1
|
Li X, Pang H, Bu S, Li Y, Zhao M, Wang J, Liu Y, Yu H, Fan G. Differentiating patterns of neuro-circuitry abnormalities in tremor dominant parkinson's disease and multiple system atrophy: a resting-state fMRI study. Brain Imaging Behav 2025; 19:519-533. [PMID: 40050534 DOI: 10.1007/s11682-025-00984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 04/09/2025]
Abstract
This study aimed to elucidate distinctive patterns of brain functional activity in tremor-dominant Multiple System Atrophy (MSA) and Parkinson's Disease (PD) patients and develop a diagnostic model distinguishing between the two conditions based on these changes. Resting-state fMRI data from 45 MSA patients, 55 PD patients, and 48 healthy controls were analyzed using Percent Amplitude of Fluctuation (PerAF), Functional (FC) and Effective Connectivity (EC) analyses. The Support Vector Machine (SVM) was used to create the diagnostic model from the identified functional alterations. Partial correlation analyses explored the relationship between functional abnormalities and tremors. Both MSA and PD patients with tremors exhibited similar activity changes in bilateral Orbital part of the superior frontal gyrus (ORBsup), Cerebellum VIII (CRBL8), left Cerebellum IV-V (CRBL45.L), right rectus (REC), and FC based on the seeds of PUT.L, CRBL8.R, and REC.R. These changes were more pronounced in MSA patients. However, MSA patients exhibited heightened putamen activity and enhanced EC from caudate (CAU) to putamen, whereas these activity and connectivity were decreased in PD patients. The SVM model achieved strong performance, with the putamen exerting the most significant influence on classification. In summary, dysfunction within the cerebello-cortical and basal ganglia network circuits is implicated in the tremors of both MSA and PD patients. The alteration in cerebellar-cortical regions were similar, with MSA displaying more pronounced changes, contrasting changes were observed in the basal ganglia region. The putamen may serve as crucial neurobiological indicators for the precise differentiation of MSA and PD patients.
Collapse
Affiliation(s)
- Xiaolu Li
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Huize Pang
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Shuting Bu
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Yingmei Li
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Mengwan Zhao
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Juzhou Wang
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Yu Liu
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Hongmei Yu
- Department of Neurology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China.
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China.
| |
Collapse
|
2
|
Chen S, Shao JY, Yang HQ, Liu X, Zhang JW. Striatal dopaminergic depletion was associated with motor subtype conversion in Parkinson's disease. Parkinsonism Relat Disord 2025; 135:107807. [PMID: 40187155 DOI: 10.1016/j.parkreldis.2025.107807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/13/2025] [Accepted: 03/22/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND The instability of classical Parkinson's disease (PD) motor subtypes over the disease course suggests that motor subtype is influenced by disease severity. Tremor-dominant (TD) PD is susceptible to conversion to non-tremor-dominant (NTD) PD, with the risk increasing over time. This study investigates whether presynaptic striatal dopaminergic loss can predict the conversion from TD-PD to NTD-PD. METHODS A total of 220 early TD-PD patients with baseline Dopamine Transporter Single-Photon Emission Computed Tomography (DAT-SPECT) data from the Parkinson's Progression Markers Initiative (PPMI) database were included. Patients were divided into high and low DAT uptake groups based on the median baseline striatal DAT uptake value. The Kaplan-Meier survival curve was used to compare the conversion rates of TD-PD subtype between the two groups. Multivariable Cox regression was used to further analyze the relationship between baseline striatal DAT uptake and TD-PD subtype conversion. RESULTS The risk of conversion from TD to NTD was higher in the low striatal DAT group. In the multivariable Cox regression analysis, after adjusting for age, sex, baseline disease duration, MDS-UPDRS-II score and GDS score, the baseline striatal DAT uptake value was significantly associated with the conversion of TD-PD (HR = 0.39; 95 % CI 0.22-0.68; P = 0.001). In the stratified analysis, this association was not influenced by baseline TD or PIGD score. CONCLUSIONS In early-stage TD-PD, a high baseline presynaptic striatal dopaminergic reserve reduces the risk of future conversion to NTD-PD. This supports the notion that classical motor subtypes may reflect the disease stage or severity.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450001, China
| | - Jing-Yu Shao
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450001, China
| | - Hong-Qi Yang
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450001, China
| | - Xiao Liu
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450001, China
| | - Jie-Wen Zhang
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450001, China.
| |
Collapse
|
3
|
van den Berg KR, Johansson ME, Dirkx MF, Bloem BR, Helmich RC. Changes in Action Tremor in Parkinson's Disease over Time: Clinical and Neuroimaging Correlates. Mov Disord 2025; 40:292-304. [PMID: 39679819 PMCID: PMC11832800 DOI: 10.1002/mds.30081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND The various symptoms of Parkinson's disease (PD) may change differently over time as the disease progresses. Tremor usually manifests early in the disease, but unlike other motor symptoms, its severity may diminish over time. The cerebral mechanisms underlying these symptom-specific longitudinal trajectories are unclear. Previous magnetic resonance imaging (MRI) studies have shown structural changes in brain regions associated with PD tremor, suggesting that structural changes over time may define clinical trajectories. OBJECTIVES The aims were to investigate the longitudinal trajectory of PD tremor in relation to bradykinesia and rigidity, and assess whether tremor progression is related to structural changes in tremor-related areas. METHODS We used data from the Personalized Parkinson Project: a two-year longitudinal study involving 520 PD patients and 60 healthy controls, who were measured twice clinically and with MRI. Mixed-effects models were used to compare tremor, bradykinesia, and rigidity progression; investigate gray matter changes in tremor-related regions (cerebello-thalamo-cortical circuit and pallidum); and calculate associations between symptom severity and brain structure. Associations across the whole brain were included to assess anatomical specificity. RESULTS Bradykinesia and rigidity worsened over 2 years, whereas tremor behaved differently: resting tremor severity remained stable, whereas postural and kinetic tremor severity decreased. Attenuation of postural and kinetic tremor was associated with, but not restricted to, atrophy in tremor-related areas. Opposite relationships were observed for bradykinesia and rigidity. CONCLUSIONS Action tremor (postural and kinetic) is an early symptom of PD, which reduces with disease progression. Longitudinal brain atrophy correlates with tremor and other motor symptoms in opposite ways. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kevin R.E. van den Berg
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenThe Netherlands
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Martin E. Johansson
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenThe Netherlands
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Michiel F. Dirkx
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenThe Netherlands
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Bastiaan R. Bloem
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Rick C. Helmich
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenThe Netherlands
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
4
|
Zhong Y, Su H, Liu Y, Liu H, Liu G, Liu Z, Wei J, Wang J, She Y, Tan C, Mo L, Han L, Deng F, Liu X, Chen L. Association of motor subtype and tremor type with Parkinson's disease progression: An exploratory longitudinal analysis. JOURNAL OF PARKINSON'S DISEASE 2025; 15:111-121. [PMID: 39973483 DOI: 10.1177/1877718x241305715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundParkinson's disease (PD) is a neurodegenerative disorder with heterogenous symptoms and progression rates. Some studies have classifying PD into tremor-dominant and non-tremor-dominant PD (TD-PD and Non-TD-PD), finding that TD-PD tend to have a better prognosis, slower disease progression, and lower pathological burden compared to Non-TD-PD. However, this classification does not consider the specific types of tremors, even though recent studies have shown that different types of tremors in PD might have distinct underlying mechanism.ObjectiveData from 517 de novo drug-naïve PD patients was analyzed.MethodsSurvival analysis was carried out including motor subtypes, rest tremor presence, kinetic tremor presence, postural tremor presence, as well as the instability of tremor presence or motor subtypes as predictors. Occurrence of 6 outcomes, including motor and non-motor milestones at follow-up, were used as the time-to-event.ResultsBoth TD-PD subtype and rest tremor presence was associated with slower PD progression, while kinetic tremor presence and postural tremor presence, especially kinetic tremor presence, was associated with a faster one.ConclusionsOur study suggests different types of tremors are associated with distinct PD prognoses, indicating potential differences in underlying mechanisms. Further investigation is warranted to elucidate the specific mechanisms underlying different types of tremors in PD and to explain their relationship to disease prognosis.
