1
|
Hattori N, Sato S. Mitochondrial dysfunction in Parkinson's disease. J Neural Transm (Vienna) 2024; 131:1415-1428. [PMID: 39585446 DOI: 10.1007/s00702-024-02863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
The exact cause of nigral cell death in Parkinson's disease (PD) is still unknown. However, research on MPTP-induced experimental parkinsonism has significantly advanced our understanding. In this model, it is widely accepted that mitochondrial respiratory failure is the primary mechanism of cell death. Studies have shown that a toxic metabolite of MPTP inhibits Complex I and alpha-ketoglutarate dehydrogenase activities in mitochondria. Since then, many research groups have focused on mitochondrial dysfunction in PD, identifying deficiencies in Complex I or III in PD patients' brains, skeletal muscle, and platelets. There is some debate about the decline in mitochondrial function in peripheral organs. However, since α-synuclein, the main component protein of Lewy bodies, accumulates in peripheral organs, it is reasonable to consider PD a systemic disease. Additionally, mutant mitochondrial DNA with a 4,977 base pair deletion has been found in the brains of PD patients, suggesting that age-related accumulation of deleted mtDNA is accelerated in the striatum and may contribute to the pathophysiology of PD. While the cause of PD remains unknown, mitochondrial dysfunction is undoubtedly a factor in cell death in PD. In addition, the causative gene for familial PD, parkin (now PRKN), and PTEN-induced putative kinase 1 (PINK1), both gene products are also involved in mitochondrial quality control. Moreover, we have successfully isolated and identified CHCHD2, which is involved in the mitochondrial electron transfer system. There is no doubt that mitochondrial dysfunction contributes to cell death in PD.
Collapse
Affiliation(s)
- Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, 2-1-Hirosawa, Wako-Shi, Saitama, 351-0198, Japan.
| | - Shigeto Sato
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
- Center for Biomedical Research Resources, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| |
Collapse
|
2
|
Hattori N, Funayama M, Imai Y, Hatano T. Pathogenesis of Parkinson's disease: from hints from monogenic familial PD to biomarkers. J Neural Transm (Vienna) 2024; 131:709-719. [PMID: 38478097 DOI: 10.1007/s00702-024-02747-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 06/22/2024]
Abstract
Twenty-five years have passed since the causative gene for familial Parkinson's disease (PD), Parkin (now PRKN), was identified in 1998; PRKN is the most common causative gene in young-onset PD. Parkin encodes a ubiquitin-protein ligase, and Parkin is involved in mitophagy, a type of macroautophagy, in concert with PTEN-induced kinase 1 (PINK1). Both gene products are also involved in mitochondrial quality control. Among the many genetic PD-causing genes discovered, discovering PRKN as a cause of juvenile-onset PD has significantly impacted other neurodegenerative disorders. This is because the involvement of proteolytic systems has been suggested as a common mechanism in neurodegenerative diseases in which inclusion body formation is observed. The discovery of the participation of PRKN in PD has brought attention to the involvement of the proteolytic system in neurodegenerative diseases. Our research group has successfully isolated and identified CHCHD2, which is involved in the mitochondrial electron transfer system, and prosaposin (PSAP), which is involved in the lysosomal system, in this Parkin mechanism. Hereditary PD is undoubtedly an essential clue to solitary PD, and at least 25 or so genes and loci have been reported so far. This number of genes indicates that PD is a very diverse group of diseases. Currently, the diagnosis of PD is based on clinical symptoms and imaging studies. Although highly accurate diagnostic criteria have been published, early diagnosis is becoming increasingly important in treatment strategies for neurodegenerative diseases. Here, we also describe biomarkers that our group is working on.
