vanhove MPM, Kmentová N, Faes C, Fernandes JMO, Hahn C, Hens N, Pariselle A, Koblmüller S. Understanding the Influence of Host Radiation on Symbiont Speciation through Parasites of Species Flocks. Cold Spring Harb Perspect Biol 2025; 17:a041450. [PMID: 38768969 PMCID: PMC11694742 DOI: 10.1101/cshperspect.a041450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
(Adaptive) radiations have attracted evolutionary biologists for a long time as ideal model systems to study patterns and processes of often rapid speciation. However, whereas a wealth of (sometimes already genome-scale) data is available for host radiations, very few studies target the patterns of diversification in their symbionts, even though they would be excellent models to study symbiont speciation. Our review summarizes what little is known about general patterns of symbiont diversification in often iconic adaptive host radiations and to what extent these patterns are dependent on the evolutionary trajectories of their hosts. We identify research gaps that need to be addressed in the future and discuss the potential of approaches not yet typically used in these study systems, such as epidemiological disease modeling and new omics technologies, for significantly advancing our understanding of these complex eco-evolutionary relationships.
Collapse
Affiliation(s)
- Maarten P M Vanhove
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Nikol Kmentová
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Christel Faes
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-Biostat), Data Science Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jorge M O Fernandes
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
- Institut de Ciències del Mar, Spanish National Research Council, 08003 Barcelona, Spain
| | - Christoph Hahn
- Institute of Biology, University of Graz, 8010 Graz, Austria
| | - Niel Hens
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-Biostat), Data Science Institute, Hasselt University, 3590 Diepenbeek, Belgium
- Centre for Health Economic Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, 2000 Antwerpen, Belgium
| | - Antoine Pariselle
- Institute of Evolutionary Science of Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, Institut de Recherche pour le Développement, 34394 Montpellier, France
- Laboratory Biodiversity, Ecology and Genome, Faculty of Sciences, Mohammed V University in Rabat, 10000 Rabat, Morocco
| | | |
Collapse
|
2
|
Saengpheng C, Purivirojkul W. Three new species of Pseudorhabdosynochus (Monogenea, Diplectanidae) from several species of Cephalopholis and Epinephelus (Perciformes, Serranidae) from Thailand. PARASITE (PARIS, FRANCE) 2022; 29:48. [PMID: 36282090 PMCID: PMC9595041 DOI: 10.1051/parasite/2022049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
Abstract
Pseudorhabdosynochus suratthaniensis n. sp. is described from the gills of Cephalopholis argus; P. cephalopholi n. sp., from the gills of C. sonnerati; and P. samaesarnensis n. sp., from the gills of Epinephelus lanceolatus. These fish were all caught in the Gulf of Thailand. Pseudorhabdosynochus suratthaniensis n. sp. is distinguished from congeneric species by the structure of its sclerotized vagina, which has a wide sclerotized trumpet and a single large primary chamber, and by the number of rows of rodlets in each of its squamodiscs. Pseudorhabdosynochus cephalopholi n. sp. is also distinguished by the structure of its sclerotized vagina that, like the P. suratthaniensis n. sp., has a sclerotized trumpet, but it also has a long coiled or curved primary canal near its midlength, and a distal part with a primary chamber and a secondary chamber communicating with the primary chamber through a short secondary canal. In addition, P. cephalopholi n. sp. is distinguished by some sclerotized organs (ventral and dorsal hamuli, ventral bar, and quadriloculate organ) with different lengths, and by the number of rows of rodlets in each of its squamodiscs. Pseudorhabdosynochus samaesarnensis n. sp. is distinguished by its sclerotized vagina that has an anterior cup-shaped trumpet and a short straight or curved primary canal. For Thailand, these are the first species of Pseudorhabdosynochus described from species of Cephalopholis and the second species of Pseudorhabdosynochus described from Epinephelus.
Collapse
Affiliation(s)
- Chompunooch Saengpheng
- Animal Systematics and Ecology Speciality Research Unit (ASESRU), Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
| | - Watchariya Purivirojkul
- Animal Systematics and Ecology Speciality Research Unit (ASESRU), Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand - Biodiversity Center Kasetsart University (BDCKU), Bangkok 10900, Thailand
| |
Collapse
|
3
|
Nam UH, Kim JH. Development of a PCR-RFLP method for differential identification of Microcotyle sebastis and Microcotyle caudata isolated from cultured rockfish in Korea. JOURNAL OF FISH DISEASES 2022; 45:411-419. [PMID: 34905238 DOI: 10.1111/jfd.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Microcotylid monogeneans can cause considerable health problems in cultured fish, and several Microcotyle species are reported from scorpaenid fish, an economically important aquaculture target species in Korea. We developed a PCR-RFLP assay targeting the mitochondrial cox1 gene, for discriminating Microcotyle sebastis and M. caudata from cultured Korean rockfish Sebastes schlegelii and dark-banded rockfish S. inermis. AseI enzyme treatment of the PCR products showed that M. sebastis sequence was cleaved while M. caudata was not. A total of 95.2% (118/124) of monogeneans from S. schlegelii were identified as M. sebastis, and 96.2% (126/131) of monogeneans from S. inermis were identified as M. caudata by PCR-RFLP. However, the remaining parasites from each host showed the opposite digestion pattern. Additional analyses of these specimens by targeting the ITS region by PCR-RFLP showed the same results, suggesting that cross-species infection by the parasites may have occurred. In Korea, S. inermis net cages are commonly located nearby S. schlegelii net cages, and this encaged proximity might have provided the opportunity for cross-infection to occur. Further examination of wild host populations and experimental cross-infection will be necessary to explain this phenomenon. The PCR-RFLP method in this study will help investigate the epidemiology and infection dynamics of Microcotyle species in S. inermis.