Collapse
Affiliation(s)
- Yuke Zhong
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huahua Su
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guohui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhihui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiahao Wei
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junyi Wang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuchen She
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Han
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fen Deng
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Mendonça MD, Ferreira PC, Oliveira F, Barbosa R, Meira B, Costa DC, Oliveira-Maia AJ, da Silva JA. Relative sparing of dopaminergic terminals in the caudate nucleus is a feature of rest tremor in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:209. [PMID: 39557871 PMCID: PMC11574046 DOI: 10.1038/s41531-024-00818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Resting tremor (RT) is a Parkinson's disease (PD) symptom with an unclear relationship to the dopaminergic system. We analysed data from 432 subjects from the Parkinson's Progression Markers Initiative, 57 additional PD patients and controls and 86 subjects referred for dopamine transporter single-photon emission computed tomography (DaT-SPECT). Caudate binding ratio (CBR), but not putamen binding ratio, was higher in RT patients. Furthermore, higher baseline CBR was linked to RT development. In the smaller cohorts, a 4-6 Hz oscillation-based metric from inertial sensors correlated with RT amplitude, distinguished controls from patients with reduced DaT binding and correlated with CBR in the latter group. In silico modelling uncovered that higher CBR in RT patients explained correlations between RT and DaT-SPECT found in several datasets, supporting a spurious origin for ipsilateral correlations between CBR and RT. These results suggest that caudate dopaminergic terminals integrity is a feature of RT with potential pathophysiological implications.
Collapse
Affiliation(s)
- Marcelo D Mendonça
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Av. Brasília, 1400-038, Lisboa, Portugal.
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisboa, Portugal.
| | - Pedro C Ferreira
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Av. Brasília, 1400-038, Lisboa, Portugal
- NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, Largo da Torre, 2829-516, Caparica, Portugal
| | - Francisco Oliveira
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Av. Brasília, 1400-038, Lisboa, Portugal
| | - Raquel Barbosa
- Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Center, Centre d'Investigation Clinique CIC1436, NeuroToul COEN Center, Toulouse, NS-PARK/FCRIN Network, University Hospital of Toulouse, allée Jean Dausset, 31300, Toulouse, France
- Neurology Department, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, R. da Junqueira 126, 1349-019, Lisboa, Portugal
| | - Bruna Meira
- Neurology Department, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, R. da Junqueira 126, 1349-019, Lisboa, Portugal
| | - Durval C Costa
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Av. Brasília, 1400-038, Lisboa, Portugal
| | - Albino J Oliveira-Maia
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Av. Brasília, 1400-038, Lisboa, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisboa, Portugal
| | - Joaquim Alves da Silva
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Av. Brasília, 1400-038, Lisboa, Portugal.
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisboa, Portugal.
| |
Collapse
|
6
|
Niemi KJ, Sunikka J, Soltanian-Zadeh H, Davoodi-Bojd E, Rahmim A, Kaasinen V, Joutsa J. Rest Tremor in Parkinson's Disease Is Associated with Ipsilateral Striatal Dopamine Transporter Binding. Mov Disord 2024; 39:2014-2025. [PMID: 39225564 DOI: 10.1002/mds.29997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The cardinal motor symptoms of Parkinson's disease (PD) include rigidity, bradykinesia, and rest tremor. Rigidity and bradykinesia correlate with contralateral nigrostriatal degeneration and striatal dopamine deficit, but association between striatal dopamine function and rest tremor has remained unclear. OBJECTIVE The aim of this study was to investigate the possible link between dopamine function and rest tremor using Parkinson's Progression Markers Initiative dataset, the largest prospective neuroimaging cohort of patients with PD. METHODS Clinical, [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane ([123I]FP-CIT) single photon emission computed tomography (SPECT), and structural magnetic resonance imaging data from 354 early PD patients and 166 healthy controls were included in this study. We employed a novel approach allowing nonlinear registration of individual scans accurately to a standard space and voxelwise analyses of the association between motor symptoms and striatal dopamine transporter (DAT) binding. RESULTS Severity of both rigidity and bradykinesia was negatively associated with contralateral striatal DAT binding (PFWE < 0.05 [FWE, family-wise error corrected]). However, rest tremor amplitude was positively associated with increased ipsilateral DAT binding (PFWE < 0.05). The association between rest tremor and binding remained the same controlling for Hoehn & Yahr stage, Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III score, bradykinesia-rigidity score, or motor phenotype. The association between rest tremor and binding was independent of bradykinesia-rigidity and replicated using 2-year follow-up data (PFWE < 0.05). CONCLUSION In agreement with the existing literature, we did not find a consistent association between rest tremor and contralateral dopamine defect. However, our results demonstrate a link between rest tremor and increased or less decreased ipsilateral DAT binding. Our findings provide novel information about the association between dopaminergic function and parkinsonian rest tremor. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kalle J Niemi
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Clinical Neurosciences, Faculty of Medicine, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Satasairaala Neurology Department, Satakunta Wellbeing Services County, Pori, Finland
| | - Juha Sunikka
- Turku Brain and Mind Center, University of Turku, Turku, Finland
| | - Hamid Soltanian-Zadeh
- Department of Radiology and Research Administration, Henry Ford Health System, Detroit, Michigan, USA
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Esmaeil Davoodi-Bojd
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Arman Rahmim
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Radiology and Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Valtteri Kaasinen
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Clinical Neurosciences, Faculty of Medicine, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Juho Joutsa
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Clinical Neurosciences, Faculty of Medicine, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| |
Collapse
|
7
|
Cui Y, Su D, Zhang J, Lam JST, Cao S, Yang Y, Piao Y, Wang Z, Zhou J, Pan H, Feng T. Dopaminergic versus anticholinergic treatment effects on physiologic complexity of hand tremor in Parkinson's disease: A randomized crossover study. CNS Neurosci Ther 2024; 30:e14516. [PMID: 37905677 PMCID: PMC11017432 DOI: 10.1111/cns.14516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/16/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
AIMS Parkinsonian tremor (PT) is regulated by numerous neurophysiological components across multiple temporospatial scales. The dynamics of tremor fluctuation are thus highly complex. This study aimed to explore the effects of different medications on tremor complexity, and how the underlying factors contribute to such tremor complexity. METHODS In this study, 66 participants received a 2-mg dose of benzhexol or a pre-determined dose of levodopa at two study visits in a randomized order. Before and after taking the medications, tremor fluctuation was recorded using surface electromyography electrodes and accelerometers in resting, posture, and weighting conditions with and without a concurrent cognitive task. Tremor complexity was quantified using multiscale entropy. RESULTS Tremor complexity in resting (p = 0.002) and postural condition (p < 0.0001) was lower when participants were performing a cognitive task compared to a task-free condition. After taking levodopa and benzhexol, participants had increased (p = 0.02-0.03) and decreased (p = 0.03) tremor complexity compared to pre-medication state, respectively. Tremor complexity and its changes as induced by medications were significantly correlated with clinical ratings and their changes (β = -0.23 to -0.39; p = 0.002-0.04), respectively. CONCLUSION Tremor complexity may be a promising marker to capture the pathophysiology underlying the development of PT, aiding the characterization of the effects medications have on PT regulation.