Collapse
Affiliation(s)
- Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, 2-1-Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | - Manabu Funayama
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Yuzuru Imai
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Taku Hatano
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| |
Collapse
|
3
|
Kinoshita C, Kubota N, Aoyama K. Glutathione Depletion and MicroRNA Dysregulation in Multiple System Atrophy: A Review. Int J Mol Sci 2022; 23:15076. [PMID: 36499400 PMCID: PMC9740333 DOI: 10.3390/ijms232315076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by parkinsonism, cerebellar impairment, and autonomic failure. Although the causes of MSA onset and progression remain uncertain, its pathogenesis may involve oxidative stress via the generation of excess reactive oxygen species and/or destruction of the antioxidant system. One of the most powerful antioxidants is glutathione, which plays essential roles as an antioxidant enzyme cofactor, cysteine-storage molecule, major redox buffer, and neuromodulator, in addition to being a key antioxidant in the central nervous system. Glutathione levels are known to be reduced in neurodegenerative diseases. In addition, genes regulating redox states have been shown to be post-transcriptionally modified by microRNA (miRNA), one of the most important types of non-coding RNA. miRNAs have been reported to be dysregulated in several diseases, including MSA. In this review, we focused on the relation between glutathione deficiency, miRNA dysregulation and oxidative stress and their close relation with MSA pathology.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Noriko Kubota
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
- Teikyo University Support Center for Women Physicians and Researchers, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| |
Collapse
|
4
|
Ikeda A, Imai Y, Hattori N. Neurodegeneration-associated mitochondrial proteins, CHCHD2 and CHCHD10–what distinguishes the two? Front Cell Dev Biol 2022; 10:996061. [PMID: 36158221 PMCID: PMC9500460 DOI: 10.3389/fcell.2022.996061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) and Coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) are mitochondrial proteins that are thought to be genes which duplicated during evolution and are the causative genes for Parkinson’s disease and amyotrophic lateral sclerosis/frontotemporal lobe dementia, respectively. CHCHD2 forms a heterodimer with CHCHD10 and a homodimer with itself, both of which work together within the mitochondria. Various pathogenic and disease-risk variants have been identified; however, how these mutations cause neurodegeneration in specific diseases remains a mystery. This review focuses on important new findings published since 2019 and discusses avenues to solve this mystery.
Collapse
Affiliation(s)
- Aya Ikeda
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yuzuru Imai
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
- *Correspondence: Yuzuru Imai, ; Nobutaka Hattori,
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama, Japan
- *Correspondence: Yuzuru Imai, ; Nobutaka Hattori,
| |
Collapse
|
5
|
Suzuki M, Sango K, Nagai Y. Roles of α-Synuclein and Disease-Associated Factors in Drosophila Models of Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23031519. [PMID: 35163450 PMCID: PMC8835920 DOI: 10.3390/ijms23031519] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
α-Synuclein (αSyn) plays a major role in the pathogenesis of Parkinson’s disease (PD), which is the second most common neurodegenerative disease after Alzheimer’s disease. The accumulation of αSyn is a pathological hallmark of PD, and mutations in the SNCA gene encoding αSyn cause familial forms of PD. Moreover, the ectopic expression of αSyn has been demonstrated to mimic several key aspects of PD in experimental model systems. Among the various model systems, Drosophila melanogaster has several advantages for modeling human neurodegenerative diseases. Drosophila has a well-defined nervous system, and numerous tools have been established for its genetic analyses. The rapid generation cycle and short lifespan of Drosophila renders them suitable for high-throughput analyses. PD model flies expressing αSyn have contributed to our understanding of the roles of various disease-associated factors, including genetic and nongenetic factors, in the pathogenesis of PD. In this review, we summarize the molecular pathomechanisms revealed to date using αSyn-expressing Drosophila models of PD, and discuss the possibilities of using these models to demonstrate the biological significance of disease-associated factors.
Collapse
Affiliation(s)
- Mari Suzuki
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan;
- Department of Neurotherapeutics, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
- Correspondence: (M.S.); (Y.N.); Tel.: +81-5316-3100 (M.S.); +81-72-366-0221 (Y.N.)