Collapse
Affiliation(s)
- U-Hwa Nam
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, South Korea
| | - Jeong-Ho Kim
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, South Korea
| |
Collapse
|
4
|
Contrasting Host-Parasite Population Structure: Morphology and Mitogenomics of a Parasitic Flatworm on Pelagic Deepwater Cichlid Fishes from Lake Tanganyika. BIOLOGY 2021; 10:biology10080797. [PMID: 34440029 PMCID: PMC8389663 DOI: 10.3390/biology10080797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022]
Abstract
Little phylogeographic structure is presumed for highly mobile species in pelagic zones. Lake Tanganyika is a unique ecosystem with a speciose and largely endemic fauna famous for its remarkable evolutionary history. In bathybatine cichlid fishes, the pattern of lake-wide population differentiation differs among species. We assessed the congruence between the phylogeographic structure of bathybatine cichlids and their parasitic flatworm Cichlidogyrus casuarinus to test the magnifying glass hypothesis. Additionally, we evaluated the use of a PoolSeq approach to study intraspecific variation in dactylogyrid monogeneans. The lake-wide population structure of C. casuarinus ex Hemibates stenosoma was assessed based on a portion of the cox1 gene combined with morphological characterisation. Additionally, intraspecific mitogenomic variation among 80 parasite samples from one spatially constrained metapopulation was assessed using shotgun NGS. While no clear geographic genetic structure was detected in parasites, both geographic and host-related phenotypic variation was apparent. The incongruence with the genetic north-south gradient observed in H. stenosoma may be explained by the broad host range of this flatworm including eupelagic bathybatine host species that form panmictic populations across the lake. In addition, we present the first parasite mitogenome from Lake Tanganyika and propose a methodological framework for studying the intraspecific mitogenomic variation of dactylogyrid monogeneans.
Collapse
|
5
|
Moravec F, Justine JL. Two new species of nematode parasites, Cucullanus epinepheli sp. n. (Cucullanidae) and Procamallanus (Spirocamallanus) sinespinis sp. n. (Camallanidae), from marine serranid and haemulid fishes off New Caledonia. Folia Parasitol (Praha) 2017; 64. [PMID: 28402282 DOI: 10.14411/fp.2017.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/03/2017] [Indexed: 11/19/2022]
Abstract
Based on light and scanning electron microscopical studies, two new species of parasitic nematodes are described from marine perciform fishes off New Caledonia: Cucullanus epinepheli sp. n. (Cucullanidae) from the intestine of the brownspotted grouper Epinephelus chlorostigma (Valenciennes) (Serranidae) and Procamallanus (Spirocamallanus) sinespinis sp. n. from the intestine of the silver grunt Pomadasys argenteus (Forsskål) (Haemulidae). Cucullanus epinepheli sp. n. differs from its congeners mainly in possessing a unique structure of the anterior, elevated cloacal lip with a large posterior outgrowth covering the cloacal aperture and in the presence of cervical alae and two small preanal papillae on the median dome-shaped precloacal elevation. This is the second known nominal species of this genus parasitising fishes of the family Serranidae and the second representative of Cucullanus Müller, 1777 recorded from fishes in New Caledonian waters. Procamallanus (Spirocamallanus) sinespinis sp. n. is mainly characterised by 10-12 spiral ridges in the buccal capsule, the presence of wide caudal alae, three pairs of pedunculate preanal papillae, two unequally long spicules (465-525 µm and 218-231 µm) and by the tail tip with a knob-like structure in the male, and the broad, rounded tail with a terminal digit-like protrusion without cuticular spikes in the female. This is the fifth nominal species of the subgenus Spirocamallanus Olsen, 1952 reported from fishes in New Caledonian waters.
Collapse
Affiliation(s)
- Frantisek Moravec
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Jean-Lou Justine
- Institut Systematique, Evolution, Biodiversite, Museum National d'Histoire Naturelle, Sorbonne Universites, Paris, France
| |
Collapse
|
6
|
Chaabane A, Neifar L, Justine JL. Diplectanids from Mycteroperca spp. (Epinephelidae) in the Mediterranean Sea: Redescriptions of six species from material collected off Tunisia and Libya, proposal for the 'Pseudorhabdosynochus riouxi group', and a taxonomic key. PLoS One 2017; 12:e0171392. [PMID: 28152034 PMCID: PMC5289622 DOI: 10.1371/journal.pone.0171392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/19/2017] [Indexed: 11/18/2022] Open
Abstract
Diplectanid monogeneans are gill parasites that can infect fish in huge numbers and thus become harmful, especially in maricultured fish. It is therefore useful to have taxonomic tools, such as keys, to identify species. The following diplectanid species from groupers of the Mediterranean Sea were studied: five species of Pseudorhabdosynochus Yamaguti, 1958, including P. riouxi (Oliver, 1986) Kritsky & Beverley-Burton, 1986 from the dusky grouper Mycteroperca marginata, P. enitsuji Neifar & Euzet, 2007, P. bouaini Neifar & Euzet, 2007, P. dolicocolpos Neifar & Euzet, 2007 and P. sinediscus Neifar & Euzet, 2007 from the goldblotch grouper M. costae, and Echinoplectanum echinophallus (Euzet & Oliver, 1965) Justine & Euzet, 2006 from the dusky grouper. New material was obtained from fish collected from off Tunisia and Libya and compared to the type-material and voucher specimens in museum collections. Identifications of fish were confirmed by barcoding of cytochrome c oxidase subunit I (COI) sequences. The sclerotized vagina was considered the most important structure for systematics. The three species P. riouxi, P. bouaini, and P. enitsuji share a common general structure of the sclerotized vagina with a conspicuous spherical secondary chamber. We thus propose the 'Pseudorhabdosynochus riouxi group' to accommodate them. Pseudorhabdosynochus dolicocolpos has an elongate vaginal structure that is completely different from all its congeneric species reported from the Mediterranean Sea, and Pseudorhabdosynochus sinediscus has a sclerotized vagina in which the secondary chamber is not visible, and a haptor without squamodiscs. A taxonomic key to diplectanid species on Mycteroperca spp. in the Mediterranean Sea is proposed; it includes ten species of Pseudorhabdosynochus and one species of Echinoplectanum.