Collapse
Affiliation(s)
- Yusha Cui
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Dongning Su
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Junjiao Zhang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Joyce S. T. Lam
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Shuangshuang Cao
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yaqin Yang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yingshan Piao
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zhan Wang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Junhong Zhou
- Hinda and Arthur Marcus Institute for Aging ResearchHebrew SeniorLifeRoslindaleMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Hua Pan
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Tao Feng
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
8
|
Huang AQ, Liu SY, Barret O, Qiao HW, Tamagnan GD, Liu XL, Fan CC, Li Z, Lu J, Chan P, Xu EH. 18F-FP-DTBZ PET/CT detectable associations between monoaminergic depletion in the putamen with rigidity and the pallidus with tremor in Parkinson's disease. Parkinsonism Relat Disord 2024; 120:105979. [PMID: 38241952 DOI: 10.1016/j.parkreldis.2023.105979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/21/2024]
Abstract
INTRODUCTION The motor subtypes of Parkinson's disease (PD) are widely accepted and implemented. However, the motor subtypes have been thought to represent different stages of PD recently because some patients experience tremor-dominant (TD) conversion to the non-tremor-dominant subtype, such as postural instability-gait difficulty (PIGD). In this study, we explore the monoaminergic denervation features of the striatal and extra-striatal areas in patients with different subtypes of PD with 18F-9-fluoropropyl-(+)-dihydrotetrabenazine (18F-FP-DTBZ) PET/CT. METHODS Sixty-five patients diagnosed with PD were included and classified as TD (n = 25) and PIGD (n = 40). We evaluated the difference of monoaminergic features of each subregion of brain between motor subtypes of PD, as well as associations between these features and Parkinsonian motor symptoms. RESULTS The striatal standardized uptake value ratios (SUVR) showed that dopaminergic disruption of patients with PIGD was more symmetrical in the posterior ventral putamen (p < 0.001) and more severe in the ipsilateral posterior dorsal putamen (p < 0.001 corrected) compared with that of patients with TD. The severity of PIGD scores was associated with striatal dopaminergic depletion, while tremor was associated with monoaminergic changes in extra-striatal areas, including pallidus, thalamus, and raphe nuclie. CONCLUSION These results indicate that patients with different motor subtypes may have different underlying mechanisms of PD pathogenesis. Therefore, accurate diagnosis of PD subtypes can aid prognosis evaluation and treatment decision-making.
Collapse
Affiliation(s)
- An-Qi Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shu-Ying Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Chinese Institute for Brain Research (CIBR), Beijing, China
| | - Olivier Barret
- University of Paris-Saclay, The French Alternative Energies and Atomic Energy Commission, The French National Center for Scientific Research, Molecular Imaging Research Center, Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France
| | - Hong-Wen Qiao
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gilles D Tamagnan
- Mental Health PET Radioligand Development Program, Yale University, New Haven, USA; Xingimaging, 150 Boston Post Road, Madison, LCC, Connecticut, USA
| | - Xiu-Lin Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cheng-Cheng Fan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ze Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China.
| | - Er-He Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Samantaray T, Saini J, Pal PK, Gupta CN. Brain connectivity for subtypes of parkinson's disease using structural MRI. Biomed Phys Eng Express 2024; 10:025012. [PMID: 38224618 DOI: 10.1088/2057-1976/ad1e77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Objective. Delineating Parkinson's disease (PD) into distinct subtypes is a major challenge. Most studies use clinical symptoms to label PD subtypes while our work uses an imaging-based data-mining approach to subtype PD. Our study comprises two major objectives - firstly, subtyping Parkinson's patients based on grey matter information from structural magnetic resonance imaging scans of human brains; secondly, comparative structural brain connectivity analysis of PD subtypes derived from the former step.Approach. Source-based-morphometry decomposition was performed on 131 Parkinson's patients and 78 healthy controls from PPMI dataset, to derive at components (regions) with significance in disease and high effect size. The loading coefficients of significant components were thresholded for arriving at subtypes. Further, regional grey matter maps of subtype-specific subjects were separately parcellated and employed for construction of subtype-specific association matrices using Pearson correlation. These association matrices were binarized using sparsity threshold and leveraged for structural brain connectivity analysis using network metrics.Main results. Two distinct Parkinson's subtypes (namely A and B) were detected employing loadings of two components satisfying the selection criteria, and a third subtype (AB) was detected, common to these two components. Subtype A subjects were highly weighted in inferior, middle and superior frontal gyri while subtype B subjects in inferior, middle and superior temporal gyri. Network metrics analyses through permutation test revealed significant inter-subtype differences (p < 0.05) in clustering coefficient, local efficiency, participation coefficient and betweenness centrality. Moreover, hubs were obtained using betweenness centrality and mean network degree.Significance. MRI-based data-driven subtypes show frontal and temporal lobes playing a key role in PD. Graph theory-driven brain network analyses could untangle subtype-specific differences in structural brain connections showing differential network architecture. Replication of these initial results in other Parkinson's datasets may be explored in future. Clinical Relevance- Investigating structural brain connections in Parkinson's disease may provide subtype-specific treatment.
Collapse
Affiliation(s)
- Tanmayee Samantaray
- Neural Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neuro Sciences, Bengaluru, 560029, India
| | - Cota Navin Gupta
- Neural Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, India
| |
Collapse
|
10
|
Putyatin IA, Titova NV. [Neurochemical mechanisms of tremor in Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:64-72. [PMID: 39690553 DOI: 10.17116/jnevro202412411164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Tremor is one of the main motor symptoms of Parkinson's disease, and its pathophysiology remains largely unknown. The clinical and pathomorphological heterogeneity of tremor and the not always response to therapy complicate the task of researchers and clinicians. This review discusses the specific degeneration of neurotransmitter systems driving the development of tremor, and the influence of neurotransmitters on specific anatomical entities according to current models explaining tremor. It is discusses how changes in neurotransmitter systems may influence the clinical diversity of tremor and differences in response to therapy. Data from clinical trials demonstrating the effect of the dopamine receptor agonist piribedil on tremor are presented.
