1
|
Fischer AL, Schmitz M, Thom T, Zafar S, Younas N, da Silva Correia S, da Silva Correia A, Eyyuboglu SC, Zerr I. Alpha-Synuclein Demonstrates Varying Binding Affinities With Different Tau Isoforms. J Neurochem 2025; 169:e70053. [PMID: 40165586 DOI: 10.1111/jnc.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
The hallmark of various neurodegenerative diseases is the accumulation and aggregation of amyloidogenic proteins, such as amyloid-beta (Aβ) and tau in Alzheimer's disease (AD) and alpha-synuclein (aSyn) in synucleinopathies. Many neurodegenerative diseases express mixed pathology. For instance, Lewy bodies are reported in tauopathies and neurofibrillary tau-tangles are detected in synucleinopathies, suggesting a potential co-existence or crosstalk of misfolded aSyn and tau. In the present study, we investigated the binding characteristics of monomeric aSyn with different tau isoforms by using surface plasmon resonance (SPR) spectroscopy allowing monitoring direct protein-protein interactions and their potential co-localization using SH-SY5Y cells. The calculation of the binding parameters (association and dissociation rate constants) indicated the strongest binding affinity between aSyn and tau isoform 1N3R followed by tau 2N3R and tau 2N4R. Co-localization studies in SH-SY5Y cells, treated with aSyn and all six tau isoforms revealed an intracellular co-localization of aSyn with different isoforms of tau. Subcellular fractionation confirmed the cellular uptake and colocalization of tau and aSyn in the same compartment, showing their expression in membrane, nuclear, and cytoskeletal fractions. Understanding the intricate interplay between aSyn and tau is crucial for unraveling the pathophysiology of PD, AD, and related neurodegenerative disorders, ultimately paving the way for the development of effective treatments targeting this interaction. In conclusion, our data indicate that aSyn and tau are direct interaction partners with varying binding affinities depending on the tau isoform. This interaction may be significant for understanding the pathophysiology of dementia with mixed pathologies.
Collapse
Affiliation(s)
- Anna-Lisa Fischer
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Tobias Thom
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Saima Zafar
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Neelam Younas
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Susana da Silva Correia
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Angela da Silva Correia
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Sezgi Canaslan Eyyuboglu
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
2
|
Vlasov IN, Alieva AK, Novosadova EV, Arsenyeva EL, Rosinskaya AV, Partevian SA, Grivennikov IA, Shadrina MI. Transcriptome Analysis of Induced Pluripotent Stem Cells and Neuronal Progenitor Cells, Derived from Discordant Monozygotic Twins with Parkinson's Disease. Cells 2021; 10:3478. [PMID: 34943986 PMCID: PMC8700621 DOI: 10.3390/cells10123478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's Disease (PD) is a widespread severe neurodegenerative disease that is characterized by pronounced deficiency of the dopaminergic system and disruption of the function of other neuromodulator systems. Although heritable genetic factors contribute significantly to PD pathogenesis, only a small percentage of sporadic cases of PD can be explained using known genetic risk factors. Due to that, it could be inferred that changes in gene expression could be important for explaining a significant percentage of PD cases. One of the ways to investigate such changes, while minimizing the effect of genetic factors on experiment, are the study of PD discordant monozygotic twins. In the course of the analysis of transcriptome data obtained from IPSC and NPCs, 20 and 1906 differentially expressed genes were identified respectively. We have observed an overexpression of TNF in NPC cultures, derived from twin with PD. Through investigation of gene interactions and gene involvement in biological processes, we have arrived to a hypothesis that TNF could play a crucial role in PD-related changes occurring in NPC derived from twins with PD, and identified INHBA, WNT7A and DKK1 as possible downstream effectors of TNF.
