1
|
Luque-Buzo E, Pérez-Sánchez JR, Gonzalez-Sánchez M, Contreras-Chicote A, De la Casa-Fages B, Secades-García S, Grandas-Pérez F. Early-onset asymmetric parkinsonism with atypical features and rapid progression related to a PSEN1 H163R variant. Parkinsonism Relat Disord 2024; 127:107090. [PMID: 39142245 DOI: 10.1016/j.parkreldis.2024.107090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/13/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Affiliation(s)
- Elisa Luque-Buzo
- Movement Disorders Unit, CSUR, ERN RND. Neurology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| | - Javier Ricardo Pérez-Sánchez
- Movement Disorders Unit, CSUR, ERN RND. Neurology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Miguel Gonzalez-Sánchez
- Movement Disorders Unit, CSUR, ERN RND. Neurology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ana Contreras-Chicote
- Movement Disorders Unit, CSUR, ERN RND. Neurology Departmen, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Beatriz De la Casa-Fages
- Movement Disorders Unit, CSUR, ERN RND. Neurology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Sergio Secades-García
- Movement Disorders Unit, CSUR, ERN RND. Neurology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Francisco Grandas-Pérez
- Movement Disorders Unit, CSUR, ERN RND. Neurology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| |
Collapse
|
2
|
Sun Y, Islam S, Michikawa M, Zou K. Presenilin: A Multi-Functional Molecule in the Pathogenesis of Alzheimer's Disease and Other Neurodegenerative Diseases. Int J Mol Sci 2024; 25:1757. [PMID: 38339035 PMCID: PMC10855926 DOI: 10.3390/ijms25031757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Presenilin, a transmembrane protein primarily known for its role in Alzheimer's disease (AD) as part of the γ-secretase complex, has garnered increased attention due to its multifaceted functions in various cellular processes. Recent investigations have unveiled a plethora of functions beyond its amyloidogenic role. This review aims to provide a comprehensive overview of presenilin's diverse roles in AD and other neurodegenerative disorders. It includes a summary of well-known substrates of presenilin, such as its involvement in amyloid precursor protein (APP) processing and Notch signaling, along with other functions. Additionally, it highlights newly discovered functions, such as trafficking function, regulation of ferritin expression, apolipoprotein E (ApoE) secretion, the interaction of ApoE and presenilin, and the Aβ42-to-Aβ40-converting activity of ACE. This updated perspective underscores the evolving landscape of presenilin research, emphasizing its broader impact beyond established pathways. The incorporation of these novel findings accentuates the dynamic nature of presenilin's involvement in cellular processes, further advancing our comprehension of its multifaceted roles in neurodegenerative disorders. By synthesizing evidence from a range of studies, this review sheds light on the intricate web of presenilin functions and their implications in health and disease.
Collapse
Affiliation(s)
- Yang Sun
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.S.); (S.I.)
| | - Sadequl Islam
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.S.); (S.I.)
| | - Makoto Michikawa
- Department of Geriatric Medicine, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata 951-8580, Japan;
| | - Kun Zou
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.S.); (S.I.)