Collapse
Affiliation(s)
- I A Putyatin
- Pirogov Russian National Research Medical University (Pirogovsky University), Moscow, Russia
| | - N V Titova
- Pirogov Russian National Research Medical University (Pirogovsky University), Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| |
Collapse
|
11
|
Pirker W, Katzenschlager R, Hallett M, Poewe W. Pharmacological Treatment of Tremor in Parkinson's Disease Revisited. JOURNAL OF PARKINSON'S DISEASE 2023; 13:127-144. [PMID: 36847017 PMCID: PMC10041452 DOI: 10.3233/jpd-225060] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The pathophysiology of Parkinson's disease (PD) tremor remains incompletely understood and there is a lack of clinical trials specifically addressing its pharmacological treatment. Levodopa is the most efficacious drug for most patients and should be used as primary approach to control troublesome tremor. While the efficacy of oral dopamine agonists on PD tremor has been demonstrated in controlled trials, there is no evidence of greater antitremor efficacy compared to levodopa. The magnitude of the antitremor effect of anticholinergics is generally lower than that of levodopa. Due to their adverse effects, anticholinergics have a limited role in selected young and cognitively intact patients. Propranolol may improve resting and action tremor and may be considered as an adjunct in patients with insufficient tremor response to levodopa and this also applies to clozapine, despite its unfavorable adverse effect profile. Treating motor fluctuations with MAO-B and COMT inhibitors, dopamine agonists, amantadine, or on-demand treatments such as subcutaneous or sublingual apomorphine and inhaled levodopa as well as with continuous infusions of levodopa or apomorphine will improve off period tremor episodes. For patients with drug-refractory PD tremor despite levodopa optimization deep brain stimulation and focused ultrasound are first-line considerations. Surgery can also be highly effective for the treatment medication-refractory tremor in selected patients without motor fluctuations. The present review highlights the clinical essentials of parkinsonian tremor, critically examines available trial data on the effects of medication and surgical approaches and provides guidance for the choice of treatments to control PD tremor in clinical practice.
Collapse
Affiliation(s)
- Walter Pirker
- Department of Neurology, Klinik Ottakring, Vienna, Austria
| | - Regina Katzenschlager
- Department of Neurology and Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders, Klinik Donaustadt, Vienna, Austria
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Werner Poewe
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Abusrair AH, Elsekaily W, Bohlega S. Tremor in Parkinson's Disease: From Pathophysiology to Advanced Therapies. Tremor Other Hyperkinet Mov (N Y) 2022; 12:29. [PMID: 36211804 PMCID: PMC9504742 DOI: 10.5334/tohm.712] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022] Open
Abstract
Background Tremor is one of the most prevalent symptoms in Parkinson's Disease (PD). The progression and management of tremor in PD can be challenging, as response to dopaminergic agents might be relatively poor, particularly in patients with tremor-dominant PD compared to the akinetic/rigid subtype. In this review, we aim to highlight recent advances in the underlying pathogenesis and treatment modalities for tremor in PD. Methods A structured literature search through Embase was conducted using the terms "Parkinson's Disease" AND "tremor" OR "etiology" OR "management" OR "drug resistance" OR "therapy" OR "rehabilitation" OR "surgery." After initial screening, eligible articles were selected with a focus on published literature in the last 10 years. Discussion The underlying pathophysiology of tremor in PD remains complex and incompletely understood. Neurodegeneration of dopaminergic neurons in the retrorubral area, in addition to high-power neural oscillations in the cerebello-thalamo-cortical circuit and the basal ganglia, play a major role. Levodopa is the first-line therapeutic option for all motor symptoms, including tremor. The addition of dopamine agonists or anticholinergics can lead to further tremor reduction. Botulinum toxin injection is an effective alternative for patients with pharmacological-resistant tremor who are not seeking advanced therapies. Deep brain stimulation is the most well-established advanced therapy owing to its long-term efficacy, reversibility, and effectiveness in other motor symptoms and fluctuations. Magnetic resonance-guided focused ultrasound is a promising modality, which has the advantage of being incisionless. Cortical and peripheral electrical stimulation are non-invasive innovatory techniques that have demonstrated good efficacy in suppressing intractable tremor.
Collapse
Affiliation(s)
- Ali H. Abusrair
- Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Division of Neurology, Department of Internal Medicine, Qatif Health Network, Qatif, Saudi Arabia
| | - Walaa Elsekaily
- College of Medicine, AlFaisal University, Riyadh, Saudi Arabia
| | - Saeed Bohlega
- Movement Disorders Program, Neurosciences Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Shiiba T, Takano K, Takaki A, Suwazono S. Dopamine transporter single-photon emission computed tomography-derived radiomics signature for detecting Parkinson's disease. EJNMMI Res 2022; 12:39. [PMID: 35759054 PMCID: PMC9237203 DOI: 10.1186/s13550-022-00910-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We hypothesised that the radiomics signature, which includes texture information of dopamine transporter single-photon emission computed tomography (DAT-SPECT) images for Parkinson's disease (PD), may assist semi-quantitative indices. Herein, we constructed a radiomics signature using DAT-SPECT-derived radiomics features that effectively discriminated PD from healthy individuals and evaluated its classification performance. RESULTS We analysed 413 cases of both normal control (NC, n = 101) and PD (n = 312) groups from the Parkinson's Progression Markers Initiative database. Data were divided into the training and two test datasets with different SPECT manufacturers. DAT-SPECT images were spatially normalised to the Montreal Neurologic Institute space. We calculated 930 radiomics features, including intensity- and texture-based features in the caudate, putamen, and pallidum volumes of interest. The striatum uptake ratios (SURs) of the caudate, putamen, and pallidum were also calculated as conventional semi-quantification indices. The least absolute shrinkage and selection operator was used for feature selection and construction of the radiomics signature. The four classification models were constructed using a radiomics signature and/or semi-quantitative indicator. Furthermore, we compared the classification performance of the semi-quantitative indicator alone and the combination with the radiomics signature for the classification models. The receiver operating characteristics (ROC) analysis was used to evaluate the classification performance. The classification performance of SURputamen was higher than that of other semi-quantitative indicators. The radiomics signature resulted in a slightly increased area under the ROC curve (AUC) compared to SURputamen in each test dataset. When combined with SURputamen and radiomics signature, all classification models showed slightly higher AUCs than that of SURputamen alone. CONCLUSION We constructed a DAT-SPECT image-derived radiomics signature. Performance analysis showed that the current radiomics signature would be helpful for the diagnosis of PD and has the potential to provide robust diagnostic performance.