Collapse
Affiliation(s)
- Ivan N. Vlasov
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, 2 Kurchatova Sq., 123182 Moscow, Russia; (A.K.A.); (E.V.N.); (E.L.A.); (S.A.P.); (I.A.G.); (M.I.S.)
| | - Anelya Kh. Alieva
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, 2 Kurchatova Sq., 123182 Moscow, Russia; (A.K.A.); (E.V.N.); (E.L.A.); (S.A.P.); (I.A.G.); (M.I.S.)
| | - Ekaterina V. Novosadova
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, 2 Kurchatova Sq., 123182 Moscow, Russia; (A.K.A.); (E.V.N.); (E.L.A.); (S.A.P.); (I.A.G.); (M.I.S.)
| | - Elena L. Arsenyeva
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, 2 Kurchatova Sq., 123182 Moscow, Russia; (A.K.A.); (E.V.N.); (E.L.A.); (S.A.P.); (I.A.G.); (M.I.S.)
| | - Anna V. Rosinskaya
- State Public Health Institution Primorsk Regional Clinical Hospital No. 1, 57 Aleutskaya St., 690091 Vladivostok, Russia;
| | - Suzanna A. Partevian
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, 2 Kurchatova Sq., 123182 Moscow, Russia; (A.K.A.); (E.V.N.); (E.L.A.); (S.A.P.); (I.A.G.); (M.I.S.)
| | - Igor A. Grivennikov
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, 2 Kurchatova Sq., 123182 Moscow, Russia; (A.K.A.); (E.V.N.); (E.L.A.); (S.A.P.); (I.A.G.); (M.I.S.)
| | - Maria I. Shadrina
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, 2 Kurchatova Sq., 123182 Moscow, Russia; (A.K.A.); (E.V.N.); (E.L.A.); (S.A.P.); (I.A.G.); (M.I.S.)
| |
Collapse
|
3
|
|
4
|
Alieva AK, Rudenok MM, Novosadova EV, Vlasov IN, Arsenyeva EL, Rosinskaya AV, Grivennikov IA, Slominsky PA, Shadrina MI. Whole-Transcriptome Analysis of Dermal Fibroblasts, Derived from Three Pairs of Monozygotic Twins, Discordant for Parkinson's Disease. J Mol Neurosci 2020; 70:284-293. [PMID: 31823283 PMCID: PMC7222158 DOI: 10.1007/s12031-019-01452-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/17/2019] [Indexed: 01/24/2023]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. In most cases, the development of the disease is sporadic and is not associated with any currently known mutations associated with PD. It is believed that changes associated with the epigenetic regulation of gene expression may play an important role in the pathogenesis of this disease. The study of individuals with an almost identical genetic background, such as monozygotic twins, is one of the best approaches to the analysis of such changes. A whole-transcriptome analysis of dermal fibroblasts obtained from three pairs of monozygotic twins discordant for PD was carried out in this work. Twenty-nine differentially expressed genes were identified in the three pairs of twins. These genes were included in seven processes within two clusters, according to the results of an enrichment analysis. The cluster with the greatest statistical significance included processes associated with the regulation of the differentiation of fat cells, the action potential, and the regulation of glutamatergic synaptic transmission. The most significant genes, which occupied a central position in this cluster, were PTGS2, SCN9A, and GRIK2. These genes can be considered as potential candidate genes for PD.