Collapse
Affiliation(s)
- Amira Chaabane
- Laboratoire de Biodiversité et Écosystèmes Aquatiques, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisie
| | - Lassad Neifar
- Laboratoire de Biodiversité et Écosystèmes Aquatiques, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisie
| | - Jean-Lou Justine
- ISYEB, Institut Systématique, Évolution, Biodiversité, UMR7205 (CNRS, EPHE, MNHN, UPMC), Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
| |
Collapse
|
7
|
Kmentová N, Gelnar M, Mendlová M, Van Steenberge M, Koblmüller S, Vanhove MPM. Reduced host-specificity in a parasite infecting non-littoral Lake Tanganyika cichlids evidenced by intraspecific morphological and genetic diversity. Sci Rep 2016; 6:39605. [PMID: 28004766 PMCID: PMC5177900 DOI: 10.1038/srep39605] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/24/2016] [Indexed: 12/27/2022] Open
Abstract
Lake Tanganyika is well-known for its high species-richness and rapid radiation processes. Its assemblage of cichlid fishes recently gained momentum as a framework to study parasite ecology and evolution. It offers a rare chance to investigate the influence of a deepwater lifestyle in a freshwater fish-parasite system. Our study represents the first investigation of parasite intraspecific genetic structure related to host specificity in the lake. It focused on the monogenean flatworm Cichlidogyrus casuarinus infecting deepwater cichlids belonging to Bathybates and Hemibates. Morphological examination of C. casuarinus had previously suggested a broad host range, while the lake's other Cichlidogyrus species are usually host specific. However, ongoing speciation or cryptic diversity could not be excluded. To distinguish between these hypotheses, we analysed intraspecific diversity of C. casuarinus. Monogeneans from nearly all representatives of the host genera were examined using morphometrics, geomorphometrics and genetics. We confirmed the low host-specificity of C. casuarinus based on morphology and nuclear DNA. Yet, intraspecific variation of sclerotized structures was observed. Nevertheless, the highly variable mitochondrial DNA indicated recent population expansion, but no ongoing parasite speciation, confirming, for the first time in freshwater, reduced parasite host specificity in the deepwater realm, probably an adaptation to low host availability.
Collapse
Affiliation(s)
- Nikol Kmentová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Milan Gelnar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Monika Mendlová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Maarten Van Steenberge
- Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium.,Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria.,Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Stephan Koblmüller
- Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria.,Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 603 65 Brno, Czech Republic
| | - Maarten P M Vanhove
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.,Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium.,Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium.,Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity &Toxicology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
| |
Collapse
|
8
|
Ayadi ZEM, Gey D, Justine JL, Tazerouti F. A new species of Microcotyle (Monogenea: Microcotylidae) from Scorpaena notata (Teleostei: Scorpaenidae) in the Mediterranean Sea. Parasitol Int 2016; 66:37-42. [PMID: 27840197 DOI: 10.1016/j.parint.2016.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/05/2016] [Accepted: 11/09/2016] [Indexed: 11/16/2022]
Abstract
We collected specimens of Microcotyle spp. from two species of scorpaeniform fishes off Algeria, namely Scorpaena notata and Helicolenus dactylopterus. The identification of both fishes was confirmed by molecular barcoding of the COI gene. Sequences of COI gene were also obtained for both parasite species. The species from S. notata is described as Microcotyle algeriensis n. sp., on the basis of morphological differences from other species (number of clamps, number of spines in genital atrium, number of testes). Its COI sequence differs from M. sebastis Goto, 1894 (from Sebastes schlegeli from a fish farm in South Korea) by 14.6%. The species from H. dactylopterus is distinct from M. algeriensis on the basis of morphology (number of clamps, number of spines in genital atrium) and COI sequence (4.5% divergence) and is also distinct from M. sebastis in its COI sequence (12.3%). We refrained from describing it as new because M. sebastis, a species originally described from scorpaeniform fishes off Japan, has been recorded in various hosts in the North and South Pacific, Atlantic and Mediterranean (for the latter, in the same host, H. dactylopterus). We believe that correct specific assignment of species of Microcotyle from scorpaeniform fishes needs a detailed morphological and molecular study of representatives from various locations and hosts.