Collapse
Affiliation(s)
- Takuro Shiiba
- Department of Molecular Imaging, School of Medical Sciences, Fujita Health University, 1-98, Dengakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | - Kazuki Takano
- Department of Molecular Imaging, School of Medical Sciences, Fujita Health University, 1-98, Dengakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Akihiro Takaki
- Department of Radiological Technology, Faculty of Fukuoka Medical Technology, Teikyo University, 6-22 Misakimachi, Omuta-shi, Fukuoka, 836-8505, Japan
| | - Shugo Suwazono
- Department of Neurology and Center for Clinical Neuroscience, National Hospital Organization Okinawa National Hospital, 3-20-14 Ganeko, Ginowan, 901-2214, Okinawa, Japan
| |
Collapse
|
14
|
The pathophysiology of Parkinson's disease tremor. J Neurol Sci 2022; 435:120196. [DOI: 10.1016/j.jns.2022.120196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/08/2021] [Accepted: 02/17/2022] [Indexed: 01/18/2023]
|
15
|
Garcia Ruiz PJ, Ruiz Lopez M, Feliz CE. On the reversibility of parkinsonian tremor. Brief review and hypothesis. Neurologia 2022; 37:74-76. [PMID: 34034918 DOI: 10.1016/j.nrl.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022] Open
Affiliation(s)
- P J Garcia Ruiz
- Movement Disorders Unit, Department of Neurology, Fundacion Jimenez Diaz, Madrid, Spain.
| | - M Ruiz Lopez
- Movement Disorders Unit, Department of Neurology, Fundacion Jimenez Diaz, Madrid, Spain
| | - C E Feliz
- Movement Disorders Unit, Department of Neurology, Fundacion Jimenez Diaz, Madrid, Spain
| |
Collapse
|
16
|
Garcia Ruiz P, Ruiz Lopez M, Feliz C. On the reversibility of parkinsonian tremor. Brief review and hypothesis. NEUROLOGÍA (ENGLISH EDITION) 2022; 37:74-76. [DOI: 10.1016/j.nrleng.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022] Open
|
17
|
van den Berg KRE, Helmich RC. The Role of the Cerebellum in Tremor - Evidence from Neuroimaging. Tremor Other Hyperkinet Mov (N Y) 2021; 11:49. [PMID: 34820148 PMCID: PMC8603856 DOI: 10.5334/tohm.660] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/28/2021] [Indexed: 01/04/2023] Open
Abstract
Background Neuroimaging research has played a key role in identifying which cerebral changes are associated with tremor. Here we will focus on the cerebellum, which may drive tremor oscillations, process tremor-related afferents, modulate activity in remote brain regions, or a combination. Methods On the 6th of October 2021, we conducted a PubMed search to select articles providing neuroimaging evidence for cerebellar involvement in essential tremor (ET), Parkinson's disease (PD) tremor, and dystonic tremor (DT). Results In ET, tremor-related activity is found in motor areas of the bilateral cerebellum, and altered functional connectivity within and outside the cerebellum correlates with tremor severity. Furthermore, ET is associated with cerebellar atrophy, but also with compensatory structural changes outside the cerebellum (e.g. supplementary motor area). In PD, tremor-related cerebellar activity and increased cerebello-thalamic coupling has been found. Emerging evidence suggests that the cerebellum plays a key role in dopamine-resistant rest tremor and in postural tremor. Cerebellar structural alterations have been identified in PD, but only some relate to tremor. DT is associated with more widespread cerebral networks than other tremor types. Discussion In ET, the cerebellum likely acts as an oscillator, potentially due to loss of inhibitory mechanisms. In contrast, in PD the cerebellum may be a modulator, which contributes to tremor oscillations by influencing the thalamo-cortical system. The precise role of the cerebellum in DT remains unclear. We recommend that future research measures tremor-related activity directly by combining electrophysiology with neuroimaging, while brain stimulation techniques may be used to establish causality. Highlights This review of neuroimaging studies has provided convincing evidence that the cerebellum plays a key role in the pathophysiology of ET, PD tremor, and dystonic tremor syndromes. This contribution may consist of driving tremor oscillations, processing tremor-related afferents, modulating activity in remote brain regions, or all the above.
Collapse
Affiliation(s)
- Kevin R. E. van den Berg
- Centre of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Rick C. Helmich
- Centre of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
18
|
Nicastro N, Burkhard PR, Garibotto V. Preserved Extrastriatal 123I-FP-CIT Binding in Scans Without Evidence of Dopaminergic Deficit (SWEDD). Mol Imaging Biol 2021; 22:1592-1599. [PMID: 32468408 DOI: 10.1007/s11307-020-01502-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Scans without evidence of dopaminergic deficit (SWEDD) have been initially described in a minority of subjects with suspected Parkinson's disease (PD). Although a highly controversial entity, longitudinal studies showed that SWEDD cases mostly involve non-degenerative conditions mimicking PD or misattribution of scan images to normal status. Using the Parkinson's Progression Markers Initiative (PPMI) cohort, we undertook a case-controlled analysis of [123I]N-ω-fluoropropyl-2β-carbomethoxy-iodophenyl nortropane ([123I]FP-CIT) single photon emission computed tomography (SPECT) images to measure extrastriatal serotonergic transporter (SERT) density in SWEDD and PD. PROCEDURES We included 37 SWEDD cases (mean age 60 years, 33 % female) with available [123I]FP-CIT SPECT imaging and high-resolution T1-weighted magnetic resonance imaging (MRI) for coregistration. Sixty-one controls and 62 similarly aged PD subjects were included for group comparisons. Regional [123I]FP-CIT was extracted with PETPVE12 using geometric transfer matrix and partial volume effect correction. RESULTS PD subjects showed significantly lower [123I]FP-CIT binding in both striatal (caudate nucleus and putamen) and extrastriatal regions (pallidum and insula) compared with controls and SWEDD (all between-group p < 0.0001). PD group also showed lower binding in the thalamus relative to controls (p = 0.007). Receiver operating characteristics (ROC) area under the curve (AUC) did not show a significant difference when using extrastriatal region in addition to striatal ROIs for the separation of SWEDD and PD (95 % ROC-AUC for both methods, p = 0.52). In addition, striatal [123I]FP-CIT binding contralateral to the clinically more affected side was usually lower for PD (> 75 %) but not for SWEDD (< 49 %, p < 0.002). No significant difference regarding [123I]FP-CIT binding was observed between SWEDD and controls. CONCLUSION These findings corroborate the view that SWEDD cases represent a heterogeneous group of conditions not involving dopaminergic and serotonergic terminals. Further studies are warranted to be assessed whether using extrastriatal [123I]FP-CIT evaluation can be of help in the assessment of degenerative parkinsonism.
Collapse
Affiliation(s)
- Nicolas Nicastro
- Department of Psychiatry, University of Cambridge, Cambridge, UK. .,Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, 4 rue G. Perret-Gentil, 1205, Geneva, Switzerland.