| |
Collapse
|
3
|
Malaguti MC, Di Fonzo A, Longo C, Di Giacopo R, Papagno C, Donner D, Rozzanigo U, Monfrini E. A Novel Pathogenic PSEN1 Variant in a Patient With Dystonia-Parkinsonism Without Dementia. J Mov Disord 2024; 17:102-105. [PMID: 37704566 PMCID: PMC10846968 DOI: 10.14802/jmd.23125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023] Open
Affiliation(s)
| | - Alessio Di Fonzo
- Department of Neurology, Foundation Istituti di Ricovero e Cura a Carattere Scientifico Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Longo
- Department of Neurology, Santa Chiara Hospital, APSS, Trento, Italy
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | | | - Costanza Papagno
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Davide Donner
- Department of Nuclear Medicine, Santa Chiara Hospital, APSS, Trento, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Umberto Rozzanigo
- Department of Diagnostic Imaging, Santa Chiara Hospital, APSS, Trento, Italy
| | - Edoardo Monfrini
- Department of Neurology, Foundation Istituti di Ricovero e Cura a Carattere Scientifico Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Neuroscience Section, Dino Ferrari Center, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Aloisio S, Satolli S, Bellini G, Lopriore P. Parkinsonism in complex neurogenetic disorders: lessons from hereditary dementias, adult-onset ataxias and spastic paraplegias. Neurol Sci 2023; 44:3379-3388. [PMID: 37648940 PMCID: PMC10495519 DOI: 10.1007/s10072-023-07044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Parkinsonism is a syndrome characterized by bradykinesia in combination with either rest tremor, rigidity, or both. These features are the cardinal manifestations of Parkinson's disease, the most common cause of parkinsonism, and atypical parkinsonian disorders. However, parkinsonism can be a manifestation of complex neurological and neurodegenerative genetically determined disorders, which have a vast and heterogeneous motor and non-motor phenotypic features. Hereditary dementias, adult-onset ataxias and spastic paraplegias represent only few of this vast group of neurogenetic diseases. This review will provide an overview of parkinsonism's clinical features within adult-onset neurogenetic diseases which a neurologist could face with. Understanding parkinsonism and its characteristics in the context of the aforementioned neurological conditions may provide insights into pathophysiological mechanisms and have important clinical implications, including diagnostic and therapeutic aspects.
Collapse
Affiliation(s)
- Simone Aloisio
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sara Satolli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Gabriele Bellini
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Pisa, Italy
| | - Piervito Lopriore
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, Pisa, Italy.
| |
Collapse
|
5
|
Yang Y, Bagyinszky E, An SSA. Presenilin-1 (PSEN1) Mutations: Clinical Phenotypes beyond Alzheimer's Disease. Int J Mol Sci 2023; 24:8417. [PMID: 37176125 PMCID: PMC10179041 DOI: 10.3390/ijms24098417] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Presenilin 1 (PSEN1) is a part of the gamma secretase complex with several interacting substrates, including amyloid precursor protein (APP), Notch, adhesion proteins and beta catenin. PSEN1 has been extensively studied in neurodegeneration, and more than 300 PSEN1 mutations have been discovered to date. In addition to the classical early onset Alzheimer's disease (EOAD) phenotypes, PSEN1 mutations were discovered in several atypical AD or non-AD phenotypes, such as frontotemporal dementia (FTD), Parkinson's disease (PD), dementia with Lewy bodies (DLB) or spastic paraparesis (SP). For example, Leu113Pro, Leu226Phe, Met233Leu and an Arg352 duplication were discovered in patients with FTD, while Pro436Gln, Arg278Gln and Pro284Leu mutations were also reported in patients with motor dysfunctions. Interestingly, PSEN1 mutations may also impact non-neurodegenerative phenotypes, including PSEN1 Pro242fs, which could cause acne inversa, while Asp333Gly was reported in a family with dilated cardiomyopathy. The phenotypic diversity suggests that PSEN1 may be responsible for atypical disease phenotypes or types of disease other than AD. Taken together, neurodegenerative diseases such as AD, PD, DLB and FTD may share several common hallmarks (cognitive and motor impairment, associated with abnormal protein aggregates). These findings suggested that PSEN1 may interact with risk modifiers, which may result in alternative disease phenotypes such as DLB or FTD phenotypes, or through less-dominant amyloid pathways. Next-generation sequencing and/or biomarker analysis may be essential in clearly differentiating the possible disease phenotypes and pathways associated with non-AD phenotypes.