Collapse
Affiliation(s)
- Zouhour El Mouna Ayadi
- Laboratoire de Biodiversité et Environnement: Interactions et Génomes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene, BP 32, El Alia Bab Ezzouar, Alger, Algeria
| | - Delphine Gey
- Service de Systématique moléculaire, UMS 2700 CNRS, Muséum National d'Histoire Naturelle, Sorbonne Universités, CP 26, 43 Rue Cuvier, 75231 Paris cedex 05, France
| | - Jean-Lou Justine
- Institut de Systématique, Évolution, Biodiversité, ISYEB, UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP51, 75231 Paris cedex 05, France.
| | - Fadila Tazerouti
- Laboratoire de Biodiversité et Environnement: Interactions et Génomes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene, BP 32, El Alia Bab Ezzouar, Alger, Algeria.
| |
Collapse
|
9
|
Species of Pseudorhabdosynochus (Monogenea, Diplectanidae) from Groupers (Mycteroperca spp., Epinephelidae) in the Mediterranean and Eastern Atlantic Ocean, with Special Reference to the 'Beverleyburtonae Group' and Description of Two New Species. PLoS One 2016; 11:e0159886. [PMID: 27532108 PMCID: PMC4988817 DOI: 10.1371/journal.pone.0159886] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/08/2016] [Indexed: 12/28/2022] Open
Abstract
Pseudorhabdosynochus Yamaguti, 1958 is a species-rich diplectanid genus, mainly restricted to the gills of groupers (Epinephelidae) and especially abundant in warm seas. Species from the Mediterranean are not fully documented. Two new and two previously known species from the gills of Mycteroperca spp. (M. costae, M. rubra, and M. marginata) in the Mediterranean and Eastern Atlantic Ocean are described here from new material and slides kept in collections. Identifications of newly collected fish were ascertained by barcoding of cytochrome c oxidase subunit I (COI) sequences. Pseudorhabdosynochus beverleyburtonae (Oliver, 1984) Kritsky & Beverley-Burton, 1986 and P. sosia Neifar & Euzet 2007 are redescribed from type-specimens and new specimens collected off Tunisia and Libya from M. marginata and M. costae, respectively. Pseudorhabdosynochus oliveri n. sp., from M. marginata (type-host) off the Mediterranean coast of France (type-locality), is described from specimens found among voucher specimens of P. beverleyburtonae deposited by Guy Oliver in the collection of the Muséum National d’Histoire Naturelle, Paris. Pseudorhabdosynochus oliveri is distinguished by the shape of its sclerotised vagina; it was not found in the other localities investigated. Pseudorhabdosynochus hayet n. sp. is described from M. rubra (type host) off Senegal (type-locality) and Tunisia. Pseudorhabdosynochus hayet is morphologically similar to P. sosia (type-host: M. costae) but was distinguished by differences in measurements of the vagina and male copulatory organ, different host, and divergent COI sequences. The four species (P. beverleyburtonae, P. sosia, P. oliveri, and P. hayet) share common characteristics such as squamodiscs with 2 innermost circular rows of rodlets and a similar general structure of the sclerotised vagina; we propose to group them into a ‘beverleyburtonae group’ within Pseudorhabdosynochus.
Collapse
|
10
|
Chaabane A, Justine JL, Gey D, Bakenhaster MD, Neifar L. Pseudorhabdosynochus sulamericanus (Monogenea, Diplectanidae), a parasite of deep-sea groupers (Serranidae) occurs transatlantically on three congeneric hosts (Hyporthodus spp.), one from the Mediterranean Sea and two from the western Atlantic. PeerJ 2016; 4:e2233. [PMID: 27602259 PMCID: PMC4991870 DOI: 10.7717/peerj.2233] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/17/2016] [Indexed: 11/21/2022] Open
Abstract
Little is known of the diversity of the monogenean parasites infesting deep-sea groupers, and there is even less information available about their geographic distributions within the ranges of their hosts. To improve our understanding of these host-parasite relationships we conducted parasitological evaluations of the deep-water Haifa grouper Hyporthodus haifensis from the southern Mediterranean off Tunisia and Libya. We collected more than one species of diplectanid monogeneans from this host, but among these only one dominant species was abundant. This proved to be morphologically very similar to Pseudorhabdosynochus sulamericanus Santos, Buchmann & Gibson, 2000, a species originally described from the congeneric host H. niveatus off Brazil and also recorded from H. niveatus and H. nigritus off Florida. Here, we conducted a morphological comparison between newly collected specimens and those previously deposited in museum collections by other authors. Further, we used COI barcoding to ascertain the specific identity of the three host species to better elucidate the circumstances that might explain the unexpectedly broad distribution of P. sulamericanus. We assigned our specimens from H. haifensis to P. sulamericanus primarily on the basis of morphological characteristics of the sclerotized vagina. We also noted morphological characteristics of eastern and western Atlantic specimens that are not clearly described or not given in previous descriptions and so prepared a redescription of the species. We confirmed, by COI barcoding, that no sister-species relationships were evident among the three hosts of P. sulamericanus. Our observation that P. sulamericanus infects unrelated host species with putatively allopatric distributions was unexpected given the very limited dispersive capabilities and the high degree of host specificity common to members of Pseudorhabdosynochus. This transatlantic distribution raises questions with regard to phylogeography and assumptions about the allopatry of Atlantic grouper species from the Americas and Afro-Eurasia. Here, we propose some hypothetical explanations for our findings.