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan;
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
- Department of Neurology, Faculty of Medicine, Kindai University, Osaka-Sayama 589-8511, Japan
- Correspondence: (M.S.); (Y.N.); Tel.: +81-5316-3100 (M.S.); +81-72-366-0221 (Y.N.)
| |
Collapse
|
6
|
Kee TR, Espinoza Gonzalez P, Wehinger JL, Bukhari MZ, Ermekbaeva A, Sista A, Kotsiviras P, Liu T, Kang DE, Woo JAA. Mitochondrial CHCHD2: Disease-Associated Mutations, Physiological Functions, and Current Animal Models. Front Aging Neurosci 2021; 13:660843. [PMID: 33967741 PMCID: PMC8100248 DOI: 10.3389/fnagi.2021.660843] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022] Open
Abstract
Rare mutations in the mitochondrial protein coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) are associated with Parkinson's disease (PD) and other Lewy body disorders. CHCHD2 is a bi-organellar mediator of oxidative phosphorylation, playing crucial roles in regulating electron flow in the mitochondrial electron transport chain and acting as a nuclear transcription factor for a cytochrome c oxidase subunit (COX4I2) and itself in response to hypoxic stress. CHCHD2 also regulates cell migration and differentiation, mitochondrial cristae structure, and apoptosis. In this review, we summarize the known disease-associated mutations of CHCHD2 in Asian and Caucasian populations, the physiological functions of CHCHD2, how CHCHD2 mutations contribute to α-synuclein pathology, and current animal models of CHCHD2. Further, we discuss the necessity of continued investigation into the divergent functions of CHCHD2 and CHCHD10 to determine how mutations in these similar mitochondrial proteins contribute to different neurodegenerative diseases.
Collapse
Affiliation(s)
- Teresa R Kee
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Pharmacology and Physiology, USF Health Morsani College of Medicine, Tampa, FL, United States
| | | | - Jessica L Wehinger
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Mohammed Zaheen Bukhari
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States
| | - Aizara Ermekbaeva
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Apoorva Sista
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Peter Kotsiviras
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States
| | - Tian Liu
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States
| | - David E Kang
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States.,James A. Haley Veterans Administration Hospital, Tampa, FL, United States
| | - Jung-A A Woo
- USF Health Byrd Alzheimer's Center and Research Institute, Tampa, FL, United States.,Department of Molecular Pharmacology and Physiology, USF Health Morsani College of Medicine, Tampa, FL, United States
| |
Collapse
|
7
|
Ikeda A, Nishioka K, Meng H, Takanashi M, Hasegawa I, Inoshita T, Shiba-Fukushima K, Li Y, Yoshino H, Mori A, Okuzumi A, Yamaguchi A, Nonaka R, Izawa N, Ishikawa KI, Saiki H, Morita M, Hasegawa M, Hasegawa K, Elahi M, Funayama M, Okano H, Akamatsu W, Imai Y, Hattori N. Mutations in CHCHD2 cause α-synuclein aggregation. Hum Mol Genet 2019; 28:3895-3911. [DOI: 10.1093/hmg/ddz241] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/02/2023] Open
Abstract
Abstract
Mutations in CHCHD2 are linked to a familial, autosomal dominant form of Parkinson’s disease (PD). The gene product may regulate mitochondrial respiratory function. However, whether mitochondrial dysfunction induced by CHCHD2 mutations further yields α-synuclein pathology is unclear. Here, we provide compelling genetic evidence that mitochondrial dysfunction induced by PD-linked CHCHD2 T61I mutation promotes α-synuclein aggregation using brain autopsy, induced pluripotent stem cells (iPSCs) and Drosophila genetics. An autopsy of an individual with CHCHD2 T61I revealed widespread Lewy pathology with both amyloid plaques and neurofibrillary tangles that appeared in the brain stem, limbic regions and neocortex. A prominent accumulation of sarkosyl-insoluble α-synuclein aggregates, the extent of which was comparable to that of a case with α-synuclein (SNCA) duplication, was observed in CHCHD2 T61I brain tissue. The prion-like activity and morphology of α-synuclein fibrils from the CHCHD2 T61I brain tissue were similar to those of fibrils from SNCA duplication and sporadic PD brain tissues. α-Synuclein insolubilization was reproduced in dopaminergic neuron cultures from CHCHD2 T61I iPSCs and Drosophila lacking the CHCHD2 ortholog or expressing the human CHCHD2 T61I. Moreover, the combination of ectopic α-synuclein expression and CHCHD2 null or T61I enhanced the toxicity in Drosophila dopaminergic neurons, altering the proteolysis pathways. Furthermore, CHCHD2 T61I lost its mitochondrial localization by α-synuclein in Drosophila. The mislocalization of CHCHD2 T61I was also observed in the patient brain. Our study suggests that CHCHD2 is a significant mitochondrial factor that determines α-synuclein stability in the etiology of PD.