Collapse
Affiliation(s)
- Anelya Kh. Alieva
- Institute of Molecular Genetics of Russian Academy of Sciences, 2 Kurchatova sq, Moscow, 123182 Russia
| | - Margarita M. Rudenok
- Institute of Molecular Genetics of Russian Academy of Sciences, 2 Kurchatova sq, Moscow, 123182 Russia
| | - Ekaterina V. Novosadova
- Institute of Molecular Genetics of Russian Academy of Sciences, 2 Kurchatova sq, Moscow, 123182 Russia
| | - Ivan N. Vlasov
- Institute of Molecular Genetics of Russian Academy of Sciences, 2 Kurchatova sq, Moscow, 123182 Russia
| | - Elena L. Arsenyeva
- Institute of Molecular Genetics of Russian Academy of Sciences, 2 Kurchatova sq, Moscow, 123182 Russia
| | - Anna V. Rosinskaya
- State Public Health Institution Primorsk Regional Clinical Hospital No. 1, 57 Aleutskaya St, Vladivostok, 690091 Russia
| | - Igor A. Grivennikov
- Institute of Molecular Genetics of Russian Academy of Sciences, 2 Kurchatova sq, Moscow, 123182 Russia
| | - Petr A. Slominsky
- Institute of Molecular Genetics of Russian Academy of Sciences, 2 Kurchatova sq, Moscow, 123182 Russia
| | - Maria I. Shadrina
- Institute of Molecular Genetics of Russian Academy of Sciences, 2 Kurchatova sq, Moscow, 123182 Russia
| |
Collapse
|
5
|
Dickson DW, Heckman MG, Murray ME, Soto AI, Walton RL, Diehl NN, van Gerpen JA, Uitti RJ, Wszolek ZK, Ertekin-Taner N, Knopman DS, Petersen RC, Graff-Radford NR, Boeve BF, Bu G, Ferman TJ, Ross OA. APOE ε4 is associated with severity of Lewy body pathology independent of Alzheimer pathology. Neurology 2018; 91:e1182-e1195. [PMID: 30143564 DOI: 10.1212/wnl.0000000000006212] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/25/2018] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE To evaluate whether APOE ε4 is associated with severity of Lewy body (LB) pathology, independently of Alzheimer disease (AD) pathology. METHODS Six hundred fifty-two autopsy-confirmed LB disease (LBD) cases and 660 clinical controls were genotyped for APOE. In case-control analysis, LBD cases were classified into 9 different groups according to severity of both LB pathology (brainstem, transitional, diffuse) and AD pathology (low, moderate, high) to assess associations between APOE ε4 and risk of different neuropathologically defined LBD subgroups in comparison to controls. In LBD cases only, we also measured LB counts from 5 cortical regions and evaluated associations with ε4 according to severity of AD pathology. RESULTS As expected, APOE ε4 was associated with an increased risk of transitional and diffuse LBD in cases with moderate or high AD pathology (all odds ratios ≥3.42, all p ≤ 0.004). Of note, ε4 was also associated with an increased risk of diffuse LBD with low AD pathology (odds ratio = 3.46, p = 0.001). In the low AD pathology LBD subgroup, ε4 was associated with significantly more LB counts in the 5 cortical regions, independently of Braak stage and Thal phase (all p ≤ 0.002). CONCLUSIONS Our results indicate that APOE ε4 is independently associated with a greater severity of LB pathology. These findings increase our understanding of the mechanism behind reported associations of ε4 with risk of dementia with Lewy bodies and Parkinson disease with dementia, and suggest that ε4 may function as a modifier of processes that favor LB spread rather than acting directly to initiate LB pathology.
Collapse
Affiliation(s)
- Dennis W Dickson
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Michael G Heckman
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Melissa E Murray
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Alexandra I Soto
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Ronald L Walton
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Nancy N Diehl
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Jay A van Gerpen
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Ryan J Uitti
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Zbigniew K Wszolek
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Nilüfer Ertekin-Taner
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - David S Knopman
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Ronald C Petersen
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Neill R Graff-Radford
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Bradley F Boeve
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Guojun Bu
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Tanis J Ferman
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN
| | - Owen A Ross
- From the Department of Neuroscience (D.W.D., M.E.M., A.I.S., R.W., N.E.-T., G.B., O.A.R.), Division of Biomedical Statistics and Informatics (M.G.H., N.N.D.), and Departments of Neurology (J.A.v.G., R.J.U., Z.K.W., N.E.-T., N.R.G.-R.) and Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN.