Collapse
Affiliation(s)
- Amira Chaabane
- Faculté des Sciences de Sfax, University of Sfax , Sfax , Tunisia
| | - Jean-Lou Justine
- ISYEB, Institut de Systématique, Évolution, Biodiversité, Muséum National d'Histoire Naturelle, Sorbonne Universités , Paris , France
| | - Delphine Gey
- UMS 2700 Service de Systématique Moléculaire, Muséum National d'Histoire Naturelle, Sorbonne Universités , Paris , France
| | - Micah D Bakenhaster
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission , St. Petersburg , FL , USA
| | - Lassad Neifar
- Faculté des Sciences de Sfax, University of Sfax , Sfax , Tunisia
| |
Collapse
|
11
|
Kmentová N, Gelnar M, Koblmüller S, Vanhove MPM. Deep-water parasite diversity in Lake Tanganyika: description of two new monogenean species from benthopelagic cichlid fishes. Parasit Vectors 2016; 9:426. [PMID: 27488497 PMCID: PMC4972994 DOI: 10.1186/s13071-016-1696-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/13/2016] [Indexed: 11/10/2022] Open
Abstract
Background Lake Tanganyika is the world’s second deepest lake. Its diverse cichlid assemblage offers a unique opportunity for studying a deep-water host-parasite model in freshwater. Low host specificity and a broad host range including representatives of the Bathybatini tribe in the only monogenean parasite described from this habitat, Cichlidogyrus casuarinus Pariselle, Muterezi Bukinga & Vanhove, 2015 suggest a link between lower specificity and lower host density. Conversely, high host specificity and species richness are reported for monogeneans of the lake’s littoral cichlids. We further investigated whether the deep-water environment in Lake Tanganyika is really monogenean species-depauperate by investigating the monogenean fauna of Trematocara unimaculatum (a representative of the tribe Trematocarini, the sister lineage of the Bathybatini) and Benthochromis horii, a member of the tribe Benthochromini, found in the same deep-water habitat as the already known hosts of C. casuarinus. Methods Sclerotised structures of the collected monogenean individuals were characterised morphologically using light microscopy and morphometrics. Results Both examined cichlid species are infected by a single monogenean species each, which are new to science. They are described as Cichlidogyrus brunnensis n. sp., infecting T. unimaculatum, and Cichlidogyrus attenboroughi n. sp., parasitising on B. horii. Diagnostic characteristics include the distal bifurcation of the accessory piece in C. brunnensis n. sp. and the combination of long auricles and no heel in C. attenboroughi n. sp. In addition C. brunnensis n. sp. does not resemble C. casuarinus, the only species of Cichlidogyrus thus far reported from the Bathybatini. Also Cichlidogyrus attenboroughi n. sp. does not resemble any of the monogenean species documented from the pelagic zone of the lake and is among the few described species of Cichlidogyrus without heel. Conclusions As two new and non-resembling Cichlidogyrus species are described from T. unimaculatum and B. horii, colonisation of the deep-water habitat by more than one morphotype of Cichlidogyrus is evident. Based on morphological comparisons with previously described monogenean species, parasite transfers with the littoral zone are possible. Therefore, parasites of pelagic cichlids in the lake do not seem to only mirror host phylogeny and the evolutionary history of this host-parasite system merits further attention.
Collapse
Affiliation(s)
- Nikol Kmentová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Milan Gelnar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Stephan Koblmüller
- Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria.,Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 603 65, Brno, Czech Republic
| | - Maarten P M Vanhove
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.,Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080, Tervuren, Belgium.,Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000, Leuven, Belgium.,Present address: Capacities for Biodiversity and Sustainable Development, Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000, Brussels, Belgium
| |
Collapse
|
12
|
Kmentová N, Gelnar M, Koblmüller S, Vanhove MPM. First insights into the diversity of gill monogeneans of 'Gnathochromis' and Limnochromis (Teleostei, Cichlidae) in Burundi: do the parasites mirror host ecology and phylogenetic history? PeerJ 2016; 4:e1629. [PMID: 26855869 PMCID: PMC4741085 DOI: 10.7717/peerj.1629] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/05/2016] [Indexed: 12/28/2022] Open
Abstract
Monogenea is one of the most species-rich groups of parasitic flatworms worldwide, with many species described only recently, which is particularly true for African monogeneans. For example, Cichlidogyrus, a genus mostly occurring on African cichlids, comprises more than 100 nominal species. Twenty-two of these have been described from Lake Tanganyika, a famous biodiversity hotspot in which many vertebrate and invertebrate taxa, including monogeneans, underwent unique and spectacular radiations. Given their often high degrees of host specificity, parasitic monogeneans were also used as a potential tool to uncover host species relationships. This study presents the first investigation of the monogenean fauna occurring on the gills of endemic ‘Gnathochromis’ species along the Burundese coastline of Lake Tanganyika. We test whether their monogenean fauna reflects the different phylogenetic position and ecological niche of ‘Gnathochromis’ pfefferi and Gnathochromis permaxillaris. Worms collected from specimens of Limnochromis auritus, a cichlid belonging to the same cichlid tribe as G. permaxillaris, were used for comparison. Morphological as well as genetic characterisation was used for parasite identification. In total, all 73 Cichlidogyrus individuals collected from ‘G.’ pfefferi were identified as C. irenae. This is the only representative of Cichlidogyrus previously described from ‘G.’ pfefferi, its type host. Gnathochromis permaxillaris is infected by a species of Cichlidogyrus morphologically very similar to C. gillardinae. The monogenean species collected from L. auritus is considered as new for science, but sample size was insufficient for a formal description. Our results confirm previous suggestions that ‘G.’ pfefferi as a good disperser is infected by a single monogenean species across the entire Lake Tanganyika. Although G. permaxillaris and L. auritus are placed in the same tribe, Cichlidogyrus sp. occurring on G. permaxillaris is morphologically more similar to C. irenae from ‘G.’ pfefferi, than to the Cichlidogyrus species found on L. auritus. Various evolutionary processes, such as host-switching or duplication events, might underlie the pattern observed in this particular parasite-host system. Additional samples for the Cichlidogyrus species occuring on G. permaxillaris and L. auritus are needed to unravel their evolutionary history by means of (co-)phylogenetic analyses.