Collapse
Affiliation(s)
- Youngsoon Yang
- Department of Neurology, Soonchunhyang University College of Medicine, Cheonan Hospital, Cheonan 31151, Republic of Korea;
| | - Eva Bagyinszky
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
6
|
Genetics, Functions, and Clinical Impact of Presenilin-1 (PSEN1) Gene. Int J Mol Sci 2022; 23:ijms231810970. [PMID: 36142879 PMCID: PMC9504248 DOI: 10.3390/ijms231810970] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/29/2022] Open
Abstract
Presenilin-1 (PSEN1) has been verified as an important causative factor for early onset Alzheimer's disease (EOAD). PSEN1 is a part of γ-secretase, and in addition to amyloid precursor protein (APP) cleavage, it can also affect other processes, such as Notch signaling, β-cadherin processing, and calcium metabolism. Several motifs and residues have been identified in PSEN1, which may play a significant role in γ-secretase mechanisms, such as the WNF, GxGD, and PALP motifs. More than 300 mutations have been described in PSEN1; however, the clinical phenotypes related to these mutations may be diverse. In addition to classical EOAD, patients with PSEN1 mutations regularly present with atypical phenotypic symptoms, such as spasticity, seizures, and visual impairment. In vivo and in vitro studies were performed to verify the effect of PSEN1 mutations on EOAD. The pathogenic nature of PSEN1 mutations can be categorized according to the ACMG-AMP guidelines; however, some mutations could not be categorized because they were detected only in a single case, and their presence could not be confirmed in family members. Genetic modifiers, therefore, may play a critical role in the age of disease onset and clinical phenotypes of PSEN1 mutations. This review introduces the role of PSEN1 in γ-secretase, the clinical phenotypes related to its mutations, and possible significant residues of the protein.
Collapse
|
7
|
D’Anca M, Buccellato FR, Fenoglio C, Galimberti D. Circular RNAs: Emblematic Players of Neurogenesis and Neurodegeneration. Int J Mol Sci 2022; 23:ijms23084134. [PMID: 35456950 PMCID: PMC9032451 DOI: 10.3390/ijms23084134] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022] Open
Abstract
In the fascinating landscape of non-coding RNAs (ncRNAs), circular RNAs (circRNAs) are peeping out as a new promising and appreciated class of molecules with great potential as diagnostic and prognostic biomarkers. They come from circularization of single-stranded RNA molecules covalently closed and generated through alternative mRNA splicing. Dismissed for many years, similar to aberrant splicing by-products, nowadays, their role has been regained. They are able to regulate the expression of linear mRNA transcripts at different levels acting as miRNA sponges, interacting with ribonucleoproteins or exerting a control on gene expression. On the other hand, being extremely conserved across phyla and stable, cell and tissue specific, mostly abundant than the linear RNAs, it is not surprising that they should have critical biological functions. Curiously, circRNAs are particularly expressed in brain and they build up during aging and age-related diseases. These extraordinary peculiarities make circRNAs potentially suitable as promising molecular biomarkers, especially of aging and neurodegenerative diseases. This review aims to explore new evidence on circRNAs, emphasizing their role in aging and pathogenesis of major neurodegenerative disorders, Alzheimer's disease, frontotemporal dementia, and Parkinson's diseases with a look toward their potential usefulness in biomarker searching.
Collapse
Affiliation(s)
- Marianna D’Anca
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Correspondence:
| | - Francesca R. Buccellato
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Chiara Fenoglio
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Daniela Galimberti
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| |
Collapse
|
8
|
Zeng Q, Pan H, Zhao Y, Wang Y, Xu Q, Tan J, Yan X, Li J, Tang B, Guo J. Evaluation of common and rare variants of Alzheimer's disease-causal genes in Parkinson's disease. Parkinsonism Relat Disord 2022; 97:8-14. [PMID: 35276586 DOI: 10.1016/j.parkreldis.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) and Alzheimer's disease (AD) are the most common neurodegenerative diseases in the elderly. Recently, some variants of AD-causal genes (APP, PSEN1, PSEN2) have been reported in PD. In this study, we investigated the association between coding variants of AD-causal genes and PD in a large Chinese population cohort. METHODS We performed whole-exome sequencing (WES) on 1,917 patients with early-onset or familial PD and 1,652 controls, and whole-genome sequencing (WGS) on 1,962 sporadic late-onset PD and 1,279 controls. Genetic and phenotypic data were analyzed with regression analyses and the optimized sequence kernel association test. Further validation study was performed by Fisher's exact test. RESULTS We found that rs75733498 in the PSEN2 gene was significantly associated with early-onset or familial PD; however, no significant relationship was discovered between rs75733498 and sporadic late-onset PD. The result of the validation study still revealed a significant association between rs75733498 and PD. We observed a suggestive association with APP gene in early-onset or familial PD when considering damaging missense variants alone (p = 0.018) or combined with loss-of-function variants (p = 0.029). Further phenotypic analysis did not demonstrate any significant associations. CONCLUSION Our results support a possible genetic contribution of AD-causal genes to PD. These findings warrant further genetic and functional confirmation, and more powerful association studies will better decipher the mechanisms of PD.