Collapse
Affiliation(s)
- Aya Ikeda
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Kenya Nishioka
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Hongrui Meng
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Masashi Takanashi
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Iwao Hasegawa
- University Center of Legal Medicine, Kanagawa Dental University, Kanagawa 238-8580, Japan
| | - Tsuyoshi Inoshita
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kahori Shiba-Fukushima
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Akio Mori
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Ayami Okuzumi
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Akihiro Yamaguchi
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Risa Nonaka
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Nana Izawa
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Kei-ichi Ishikawa
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Hidemoto Saiki
- Department of Neurology, Tazuke Kofukai Medical Research Institute and Kitano Hospital, Osaka 530-8480, Japan
| | - Masayo Morita
- Department of Neurology, Jikei University Katsushika Medical Center, Tokyo 125-8506, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kazuko Hasegawa
- Department of Neurology, NHO Sagamihara National Hospital, Kanagawa 252-0392, Japan
| | - Montasir Elahi
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Manabu Funayama
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yuzuru Imai
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| |
Collapse
|
8
|
Zhou W, Ma D, Tan EK. Mitochondrial CHCHD2 and CHCHD10: Roles in Neurological Diseases and Therapeutic Implications. Neuroscientist 2019; 26:170-184. [DOI: 10.1177/1073858419871214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CHCHD2 mutations have been identified in various neurological diseases such as Parkinson’s disease (PD), frontotemporal dementia (FTD), and Alzheimer’s disease (AD). It is also the first mitochondrial gene whose mutations lead to PD. CHCHD10 is a homolog of CHCHD2; similar to CHCHD2, various mutations of CHCHD10 have been identified in a broad spectrum of neurological disorders, including FTD and AD, with a high frequency of CHCHD10 mutations found in motor neuron diseases. Functionally, CHCHD2 and CHCHD10 have been demonstrated to interact with each other in mitochondria. Recent studies link the biological functions of CHCHD2 to the MICOS complex (mitochondrial inner membrane organizing system). Multiple experimental models suggest that CHCHD2 maintains mitochondrial cristae and disease-associated CHCHD2 mutations function in a loss-of-function manner. However, both CHCHD2 and CHCHD10 knockout mouse models appear phenotypically normal, with no obvious mitochondrial defects. Strategies to maintain or enhance mitochondria cristae could provide opportunities to correct the associated cellular defects in disease state and unravel potential novel targets for CHCHD2-linked neurological conditions.