Collapse
Affiliation(s)
- Nikol Kmentová
- Department of Botany and Zoology, Masaryk University , Brno , Czech Republic
| | - Milan Gelnar
- Department of Botany and Zoology, Masaryk University , Brno , Czech Republic
| | - Stephan Koblmüller
- Institute of Zoology, University of Graz, Graz, Austria; Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Maarten P M Vanhove
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic; Biology Department, Royal Museum for Central Africa, Tervuren, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, Deparment of Biology, University of Leuven, Leuven, Belgium; Capacities for Biodiversity and Sustainable Development, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| |
Collapse
|
13
|
Shamsi S, Poupa A, Justine JL. Characterisation of Ascaridoid larvae from marine fish off New Caledonia, with description of new Hysterothylacium larval types XIII and XIV. Parasitol Int 2015; 64:397-404. [DOI: 10.1016/j.parint.2015.05.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/12/2015] [Accepted: 05/16/2015] [Indexed: 11/28/2022]
|
14
|
Kritsky DC, Bakenhaster MD, Adams DH. Pseudorhabdosynochus species (Monogenoidea, Diplectanidae) parasitizing groupers (Serranidae, Epinephelinae, Epinephelini) in the western Atlantic Ocean and adjacent waters, with descriptions of 13 new species. Parasite 2015; 22:24. [PMID: 26272242 PMCID: PMC4536336 DOI: 10.1051/parasite/2015024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 07/21/2015] [Indexed: 11/14/2022] Open
Abstract
Seventeen of twenty-three species of groupers collected from the western Atlantic Ocean and adjacent waters were infected with 19 identified species (13 new) of Pseudorhabdosynochus Yamaguti, 1958 (Dactylogyridea, Diplectanidae); specimens of the Spanish flag Gonioplectrus hispanus, coney Cephalopholis fulva, marbled grouper Dermatolepis inermis, mutton hamlet Alphestes afer, and misty grouper Hyporthodus mystacinus were not infected; the yellowmouth grouper Mycteroperca interstitialis and yellowfin grouper Mycteroperca venenosa were infected with unidentified species of Pseudorhabdosynochus; the Atlantic creolefish Paranthias furcifer was infected with an unidentified species of Diplectanidae that could not be accommodated in Pseudorhabdosynochus. The following species of Pseudorhabdosynochus are described or redescribed based entirely or in part on new collections: Pseudorhabdosynochus americanus (Price, 1937) Kritsky & Beverley-Burton, 1986 from Atlantic goliath grouper Epinephelus itajara; Pseudorhabdosynochus yucatanensis Vidal-Martínez, Aguirre-Macedo & Mendoza-Franco, 1997 and Pseudorhabdosynochus justinella n. sp. from red grouper Epinephelus morio; Pseudorhabdosynochus kritskyi Dyer, Williams & Bunkley-Williams, 1995 from gag Mycteroperca microlepis; Pseudorhabdosynochus capurroi Vidal-Martínez & Mendoza-Franco, 1998 from black grouper Mycteroperca bonaci; Pseudorhabdosynochus hyphessometochus n. sp. from Mycteroperca interstitialis; Pseudorhabdosynochus sulamericanus Santos, Buchmann & Gibson, 2000 from snowy grouper Hyporthodus niveatus and Warsaw grouper Hyporthodus nigritus (new host record); Pseudorhabdosynochus firmicoleatus n. sp. from yellowedge grouper Hyporthodus flavolimbatus and snowy grouper H. niveatus; Pseudorhabdosynochus mcmichaeli n. sp., Pseudorhabdosynochus contubernalis n. sp., and Pseudorhabdosynochus vascellum n. sp. from scamp Mycteroperca phenax; Pseudorhabdosynochus meganmarieae n. sp. from graysby Cephalopholis cruentata; Pseudorhabdosynochus beverleyburtonae (Oliver, 1984) Kritsky & Beverley-Burton, 1986 from dusky grouper Mycteroperca marginata; Pseudorhabdosynochus mizellei n. sp. from red hind Epinephelus guttatus; Pseudorhabdosynochus williamsi n. sp. from rock hind Epinephelus adscensionis; Pseudorhabdosynochus bunkleywilliamsae n. sp. from Nassau grouper Epinephelus striatus; Pseudorhabdosynochus mycteropercae n. sp. from tiger grouper Mycteroperca tigris; and Pseudorhabdosynochus tumeovagina n. sp. from speckled hind Epinephelus drummondhayi. Pseudorhabdosynochus woodi n. sp. from red hind Epinephelus guttatus is described based on specimens from the US National Parasite Collection (USNPC). Drawings of the haptoral and copulatory sclerites of the type specimens in the USNPC of Pseudorhabdosynochus monaensis Dyer, Williams & Bunkley-Williams, 1994 from rock hind Epinephelus adscensionis are presented. Finally, a note confirming Pseudorhabdosynochus epinepheli Yamaguti, 1958 rather than its senior synonym Pseudorhabdosynochus epinepheli (Yamaguti, 1938) Kritsky & Beverley-Burton, 1986 as the type species of Pseudorhabdosynochus is provided.