| |
Collapse
|
6
|
Quansah E, Peelaerts W, Langston JW, Simon DK, Colca J, Brundin P. Targeting energy metabolism via the mitochondrial pyruvate carrier as a novel approach to attenuate neurodegeneration. Mol Neurodegener 2018; 13:28. [PMID: 29793507 PMCID: PMC5968614 DOI: 10.1186/s13024-018-0260-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/17/2018] [Indexed: 12/30/2022] Open
Abstract
Several molecular pathways are currently being targeted in attempts to develop disease-modifying therapies to slow down neurodegeneration in Parkinson’s disease. Failure of cellular energy metabolism has long been implicated in sporadic Parkinson’s disease and recent research on rare inherited forms of Parkinson’s disease have added further weight to the importance of energy metabolism in the disease pathogenesis. There exists a new class of anti-diabetic insulin sensitizers in development that inhibit the mitochondrial pyruvate carrier (MPC), a protein which mediates the import of pyruvate across the inner membrane of mitochondria. Pharmacological inhibition of the MPC was recently found to be strongly neuroprotective in multiple neurotoxin-based and genetic models of neurodegeneration which are relevant to Parkinson’s disease. In this review, we summarize the neuroprotective effects of MPC inhibition and discuss the potential putative underlying mechanisms. These mechanisms involve augmentation of autophagy via attenuation of the activity of the mammalian target of rapamycin (mTOR) in neurons, as well as the inhibition of neuroinflammation, which is at least partly mediated by direct inhibition of MPC in glia cells. We conclude that MPC is a novel and potentially powerful therapeutic target that warrants further study in attempts to slow Parkinson’s disease progression.
Collapse
Affiliation(s)
- Emmanuel Quansah
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, 333 Bostwick Ave, Michigan, 49503, USA
| | - Wouter Peelaerts
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, 333 Bostwick Ave, Michigan, 49503, USA.,KU Leuven, Laboratory for Gene Therapy and Neurobiology, 3000, Leuven, Belgium
| | - J William Langston
- Stanford Udall Center, Department of Pathology, Stanford University, Palo Alto, CA, USA
| | - David K Simon
- Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Jerry Colca
- Metabolic Solutions Development Company, Kalamazoo, MI, 49007, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, 333 Bostwick Ave, Michigan, 49503, USA.
| |
Collapse
|
7
|
Yan X, Uronen RL, Huttunen HJ. The interaction of α-synuclein and Tau: A molecular conspiracy in neurodegeneration? Semin Cell Dev Biol 2018; 99:55-64. [PMID: 29738880 DOI: 10.1016/j.semcdb.2018.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/06/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022]
Abstract
α-synuclein and Tau are proteins prone to pathological misfolding and aggregation that are normally found in the presynaptic and axonal compartments of neurons. Misfolding initiates a homo-oligomerization and aggregation cascade culminating in cerebral accumulation of aggregated α-synuclein and Tau in insoluble protein inclusions in multiple neurodegenerative diseases. Traditionally, α-synuclein-containing Lewy bodies have been associated with Parkinson's disease and Tau-containing neurofibrillary tangles with Alzheimer's disease and various frontotemporal dementia syndromes. However, there is significant overlap and co-occurrence of α-synuclein and Tau pathologies in a spectrum of neurodegenerative diseases. Importantly, α-synuclein and Tau can interact in cells, and their pathological conformations are capable of templating further misfolding and aggregation of each other. They also share a number of protein interactors indicating that network perturbations may contribute to chronic proteotoxic stress and neuronal dysfunction in synucleinopathies and tauopathies, some of which share similarities in both neuropathological and clinical manifestations. In this review, we focus on the protein interactions of these two pathologically important proteins and consider a network biology perspective towards neurodegenerative diseases.