Collapse
Affiliation(s)
- Wei Zhou
- Neuroscience Research laboratory, National Neuroscience Institute, Duke NUS Medical School, Singapore
| | - Dongrui Ma
- Department of Neurology, Singapore General Hospital, Singapore
| | - Eng-King Tan
- Neuroscience Research laboratory, National Neuroscience Institute, Duke NUS Medical School, Singapore
- Department of Neurology, Singapore General Hospital, Singapore
| |
Collapse
|
9
|
Katzeff JS, Phan K, Purushothuman S, Halliday GM, Kim WS. Cross-examining candidate genes implicated in multiple system atrophy. Acta Neuropathol Commun 2019; 7:117. [PMID: 31340844 PMCID: PMC6651992 DOI: 10.1186/s40478-019-0769-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/14/2019] [Indexed: 12/26/2022] Open
Abstract
Multiple system atrophy (MSA) is a devastating neurodegenerative disease characterized by the clinical triad of parkinsonism, cerebellar ataxia and autonomic failure, impacting on striatonigral, olivopontocerebellar and autonomic systems. At early stage of the disease, the clinical symptoms of MSA can overlap with those of Parkinson's disease (PD). The key pathological hallmark of MSA is the presence of glial cytoplasmic inclusions (GCI) in oligodendrocytes. GCI comprise insoluble proteinaceous filaments composed chiefly of α-synuclein aggregates, and therefore MSA is regarded as an α-synucleinopathy along with PD and dementia with Lewy bodies. The etiology of MSA is unknown, and the pathogenesis of MSA is still largely speculative. Much data suggests that MSA is a sporadic disease, although some emerging evidence suggests rare genetic variants increase susceptibility. Currently, there is no general consensus on the susceptibility genes as there have been differences due to geographical distribution or ethnicity. Furthermore, many of the reported studies have been conducted on patients that were only clinically diagnosed without pathological verification. The purpose of this review is to bring together available evidence to cross-examine the susceptibility genes and genetic pathomechanisms implicated in MSA. We explore the possible involvement of the SNCA, COQ2, MAPT, GBA1, LRRK2 and C9orf72 genes in MSA pathogenesis, highlight the under-explored areas of MSA genetics, and discuss future directions of research in MSA.
Collapse
Affiliation(s)
- Jared S Katzeff
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Katherine Phan
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Sivaraman Purushothuman
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Woojin Scott Kim
- Brain and Mind Centre & Central Clinical School, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Zhou W, Ma D, Sun AX, Tran HD, Ma DL, Singh BK, Zhou J, Zhang J, Wang D, Zhao Y, Yen PM, Goh E, Tan EK. PD-linked CHCHD2 mutations impair CHCHD10 and MICOS complex leading to mitochondria dysfunction. Hum Mol Genet 2019; 28:1100-1116. [PMID: 30496485 PMCID: PMC6423417 DOI: 10.1093/hmg/ddy413] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/31/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022] Open
Abstract
Coiled-coil-helix-coiled-coil-helix domain containing protein 2 (CHCHD2) mutations were linked with autosomal dominant Parkinson's disease (PD) and recently, Alzheimer's disease/frontotemporal dementia. In the current study, we generated isogenic human embryonic stem cell (hESC) lines harboring PD-associated CHCHD2 mutation R145Q or Q126X via clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) method, aiming to unravel pathophysiologic mechanism and seek potential intervention strategy against CHCHD2 mutant-caused defects. By engaging super-resolution microscopy, we identified a physical proximity and similar distribution pattern of CHCHD2 along mitochondria with mitochondrial contact site and cristae organizing system (MICOS), a large protein complex maintaining mitochondria cristae. Isogenic hESCs and differentiated neural progenitor cells (NPCs) harboring CHCHD2 R145Q or Q126X mutation showed impaired mitochondria function, reduced CHCHD2 and MICOS components and exhibited nearly hollow mitochondria with reduced cristae. Furthermore, PD-linked CHCHD2 mutations lost their interaction with coiled-coil-helix-coiled-coil-helix domain containing protein 10 (CHCHD10), while transient knockdown of either CHCHD2 or CHCHD10 reduced MICOS and mitochondria cristae. Importantly, a specific mitochondria-targeted peptide, Elamipretide/MTP-131, now tested in phase 3 clinical trials for mitochondrial diseases, was found to enhance CHCHD2 with MICOS and mitochondria oxidative phosphorylation enzymes in isogenic NPCs harboring heterozygous R145Q, suggesting that Elamipretide is able to attenuate CHCHD2 R145Q-induced mitochondria dysfunction. Taken together, our results suggested CHCHD2-CHCHD10 complex may be a novel therapeutic target for PD and related neurodegenerative disorders, and Elamipretide may benefit CHCHD2 mutation-linked PD.