| | - Pierre R Burkhard
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, 4 rue G. Perret-Gentil, 1205, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Valentina Garibotto
- Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
19
|
Nicastro N, Fleury V, Broc N, Burkhard PR, Garibotto V. Extrastriatal 123I-FP-CIT SPECT impairment in degenerative parkinsonisms. Parkinsonism Relat Disord 2020; 78:38-43. [DOI: 10.1016/j.parkreldis.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
|
20
|
Tosin MHDS, Goetz CG, Luo S, Choi D, Stebbins GT. Item Response Theory Analysis of the MDS-UPDRS Motor Examination: Tremor vs. Nontremor Items. Mov Disord 2020; 35:1587-1595. [PMID: 32469456 DOI: 10.1002/mds.28110] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In PD, tremor severity behaves differently from other core motor features. However, the most commonly used assessment of overall motor severity, total MDS-UPDRS Motor Examination (Part 3) score, does not account for this distinction. OBJECTIVES To investigate the Motor Examination (Part 3) using Item Response Theory approaches focusing on sample-independent strategies that assess how well items measure latent models of PD motor severity. METHODS Data from 6,298 PD patients were analyzed with graded response model Item Response Theory approaches involving two analyses all 33 Part 3 items versus the 10 tremor items and 23 bradykinesia, rigidity, gait, and posture items considered separately. The strength of relationship between items and the latent measure of parkinsonian motor severity (discrimination parameter) and calculated thresholds (location parameters) were assessed using the mirt program implemented in R (R Foundation for Statistical Computing, Vienna, Austria). RESULTS Analyzing all Part 3 items together, nontremor items demonstrated good discrimination parameters (mean = 1.83 ± 0.37) and range of thresholds (-1.73 to +4.42), but tremor items had poor discrimination (mean = 0.52 ± 0.76) and thresholds (-0.69 to 14.29). Segregating nontremor from tremor items in two independent analyses provided markedly improved discrimination and location parameters for both. CONCLUSIONS MDS-UPDRS Part 3 tremor and nontremor items have very different relations to the construct of PD severity. Strongly improved clinimetric properties for Part 3 are obtained when tremor and nontremor items are considered separately. We suggest that evaluating PD motor severity, as an operationalized summary measure, is best attained through separate analyses with tremor and nontremor motor scores. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Michelle Hyczy de Siqueira Tosin
- Department of Nursing, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.,Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Christopher G Goetz
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University, Medical Center, Durham, North Carolina, USA
| | - Dongrak Choi
- Department of Biostatistics and Bioinformatics, Duke University, Medical Center, Durham, North Carolina, USA
| | - Glenn T Stebbins
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
21
|
Zach H, Dirkx MF, Roth D, Pasman JW, Bloem BR, Helmich RC. Dopamine-responsive and dopamine-resistant resting tremor in Parkinson disease. Neurology 2020; 95:e1461-e1470. [PMID: 32651292 DOI: 10.1212/wnl.0000000000010316] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/30/2020] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE We tested the hypothesis that there are 2 distinct phenotypes of Parkinson tremor, based on interindividual differences in the response of resting tremor to dopaminergic medication. We also investigated whether this pattern is specific to tremor by comparing interindividual differences in the dopamine response of tremor to that of bradykinesia. METHODS In this exploratory study, we performed a levodopa challenge in 76 tremulous patients with Parkinson tremor. Clinical scores (Movement Disorders Society-sponsored version of the Unified Parkinson's Disease Rating Scale part III) were collected "off" and "on" a standardized dopaminergic challenge (200/50 mg dispersible levodopa-benserazide). In both sessions, resting tremor intensity was quantified using accelerometry, both during rest and during cognitive coactivation. Bradykinesia was quantified using a speeded keyboard test. We calculated the distribution of dopamine-responsiveness for resting tremor and bradykinesia. In 41 patients, a double-blinded, placebo-controlled dopaminergic challenge was repeated after approximately 6 months. RESULTS The dopamine response of resting tremor, but not bradykinesia, significantly departed from a normal distribution. A cluster analysis on 3 clinical and electrophysiologic markers of tremor dopamine-responsiveness revealed 3 clusters: dopamine-responsive, intermediate, and dopamine-resistant tremor. A repeated levodopa challenge after 6 months confirmed this classification. Patients with dopamine-responsive tremor had greater disease severity and tended to have a higher prevalence of dyskinesia. CONCLUSION Parkinson resting tremor can be divided into 3 partially overlapping phenotypes, based on the dopamine response. These tremor phenotypes may be associated with different underlying pathophysiologic mechanisms, requiring a different therapeutic approach.
Collapse
Affiliation(s)
- Heidemarie Zach
- From the Department of Neurology (H.Z., M.F.D., J.W.P., B.R.B., R.C.H.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Departments of Neurology (H.Z.) and Emergency Medicine (D.R.), Medical University Vienna, Austria
| | - Michiel F Dirkx
- From the Department of Neurology (H.Z., M.F.D., J.W.P., B.R.B., R.C.H.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Departments of Neurology (H.Z.) and Emergency Medicine (D.R.), Medical University Vienna, Austria
| | - Dominik Roth
- From the Department of Neurology (H.Z., M.F.D., J.W.P., B.R.B., R.C.H.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Departments of Neurology (H.Z.) and Emergency Medicine (D.R.), Medical University Vienna, Austria
| | - Jaco W Pasman
- From the Department of Neurology (H.Z., M.F.D., J.W.P., B.R.B., R.C.H.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Departments of Neurology (H.Z.) and Emergency Medicine (D.R.), Medical University Vienna, Austria
| | - Bastiaan R Bloem
- From the Department of Neurology (H.Z., M.F.D., J.W.P., B.R.B., R.C.H.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Departments of Neurology (H.Z.) and Emergency Medicine (D.R.), Medical University Vienna, Austria
| | - Rick C Helmich
- From the Department of Neurology (H.Z., M.F.D., J.W.P., B.R.B., R.C.H.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Departments of Neurology (H.Z.) and Emergency Medicine (D.R.), Medical University Vienna, Austria.
| |
Collapse
|
22
|
Nicastro N, Garibotto V, Burkhard PR. Extrastriatal 123I-FP-CIT SPECT impairment in Parkinson's disease - the PPMI cohort. BMC Neurol 2020; 20:192. [PMID: 32416724 PMCID: PMC7229596 DOI: 10.1186/s12883-020-01777-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/11/2020] [Indexed: 11/26/2022] Open
Abstract
Background Neuropathological data and nuclear medicine imaging show extensive serotonergic impairment in Parkinson’s disease (PD). We undertook a case-controlled analysis of 123I-FP-CIT SPECT images to measure extrastriatal serotonergic transporters (SERT) in PD using the Parkinson’s Progression Markers Initiative (PPMI) cohort. Methods We included all PD (n = 154) and Control subjects (n = 62) with available 123I-FP-CIT SPECT imaging and high-resolution T1-weighted MRI for coregistration (PD: mean age 61.6 years, 62% male, disease duration 26 months, MDS-UPDRS III score 22). 123I-FP-CIT SPECT images were processed with PETPVE12 using an exploratory voxel-wise analysis including partial-volume effect correction. Linear regressions were performed in the PD group to assess correlations between region of interest 123I-FP-CIT uptake and clinical motor and non-motor impairment. Results Compared to Controls, PD exhibited an uptake reduction in bilateral caudate nucleus, putamen, insula, amygdala and right pallidum (family-wise error (FWE)-corrected p < 0.05). While lower putaminal uptake on the contralateral side to clinically more affected side was associated with higher MDS-UPDRS III score (p = 0.022), we found a trend association between higher geriatric depression scale and lower pallidum uptake (p = 0.09). Higher SCOPA-AUT gastrointestinal subscore was associated with lower uptake in mean putamen and caudate nucleus (p = 0.01 to 0.03), whereas urological subscore was inversely correlated with mean caudate nucleus, putamen, and pallidum uptake (p = 0.002 to 0.03). REM sleep behaviour disorder screening questionnaire was associated with lower 123I-FP-CIT binding in caudate nucleus, putamen and pallidum (all p < 0.05). No significant association was found for Montreal Cognitive Assessment (all p > 0.45) or excessive daytime sleepiness (all p > 0.29). Conclusions In addition to the well-established striatal deficit, this study provides evidence of a major extrastriatal 123I-FP-CIT impairment, and therefore of an altered serotonergic transmission in early PD.