Collapse
Affiliation(s)
- Xu Yan
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Riikka-Liisa Uronen
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Henri J Huttunen
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
8
|
Dementia with Lewy Bodies and Parkinson Disease Dementia: It is the Same Disease! Parkinsonism Relat Disord 2018; 46 Suppl 1:S6-S9. [DOI: 10.1016/j.parkreldis.2017.07.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 07/15/2017] [Indexed: 12/29/2022]
|
9
|
Borrageiro G, Haylett W, Seedat S, Kuivaniemi H, Bardien S. A review of genome-wide transcriptomics studies in Parkinson's disease. Eur J Neurosci 2017; 47:1-16. [DOI: 10.1111/ejn.13760] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/26/2017] [Accepted: 10/19/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Genevie Borrageiro
- Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Stellenbosch University; PO Box 241 Cape Town South Africa
| | - William Haylett
- Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Stellenbosch University; PO Box 241 Cape Town South Africa
| | - Soraya Seedat
- Department of Psychiatry; Faculty of Medicine and Health Sciences; Stellenbosch University; Cape Town South Africa
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Stellenbosch University; PO Box 241 Cape Town South Africa
- Department of Psychiatry; Faculty of Medicine and Health Sciences; Stellenbosch University; Cape Town South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Stellenbosch University; PO Box 241 Cape Town South Africa
| |
Collapse
|
10
|
Heckman MG, Kasanuki K, Diehl NN, Koga S, Soto A, Murray ME, Dickson DW, Ross OA. Parkinson's disease susceptibility variants and severity of Lewy body pathology. Parkinsonism Relat Disord 2017; 44:79-84. [PMID: 28917824 DOI: 10.1016/j.parkreldis.2017.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/21/2017] [Accepted: 09/09/2017] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Meta-analyses of genome-wide association studies (GWAS) have established common genetic risk factors for clinical Parkinson's disease (PD); however, associations between these risk factors and quantitative neuropathologic markers of disease severity have not been well-studied. This study evaluated associations of nominated variants from the most recent PD GWAS meta-analysis with Lewy body disease (LBD) subtype (brainstem, transitional, or diffuse) and pathologic burden of LB pathology as measured by LB counts in five cortical regions in a series of LBD cases. METHODS 547 autopsy-confirmed cases of LBD were included and genotyped for 29 different GWAS-nominated PD risk variants. LB counts were measured in middle frontal (MF), superior temporal (ST), inferior parietal (IP), cingulate (CG), and parahippocampal (PH) gyri. RESULTS None of the variants examined were significantly associated with LB counts in any brain region or with LBD subtype after correcting for multiple testing. Nominally significant (P < 0.05) associations with LB counts where the direction of association was in agreement with that observed in the PD GWAS meta-analysis were observed for variants in BCKDK/STX1B (MF, ST, IP) and SNCA (ST). Additionally, MIR4697 and BCKDK/STX1B variants were nominally associated with LBD subtype. CONCLUSION The lack of a significant association between PD GWAS variants and severity of LB pathology is consistent with the generally subtle association odds ratios that have been observed in disease-risk analysis. These results also suggest that genetic factors other than the susceptibility loci may determine quantitative neuropathologic outcomes in patients with LBD.
Collapse
Affiliation(s)
- Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA.
| | - Koji Kasanuki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| | - Nancy N Diehl
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA.
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| | - Alexandra Soto
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| | | | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA; Mayo Graduate School, Neurobiology of Disease, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
11
|
Genetic Analysis of FBXO2, FBXO6, FBXO12, and FBXO41 Variants in Han Chinese Patients with Sporadic Parkinson's Disease. Neurosci Bull 2017; 33:510-514. [PMID: 28341977 DOI: 10.1007/s12264-017-0122-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/22/2017] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and has an elusive etiology. It is likely multifactorial, and genetic defects contribute to its pathogenesis. At least 25 genetic loci and 20 monogenic genes have been identified in monogenic PD. Recessive F-box protein 7 gene (FBXO7) mutations reportedly cause hereditary parkinsonism. To explore the roles of four paralogs (FBXO2, FBXO6, FBXO12, and FBXO41) in PD development, their variants (rs9614, rs28924120, rs6442117, and rs61733550, respectively) were analyzed in 502 Han Chinese patients with PD and 556 age, gender, and ethnicity-matched normal participants in mainland China. Statistically significant differences in genotypic and allelic frequencies were detected only in the FBXO2 variant rs9614 (P = 0.001 and 0.023, respectively; odds ratio 0.819, 95% confidence interval 0.690-0.973) between patients and controls. These results suggest that the FBXO2 variant rs9614 C allele may decrease the PD risk in mainland Han Chinese and may be a biomarker for PD.