Collapse
Affiliation(s)
- Wei Zhou
- Neuroscience Research Laboratory, National Neuroscience Institute, Singapore
| | - Dongrui Ma
- Department of Neurology, Singapore General Hospital, Singapore
| | - Alfred Xuyang Sun
- Neuroscience Research Laboratory, National Neuroscience Institute, Singapore.,Stem Cell and Regenerative Biology Laboratory, Genome Institute of Singapore, Singapore
| | - Hoang-Dai Tran
- Neuroscience Research Laboratory, National Neuroscience Institute, Singapore.,Stem Cell and Regenerative Biology Laboratory, Genome Institute of Singapore, Singapore
| | - Dong-Liang Ma
- Neuroregeneration Laboratory, Singhealth Duke-NUS Neuroscience Academic Clinical Program, Singapore
| | - Brijesh K Singh
- Programs in Metabolic and Cardiovascular Disorders, Duke-NUS Graduate Medical School, Singapore
| | - Jin Zhou
- Programs in Metabolic and Cardiovascular Disorders, Duke-NUS Graduate Medical School, Singapore
| | - Jinyan Zhang
- Department of Neurology, Singapore General Hospital, Singapore
| | - Danlei Wang
- Stem Cell and Regenerative Biology Laboratory, Genome Institute of Singapore, Singapore
| | - Yi Zhao
- Department of Clinical Research, Singapore General Hospital, Singapore
| | - Paul M Yen
- Programs in Metabolic and Cardiovascular Disorders, Duke-NUS Graduate Medical School, Singapore
| | - Eyleen Goh
- Neuroregeneration Laboratory, Singhealth Duke-NUS Neuroscience Academic Clinical Program, Singapore.,Neuroregeneration Laboratory, National Neuroscience Institute, Singapore
| | - Eng-King Tan
- Neuroscience Research Laboratory, National Neuroscience Institute, Singapore.,Department of Neurology, Singapore General Hospital, Singapore
| |
Collapse
|
11
|
Imai Y, Meng H, Shiba-Fukushima K, Hattori N. Twin CHCH Proteins, CHCHD2, and CHCHD10: Key Molecules of Parkinson's Disease, Amyotrophic Lateral Sclerosis, and Frontotemporal Dementia. Int J Mol Sci 2019; 20:ijms20040908. [PMID: 30791515 PMCID: PMC6412816 DOI: 10.3390/ijms20040908] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations of coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) and 10 (CHCHD10) have been found to be linked to Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and/or frontotemporal lobe dementia (FTD). CHCHD2 and CHCHD10 proteins, which are homologous proteins with 54% identity in amino acid sequence, belong to the mitochondrial coiled-coil-helix-coiled-coil-helix (CHCH) domain protein family. A series of studies reveals that these twin proteins form a multimodal complex, producing a variety of pathophysiology by the disease-causing variants of these proteins. In this review, we summarize the present knowledge about the physiological and pathological roles of twin proteins, CHCHD2 and CHCHD10, in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Hongrui Meng
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Kahori Shiba-Fukushima
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Nobutaka Hattori
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| |
Collapse
|
12
|
Procopio R, Gagliardi M, Brighina L, Nicoletti G, Morelli M, Piatti M, Annesi G, Quattrone A. Analysis of the TMEM230 gene in patients with multiple system atrophy. J Neurol Sci 2018; 392:128-129. [DOI: 10.1016/j.jns.2018.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/18/2018] [Accepted: 07/22/2018] [Indexed: 11/24/2022]
|