Collapse
Affiliation(s)
- Nicolas Nicastro
- Department of Psychiatry, University of Cambridge, Cambridge, UK. .,Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, 4, rue G. Perret-Gentil, 1205, Geneva, Switzerland.
| | - Valentina Garibotto
- Department of Nuclear Medicine, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pierre R Burkhard
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, 4, rue G. Perret-Gentil, 1205, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
Striatal dopamine activity and myocardial 123I-metaiodobenzylguanidine uptake in early Parkinson's disease. Parkinsonism Relat Disord 2019; 63:156-161. [DOI: 10.1016/j.parkreldis.2019.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 12/12/2022]
|
24
|
Hacker ML, DeLong MR, Turchan M, Heusinkveld LE, Ostrem JL, Molinari AL, Currie AD, Konrad PE, Davis TL, Phibbs FT, Hedera P, Cannard KR, Drye LT, Sternberg AL, Shade DM, Tonascia J, Charles D. Effects of deep brain stimulation on rest tremor progression in early stage Parkinson disease. Neurology 2018; 91:e463-e471. [PMID: 29959266 PMCID: PMC6093763 DOI: 10.1212/wnl.0000000000005903] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/05/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate whether the progression of individual motor features was influenced by early deep brain stimulation (DBS), a post hoc analysis of Unified Parkinson's Disease Rating Scale-III (UPDRS-III) score (after a 7-day washout) was conducted from the 2-year DBS in early Parkinson disease (PD) pilot trial dataset. METHODS The prospective pilot trial enrolled patients with PD aged 50-75 years, treated with PD medications for 6 months-4 years, and no history of dyskinesia or other motor fluctuations, who were randomized to receive optimal drug therapy (ODT) or DBS plus ODT (DBS + ODT). At baseline and 6, 12, 18, and 24 months, all patients stopped all PD therapy for 1 week (medication and stimulation, if applicable). UPDRS-III "off" item scores were compared between the ODT and DBS + ODT groups (n = 28); items with significant between-group differences were analyzed further. RESULTS UPDRS-III "off" rest tremor score change from baseline to 24 months was worse in patients receiving ODT vs DBS + ODT (p = 0.002). Rest tremor slopes from baseline to 24 months favored DBS + ODT both "off" and "on" therapy (p < 0.001, p = 0.003, respectively). More ODT patients developed new rest tremor in previously unaffected limbs than those receiving DBS + ODT (p = 0.001). CONCLUSIONS These results suggest the possibility that DBS in early PD may slow rest tremor progression. Future investigation in a larger cohort is needed, and these findings will be tested in the Food and Drug Administration-approved, phase III, pivotal, multicenter clinical trial evaluating DBS in early PD. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that for patients with early PD, DBS may slow the progression of rest tremor.
Collapse
Affiliation(s)
- Mallory L Hacker
- From the Departments of Neurology (M.L.H., M.T., L.E.H., A.L.M., A.D.C., T.L.D., F.T.P., P.H., D.C.) and Neurosurgery (P.E.K.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (M.R.D.), Emory University School of Medicine, Atlanta, GA; Laboratory of Molecular Immunology (L.E.H.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; Movement Disorders and Neuromodulation Center (J.L.O.), Department of Neurology, University of California San Francisco; Department of Neurology (K.R.C.), Walter Reed National Military Center, Bethesda; and Department of Epidemiology (L.T.D., A.L.S., D.M.S., J.T.), Johns Hopkins University, Baltimore, MD
| | - Mahlon R DeLong
- From the Departments of Neurology (M.L.H., M.T., L.E.H., A.L.M., A.D.C., T.L.D., F.T.P., P.H., D.C.) and Neurosurgery (P.E.K.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (M.R.D.), Emory University School of Medicine, Atlanta, GA; Laboratory of Molecular Immunology (L.E.H.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; Movement Disorders and Neuromodulation Center (J.L.O.), Department of Neurology, University of California San Francisco; Department of Neurology (K.R.C.), Walter Reed National Military Center, Bethesda; and Department of Epidemiology (L.T.D., A.L.S., D.M.S., J.T.), Johns Hopkins University, Baltimore, MD
| | - Maxim Turchan
- From the Departments of Neurology (M.L.H., M.T., L.E.H., A.L.M., A.D.C., T.L.D., F.T.P., P.H., D.C.) and Neurosurgery (P.E.K.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (M.R.D.), Emory University School of Medicine, Atlanta, GA; Laboratory of Molecular Immunology (L.E.H.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; Movement Disorders and Neuromodulation Center (J.L.O.), Department of Neurology, University of California San Francisco; Department of Neurology (K.R.C.), Walter Reed National Military Center, Bethesda; and Department of Epidemiology (L.T.D., A.L.S., D.M.S., J.T.), Johns Hopkins University, Baltimore, MD
| | - Lauren E Heusinkveld
- From the Departments of Neurology (M.L.H., M.T., L.E.H., A.L.M., A.D.C., T.L.D., F.T.P., P.H., D.C.) and Neurosurgery (P.E.K.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (M.R.D.), Emory University School of Medicine, Atlanta, GA; Laboratory of Molecular Immunology (L.E.H.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; Movement Disorders and Neuromodulation Center (J.L.O.), Department of Neurology, University of California San Francisco; Department of Neurology (K.R.C.), Walter Reed National Military Center, Bethesda; and Department of Epidemiology (L.T.D., A.L.S., D.M.S., J.T.), Johns Hopkins University, Baltimore, MD
| | - Jill L Ostrem
- From the Departments of Neurology (M.L.H., M.T., L.E.H., A.L.M., A.D.C., T.L.D., F.T.P., P.H., D.C.) and Neurosurgery (P.E.K.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (M.R.D.), Emory University School of Medicine, Atlanta, GA; Laboratory of Molecular Immunology (L.E.H.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; Movement Disorders and Neuromodulation Center (J.L.O.), Department of Neurology, University of California San Francisco; Department of Neurology (K.R.C.), Walter Reed National Military Center, Bethesda; and Department of Epidemiology (L.T.D., A.L.S., D.M.S., J.T.), Johns Hopkins University, Baltimore, MD
| | - Anna L Molinari
- From the Departments of Neurology (M.L.H., M.T., L.E.H., A.L.M., A.D.C., T.L.D., F.T.P., P.H., D.C.) and Neurosurgery (P.E.K.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (M.R.D.), Emory University School of Medicine, Atlanta, GA; Laboratory of Molecular Immunology (L.E.H.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; Movement Disorders and Neuromodulation Center (J.L.O.), Department of Neurology, University of California San Francisco; Department of Neurology (K.R.C.), Walter Reed National Military Center, Bethesda; and Department of Epidemiology (L.T.D., A.L.S., D.M.S., J.T.), Johns Hopkins University, Baltimore, MD
| | - Amanda D Currie