Collapse
|
12
|
Redenšek S, Trošt M, Dolžan V. Genetic Determinants of Parkinson's Disease: Can They Help to Stratify the Patients Based on the Underlying Molecular Defect? Front Aging Neurosci 2017; 9:20. [PMID: 28239348 PMCID: PMC5301007 DOI: 10.3389/fnagi.2017.00020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/25/2017] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a sporadic progressive neurodegenerative brain disorder with a relatively strong genetic background. We have reviewed the current literature about the genetic factors that could be indicative of pathophysiological pathways of PD and their applications in everyday clinical practice. Information on novel risk genes is coming from several genome-wide association studies (GWASs) and their meta-analyses. GWASs that have been performed so far enabled the identification of 24 loci as PD risk factors. These loci take part in numerous cellular processes that may contribute to PD pathology: protein aggregation, protein, and membrane trafficking, lysosomal autophagy, immune response, synaptic function, endocytosis, inflammation, and metabolic pathways are among the most important ones. The identified single nucleotide polymorphisms are usually located in the non-coding regions and their functionality remains to be determined, although they presumably influence gene expression. It is important to be aware of a very low contribution of a single genetic risk factor to PD development; therefore, novel prognostic indices need to account for the cumulative nature of genetic risk factors. A better understanding of PD pathophysiology and its genetic background will help to elucidate the underlying pathological processes. Such knowledge may help physicians to recognize subjects with the highest risk for the development of PD, and provide an opportunity for the identification of novel potential targets for neuroprotective treatment. Moreover, it may enable stratification of the PD patients according to their genetic fingerprint to properly personalize their treatment as well as supportive measures.
Collapse
Affiliation(s)
- Sara Redenšek
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana Ljubljana, Slovenia
| | - Maja Trošt
- Department of Neurology, University Medical Centre Ljubljana Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana Ljubljana, Slovenia
| |
Collapse
|
13
|
Ahmed RM, Devenney EM, Irish M, Ittner A, Naismith S, Ittner LM, Rohrer JD, Halliday GM, Eisen A, Hodges JR, Kiernan MC. Neuronal network disintegration: common pathways linking neurodegenerative diseases. J Neurol Neurosurg Psychiatry 2016; 87:1234-1241. [PMID: 27172939 PMCID: PMC5099318 DOI: 10.1136/jnnp-2014-308350] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/18/2016] [Indexed: 12/16/2022]
Abstract
Neurodegeneration refers to a heterogeneous group of brain disorders that progressively evolve. It has been increasingly appreciated that many neurodegenerative conditions overlap at multiple levels and therefore traditional clinicopathological correlation approaches to better classify a disease have met with limited success. Neuronal network disintegration is fundamental to neurodegeneration, and concepts based around such a concept may better explain the overlap between their clinical and pathological phenotypes. In this Review, promoters of overlap in neurodegeneration incorporating behavioural, cognitive, metabolic, motor, and extrapyramidal presentations will be critically appraised. In addition, evidence that may support the existence of large-scale networks that might be contributing to phenotypic differentiation will be considered across a neurodegenerative spectrum. Disintegration of neuronal networks through different pathological processes, such as prion-like spread, may provide a better paradigm of disease and thereby facilitate the identification of novel therapies for neurodegeneration.