Collapse
Affiliation(s)
- Delane C Kritsky
- Health Education Program, School of Health Professions, Campus Box 8090, Idaho State University, Pocatello, Idaho 83209, USA
| | - Micah D Bakenhaster
- Fish and Wildlife Health Group, Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, 100 8th Avenue Southeast, St. Petersburg, Florida 33701-5020, USA
| | - Douglas H Adams
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, 1220 Prospect Avenue, No. 285, Melbourne, Florida 32901, USA
| |
Collapse
|
15
|
Chaabane A, Neifar L, Justine JL. Pseudorhabdosynochus regius n. sp. (Monogenea, Diplectanidae) from the mottled grouper Mycteroperca rubra (Teleostei) in the Mediterranean Sea and Eastern Atlantic. Parasite 2015; 22:9. [PMID: 25674913 PMCID: PMC4325681 DOI: 10.1051/parasite/2015005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/26/2015] [Indexed: 11/14/2022] Open
Abstract
Pseudorhabdosynochus regius n. sp. is described from the gills of the mottled grouper Mycteroperca rubra caught off Senegal, Tunisia and Libya (type-locality: off Dakar, Senegal). The species is distinguished from its congeners by the structure of its sclerotised vagina (length 26-35 μm), which exhibits a trumpet in continuity with the primary canal, a straight primary canal, and primary and secondary chambers included in a common sclerotised mass along the primary canal. The species is also characterised by small squamodiscs (length 20-40 μm) with 10-11 rows of rodlets. Its closest relatives (based on the structure of the sclerotised vagina) are species mostly found in the Mediterranean Sea and parasites on species of Mycteroperca. A second species of Pseudorhabdosynochus Yamaguti, 1958 is reported from the same host and localities but not described. A list of diplectanids from groupers in the Mediterranean Sea is provided. We point out that a recent article was not compliant with the new Article 8.5.3 of the International Code of Zoological Nomenclature; for this reason, three species, P. nhatrangensis Dang, Bristow, Schander & Berland, 2013, P. vietnamensis Dang et al., 2013 and P. brunei Dang et al., 2013, are invalid.
Collapse
Affiliation(s)
- Amira Chaabane
-
Laboratoire de Biodiversité et Écosystèmes Aquatiques, Faculté des Sciences de Sfax, Université de Sfax BP 1171 3038
Sfax Tunisia
| | - Lassad Neifar
-
Laboratoire de Biodiversité et Écosystèmes Aquatiques, Faculté des Sciences de Sfax, Université de Sfax BP 1171 3038
Sfax Tunisia
| | - Jean-Lou Justine
-
Institut de Systématique, Évolution, Biodiversité, ISYEB, UMR 7205 – CNRS, MNHN, UPMC, EPHE, Muséum National d’Histoire Naturelle, Sorbonne Universités 57 rue Cuvier CP51 75231
Paris cedex 05 France
| |
Collapse
|
16
|
Braga MP, Razzolini E, Boeger WA. Drivers of parasite sharing among Neotropical freshwater fishes. J Anim Ecol 2014; 84:487-97. [PMID: 25283218 DOI: 10.1111/1365-2656.12298] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/26/2014] [Indexed: 12/28/2022]
Abstract
Because host-parasite interactions are so ubiquitous, it is of primary interest for ecologists to understand the factors that generate, maintain and constrain these associations. Phylogenetic comparative studies have found abundant evidence for host-switching to relatively unrelated hosts, sometimes related to diversification events, in a variety of host-parasite systems. For Monogenoidea (Platyhelminthes) parasites, it has been suggested that the co-speciation model alone cannot explain host occurrences, hence host-switching and/or non-vicariant modes of speciation should be associated with the origins and diversification of several monogenoid taxa. The factors that shape broad patterns of parasite sharing were investigated using path analysis as a way to generate hypotheses about the origins of host-parasite interactions between monogenoid gill parasites and Neotropical freshwater fishes. Parasite sharing was assessed from an interaction matrix, and explanatory variables included phylogenetic relationships, environmental preferences, biological traits and geographic distribution for each host species. Although geographic distribution of hosts and host ecology are important factors to understand host-parasite interactions, especially within host lineages that share a relatively recent evolutionary history, phylogeny had the strongest overall direct effect on parasite sharing. Phylogenetic contiguity of host communities may allow a 'stepping-stone' mode of host-switching, which increases parasite sharing. Our results reinforce the importance of including evolutionary history in the study of ecological associations, including emerging infectious diseases risk assessment.
Collapse
Affiliation(s)
- Mariana P Braga
- Laboratório de Ecologia Molecular e Parasitologia Evolutiva, Departamento de Zoologia, Universidade Federal do Paraná, Setor de Ciências Biológicas, Caixa Postal 19073, CEP 81531-980, Curitiba, PR, Brazil
| | - Emanuel Razzolini
- Laboratório de Ecologia Molecular e Parasitologia Evolutiva, Departamento de Zoologia, Universidade Federal do Paraná, Setor de Ciências Biológicas, Caixa Postal 19073, CEP 81531-980, Curitiba, PR, Brazil
| | - Walter A Boeger
- Laboratório de Ecologia Molecular e Parasitologia Evolutiva, Departamento de Zoologia, Universidade Federal do Paraná, Setor de Ciências Biológicas, Caixa Postal 19073, CEP 81531-980, Curitiba, PR, Brazil
| |
Collapse
|
17
|
Are cryptic species a problem for parasitological biological tagging for stock identification of aquatic organisms? Parasitology 2014; 142:125-33. [PMID: 24565166 DOI: 10.1017/s0031182014000092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The effective use of biological tags in stock assessment relies on the reliable identification of the parasites concerned. This may be compromised if cryptic species are not recognized. Here we review what is known about cryptic species in aquatic hosts and its potential importance in this respect. Although strictly cryptic species may be considered as species which can be distinguished only by molecular data, we accept the far looser but more practical definition of species that cannot be readily distinguished morphologically. Cryptic species appear to have been identified most frequently as occurring in separate host species; this is heartening in that this has no significant impact on tagging studies. But cryptic species have occasionally been identified in single hosts sympatrically and are relatively common in geographically distinct populations of the same host species. Ignorance of both kinds of occurrences has the capacity to undermine the reliability of tagging analysis. We review in detail what is known of intra- and interspecific genetic variation over geographical ranges in the trematodes, based on recent molecular studies. Although the existence of cryptic species and evidence of intraspecific variability may appear daunting, we suspect that these complexities will add, and indeed have already added, to the sophistication of the information that can be derived from tagging studies.