- From the Departments of Neurology (M.L.H., M.T., L.E.H., A.L.M., A.D.C., T.L.D., F.T.P., P.H., D.C.) and Neurosurgery (P.E.K.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (M.R.D.), Emory University School of Medicine, Atlanta, GA; Laboratory of Molecular Immunology (L.E.H.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; Movement Disorders and Neuromodulation Center (J.L.O.), Department of Neurology, University of California San Francisco; Department of Neurology (K.R.C.), Walter Reed National Military Center, Bethesda; and Department of Epidemiology (L.T.D., A.L.S., D.M.S., J.T.), Johns Hopkins University, Baltimore, MD
| | - Peter E Konrad
- From the Departments of Neurology (M.L.H., M.T., L.E.H., A.L.M., A.D.C., T.L.D., F.T.P., P.H., D.C.) and Neurosurgery (P.E.K.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (M.R.D.), Emory University School of Medicine, Atlanta, GA; Laboratory of Molecular Immunology (L.E.H.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; Movement Disorders and Neuromodulation Center (J.L.O.), Department of Neurology, University of California San Francisco; Department of Neurology (K.R.C.), Walter Reed National Military Center, Bethesda; and Department of Epidemiology (L.T.D., A.L.S., D.M.S., J.T.), Johns Hopkins University, Baltimore, MD
| | - Thomas L Davis
- From the Departments of Neurology (M.L.H., M.T., L.E.H., A.L.M., A.D.C., T.L.D., F.T.P., P.H., D.C.) and Neurosurgery (P.E.K.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (M.R.D.), Emory University School of Medicine, Atlanta, GA; Laboratory of Molecular Immunology (L.E.H.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; Movement Disorders and Neuromodulation Center (J.L.O.), Department of Neurology, University of California San Francisco; Department of Neurology (K.R.C.), Walter Reed National Military Center, Bethesda; and Department of Epidemiology (L.T.D., A.L.S., D.M.S., J.T.), Johns Hopkins University, Baltimore, MD
| | - Fenna T Phibbs
- From the Departments of Neurology (M.L.H., M.T., L.E.H., A.L.M., A.D.C., T.L.D., F.T.P., P.H., D.C.) and Neurosurgery (P.E.K.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (M.R.D.), Emory University School of Medicine, Atlanta, GA; Laboratory of Molecular Immunology (L.E.H.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; Movement Disorders and Neuromodulation Center (J.L.O.), Department of Neurology, University of California San Francisco; Department of Neurology (K.R.C.), Walter Reed National Military Center, Bethesda; and Department of Epidemiology (L.T.D., A.L.S., D.M.S., J.T.), Johns Hopkins University, Baltimore, MD
| | - Peter Hedera
- From the Departments of Neurology (M.L.H., M.T., L.E.H., A.L.M., A.D.C., T.L.D., F.T.P., P.H., D.C.) and Neurosurgery (P.E.K.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (M.R.D.), Emory University School of Medicine, Atlanta, GA; Laboratory of Molecular Immunology (L.E.H.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; Movement Disorders and Neuromodulation Center (J.L.O.), Department of Neurology, University of California San Francisco; Department of Neurology (K.R.C.), Walter Reed National Military Center, Bethesda; and Department of Epidemiology (L.T.D., A.L.S., D.M.S., J.T.), Johns Hopkins University, Baltimore, MD
| | - Kevin R Cannard
- From the Departments of Neurology (M.L.H., M.T., L.E.H., A.L.M., A.D.C., T.L.D., F.T.P., P.H., D.C.) and Neurosurgery (P.E.K.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (M.R.D.), Emory University School of Medicine, Atlanta, GA; Laboratory of Molecular Immunology (L.E.H.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; Movement Disorders and Neuromodulation Center (J.L.O.), Department of Neurology, University of California San Francisco; Department of Neurology (K.R.C.), Walter Reed National Military Center, Bethesda; and Department of Epidemiology (L.T.D., A.L.S., D.M.S., J.T.), Johns Hopkins University, Baltimore, MD
| | - Lea T Drye
- From the Departments of Neurology (M.L.H., M.T., L.E.H., A.L.M., A.D.C., T.L.D., F.T.P., P.H., D.C.) and Neurosurgery (P.E.K.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (M.R.D.), Emory University School of Medicine, Atlanta, GA; Laboratory of Molecular Immunology (L.E.H.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; Movement Disorders and Neuromodulation Center (J.L.O.), Department of Neurology, University of California San Francisco; Department of Neurology (K.R.C.), Walter Reed National Military Center, Bethesda; and Department of Epidemiology (L.T.D., A.L.S., D.M.S., J.T.), Johns Hopkins University, Baltimore, MD
| | - Alice L Sternberg
- From the Departments of Neurology (M.L.H., M.T., L.E.H., A.L.M., A.D.C., T.L.D., F.T.P., P.H., D.C.) and Neurosurgery (P.E.K.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (M.R.D.), Emory University School of Medicine, Atlanta, GA; Laboratory of Molecular Immunology (L.E.H.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; Movement Disorders and Neuromodulation Center (J.L.O.), Department of Neurology, University of California San Francisco; Department of Neurology (K.R.C.), Walter Reed National Military Center, Bethesda; and Department of Epidemiology (L.T.D., A.L.S., D.M.S., J.T.), Johns Hopkins University, Baltimore, MD
| | - David M Shade
- From the Departments of Neurology (M.L.H., M.T., L.E.H., A.L.M., A.D.C., T.L.D., F.T.P., P.H., D.C.) and Neurosurgery (P.E.K.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (M.R.D.), Emory University School of Medicine, Atlanta, GA; Laboratory of Molecular Immunology (L.E.H.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; Movement Disorders and Neuromodulation Center (J.L.O.), Department of Neurology, University of California San Francisco; Department of Neurology (K.R.C.), Walter Reed National Military Center, Bethesda; and Department of Epidemiology (L.T.D., A.L.S., D.M.S., J.T.), Johns Hopkins University, Baltimore, MD
| | - James Tonascia
- From the Departments of Neurology (M.L.H., M.T., L.E.H., A.L.M., A.D.C., T.L.D., F.T.P., P.H., D.C.) and Neurosurgery (P.E.K.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (M.R.D.), Emory University School of Medicine, Atlanta, GA; Laboratory of Molecular Immunology (L.E.H.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; Movement Disorders and Neuromodulation Center (J.L.O.), Department of Neurology, University of California San Francisco; Department of Neurology (K.R.C.), Walter Reed National Military Center, Bethesda; and Department of Epidemiology (L.T.D., A.L.S., D.M.S., J.T.), Johns Hopkins University, Baltimore, MD
| | - David Charles
- From the Departments of Neurology (M.L.H., M.T., L.E.H., A.L.M., A.D.C., T.L.D., F.T.P., P.H., D.C.) and Neurosurgery (P.E.K.), Vanderbilt University Medical Center, Nashville, TN; Department of Neurology (M.R.D.), Emory University School of Medicine, Atlanta, GA; Laboratory of Molecular Immunology (L.E.H.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; Movement Disorders and Neuromodulation Center (J.L.O.), Department of Neurology, University of California San Francisco; Department of Neurology (K.R.C.), Walter Reed National Military Center, Bethesda; and Department of Epidemiology (L.T.D., A.L.S., D.M.S., J.T.), Johns Hopkins University, Baltimore, MD.
| |
Collapse
|