Collapse
Affiliation(s)
- Rebekah M Ahmed
- Sydney Medical School Brain & Mind Centre, University of Sydney, Sydney, New South Wales, Australia Neuroscience Research Australia, University of NSW, Sydney, New South Wales, Australia
| | - Emma M Devenney
- Sydney Medical School Brain & Mind Centre, University of Sydney, Sydney, New South Wales, Australia Neuroscience Research Australia, University of NSW, Sydney, New South Wales, Australia
| | - Muireann Irish
- Neuroscience Research Australia, University of NSW, Sydney, New South Wales, Australia School of Psychology, the University of New South Wales, Sydney, Australia
| | - Arne Ittner
- Faculty of Medicine, Dementia Research Unit, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Sharon Naismith
- School of Psychology, Brain & Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Lars M Ittner
- Faculty of Medicine, Dementia Research Unit, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Jonathan D Rohrer
- Dementia Research Centre, University College London Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Glenda M Halliday
- Neuroscience Research Australia, University of NSW, Sydney, New South Wales, Australia
| | - Andrew Eisen
- University of British Columbia, Vancouver, British Columbia, Canada
| | - John R Hodges
- Neuroscience Research Australia, University of NSW, Sydney, New South Wales, Australia
| | - Matthew C Kiernan
- Sydney Medical School Brain & Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Heckman MG, Soto-Ortolaza AI, Contreras MYS, Murray ME, Pedraza O, Diehl NN, Walton R, Labbé C, Lorenzo-Betancor O, Uitti RJ, van Gerpen J, Ertekin-Taner N, Smith GE, Kantarci K, Savica R, Jones DT, Graff-Radford J, Knopman DS, Lowe VJ, Jack CR, Petersen RC, Parisi JE, Rademakers R, Wszolek ZK, Graff-Radford NR, Ferman TJ, Dickson DW, Boeve BF, Ross OA. LRRK2 variation and dementia with Lewy bodies. Parkinsonism Relat Disord 2016; 31:98-103. [PMID: 27521182 DOI: 10.1016/j.parkreldis.2016.07.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/11/2016] [Accepted: 07/27/2016] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The leucine-rich repeat kinase 2 (LRRK2) gene contains several variants that cause Parkinson's disease (PD) and others that modify PD risk. However, little is known about the role of LRRK2 in dementia with Lewy bodies (DLB). Aims of this study were to screen DLB patients for pathogenic LRRK2 variants and to evaluate associations between common LRRK2 variants and risk of DLB. METHODS 417 clinical DLB patients and 1790 controls were included in the primary analysis. Additionally, 355 Lewy body disease patients assessed as having a high likelihood of clinical DLB based on neuropathological findings were included in secondary analysis. Seven pathogenic LRRK2 variants were assessed in patients, while 17 common LRRK2 exonic variants and 1 GWAS-nominated common LRRK2 PD-risk variant were evaluated for association with DLB. RESULTS We identified carriers of 2 different pathogenic LRRK2 variants. One clinical DLB patient was a p.G2019S carrier, while in the pathological high likelihood DLB series there was one carrier of the p.R1441C mutation. However, examination of clinical records revealed the p.R1441C carrier to have PD with dementia. Evaluation of common variants did not reveal any associations with DLB risk after multiple testing adjustment. However, a non-significant trend similar to that previously reported for PD was observed for the protective p.N551K-R1398H-K1423K haplotype in the clinical DLB series (OR: 0.76, P = 0.061). CONCLUSION LRRK2 does not appear to play a major role in DLB, however further study of p.G2019S and the p.N551K-R1398H-K1423K haplotype is warranted to better understand their involvement in determining DLB risk.
Collapse
Affiliation(s)
- Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, Florida, USA
| | - Alexandra I Soto-Ortolaza
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Department of Biology, University of North Florida, Jacksonville, Florida, USA
| | | | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Otto Pedraza
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Nancy N Diehl
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, Florida, USA
| | - Ronald Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Catherine Labbé
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jay van Gerpen
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Glenn E Smith
- Department of Psychiatry and Psychology Mayo Clinic, Rochester, Minnesota, USA
| | - Kejal Kantarci
- Department of Radiology Mayo Clinic, Rochester, Minnesota, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Val J Lowe
- Department of Radiology Mayo Clinic, Rochester, Minnesota, USA
| | - Clifford R Jack
- Department of Radiology Mayo Clinic, Rochester, Minnesota, USA
| | | | - Joseph E Parisi
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Department of Biology, University of North Florida, Jacksonville, Florida, USA
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- Mayo Graduate School, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|