Collapse
|
18
|
Vanhove MPM, Tessens B, Schoelinck C, Jondelius U, Littlewood DTJ, Artois T, Huyse T. Problematic barcoding in flatworms: A case-study on monogeneans and rhabdocoels (Platyhelminthes). Zookeys 2013:355-79. [PMID: 24453567 PMCID: PMC3890687 DOI: 10.3897/zookeys.365.5776] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 12/02/2013] [Indexed: 11/12/2022] Open
Abstract
Some taxonomic groups are less amenable to mitochondrial DNA barcoding than others. Due to the paucity of molecular information of understudied groups and the huge molecular diversity within flatworms, primer design has been hampered. Indeed, all attempts to develop universal flatworm-specific COI markers have failed so far. We demonstrate how high molecular variability and contamination problems limit the possibilities for barcoding using standard COI-based protocols in flatworms. As a consequence, molecular identification methods often rely on other widely applicable markers. In the case of Monogenea, a very diverse group of platyhelminth parasites, and Rhabdocoela, representing one-fourth of all free-living flatworm taxa, this has led to a relatively high availability of nuclear ITS and 18S/28S rDNA sequences on GenBank. In a comparison of the effectiveness in species assignment we conclude that mitochondrial and nuclear ribosomal markers perform equally well. In case intraspecific information is needed, rDNA sequences can guide the selection of the appropriate (i.e. taxon-specific) COI primers if available.
Collapse
Affiliation(s)
- Maarten P M Vanhove
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Leuven, Belgium ; Present address: Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Bart Tessens
- Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | | | - Ulf Jondelius
- Department of Invertebrate Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - D Tim J Littlewood
- Division of Parasites & Vectors, Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Tom Artois
- Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tine Huyse
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Leuven, Belgium ; Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| |
Collapse
|
19
|
Justine JL, Beveridge I, Boxshall GA, Bray RA, Miller TL, Moravec F, Trilles JP, Whittington ID. An annotated list of fish parasites (Isopoda, Copepoda, Monogenea, Digenea, Cestoda, Nematoda) collected from Snappers and Bream (Lutjanidae, Nemipteridae, Caesionidae) in New Caledonia confirms high parasite biodiversity on coral reef fish. AQUATIC BIOSYSTEMS 2012; 8:22. [PMID: 22947621 PMCID: PMC3507714 DOI: 10.1186/2046-9063-8-22] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/07/2012] [Indexed: 06/01/2023]
Abstract
UNLABELLED BACKGROUND Coral reefs are areas of maximum biodiversity, but the parasites of coral reef fishes, and especially their species richness, are not well known. Over an 8-year period, parasites were collected from 24 species of Lutjanidae, Nemipteridae and Caesionidae off New Caledonia, South Pacific. RESULTS Host-parasite and parasite-host lists are provided, with a total of 207 host-parasite combinations and 58 parasite species identified at the species level, with 27 new host records. Results are presented for isopods, copepods, monogeneans, digeneans, cestodes and nematodes. When results are restricted to well-sampled reef fish species (sample size > 30), the number of host-parasite combinations is 20-25 per fish species, and the number of parasites identified at the species level is 9-13 per fish species. Lutjanids include reef-associated fish and deeper sea fish from the outer slopes of the coral reef: fish from both milieus were compared. Surprisingly, parasite biodiversity was higher in deeper sea fish than in reef fish (host-parasite combinations: 12.50 vs 10.13, number of species per fish 3.75 vs 3.00); however, we identified four biases which diminish the validity of this comparison. Finally, these results and previously published results allow us to propose a generalization of parasite biodiversity for four major families of reef-associated fishes (Lutjanidae, Nemipteridae, Serranidae and Lethrinidae): well-sampled fish have a mean of 20 host-parasite combinations per fish species, and the number of parasites identified at the species level is 10 per fish species. CONCLUSIONS Since all precautions have been taken to minimize taxon numbers, it is safe to affirm than the number of fish parasites is at least ten times the number of fish species in coral reefs, for species of similar size or larger than the species in the four families studied; this is a major improvement to our estimate of biodiversity in coral reefs. Our results suggest that extinction of a coral reef fish species would eventually result in the coextinction of at least ten species of parasites.
Collapse
Affiliation(s)
- Jean-Lou Justine
- UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, Case postale 51, 55, rue Buffon, 75231 Paris cedex 05, France
| | - Ian Beveridge
- Department of Veterinary Science, University of Melbourne, Veterinary Clinical Centre, Werribee, 3030, Victoria, Australia
| | - Geoffrey A Boxshall
- Department of Zoology, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Rodney A Bray
- Department of Zoology, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Terrence L Miller
- Biodiversity Program, Queensland Museum, PO Box 3300, South Brisbane, Queensland, 4101, Australia
| | - František Moravec
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská, 31 370 05, České Budějovice, Czech Republic
| | - Jean-Paul Trilles
- Équipe Adaptation écophysiologique et Ontogenèse, UMR 5119 (CNRS-UM2-IRD-UM1-IFREMER), Université Montpellier 2, Place Eugène Bataillon, 34095, Montpellier cedex 05, France
| | - Ian D Whittington
- Monogenean Research Laboratory, The South Australian Museum, Adelaide 5000, & Marine Parasitology Laboratory, & Australian Centre for Evolutionary Biology and Biodiversity, The University of Adelaide, North Terrace, Adelaide, 5005, South Australia, Australia
| |
Collapse
|