Collapse
Affiliation(s)
- Qian Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jieqiong Tan
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China; Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.
| |
Collapse
|
9
|
Jiang L, Qin Y, Zhao YW, Zeng Q, Pan HX, Liu ZH, Sun QY, Xu Q, Tan JQ, Yan XX, Li JC, Tang BS, Guo JF. PSEN1 G417S mutation in a Chinese pedigree causing early-onset parkinsonism with cognitive impairment. Neurobiol Aging 2022; 115:70-76. [DOI: 10.1016/j.neurobiolaging.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/03/2021] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
|
10
|
A Possible Pathogenic PSEN2 Gly56Ser Mutation in a Korean Patient with Early-Onset Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23062967. [PMID: 35328387 PMCID: PMC8953053 DOI: 10.3390/ijms23062967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Early-onset Alzheimer’s disease (EOAD) is characterized by the presence of neurological symptoms in patients with Alzheimer’s disease (AD) before 65 years of age. Mutations in pathological genes, including amyloid protein precursor (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2), were associated with EOAD. Seventy-six mutations in PSEN2 have been found around the world, which could affect the activity of γ-secretase in amyloid beta processing. Here, a heterozygous PSEN2 point mutation from G to A nucleotide change at position 166 (codon 56; c.166G>A, Gly56Ser) was identified in a 64-year-old Korean female with AD with progressive cognitive memory impairment for the 4 years prior to the hospital visit. Hippocampal atrophy was observed from magnetic resonance imaging-based neuroimaging analyses. Temporal and parietal cortex hypometabolisms were identified using fluorodeoxyglucose positron emission tomography. This mutation was at the N-terminal portion of the presenilin 2 protein on the cytosolic side. Therefore, the serine substitution may have promoted AD pathogenesis by perturbing to the mutation region through altered phosphorylation of presenilin. In silico analysis revealed that the mutation altered protein bulkiness with increased hydrophilicity and reduced flexibility of the mutated region of the protein. Structural changes were likely caused by intramolecular interactions between serine and other residues, which may have affected APP processing. The functional study will clarify the pathogenicity of the mutation in the future.
Collapse
|
11
|
Chen Y, Liu P, Xie F, Wang B, Lin Z, Luo W. A heterozygous de novo PSEN1 mutation in a patient with early-onset parkinsonism. Neurol Sci 2021; 43:1405-1409. [PMID: 34843019 DOI: 10.1007/s10072-021-05726-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mutations in presenilin 1 (PSEN1) are the most common known genetic cause of early-onset Alzheimer's disease. Patients with PSEN1 mutations exhibit broad phenotypes. Here, we report clinical, neuroimaging and genetic findings in a patient with a de novo mutation in PSEN1 (c.697A > G, p.M233V) presenting with early-onset parkinsonism as the initial and primary symptom. METHODS We recruited a family with one affected patient with early-onset parkinsonism. The patient underwent comprehensive neurological examination and imaging evaluation. Whole genome sequencing was performed for the proband. RESULTS The patient presented with parkinsonism and mild cognitive impairment. He had a good response to levodopa. Brain MRI evaluation showed atrophy of the bilateral frontotemporal lobe and hippocampus. 18F-fluorodeoxyglucose-positron emission tomography (PET) and 11C-2β-carbomethoxy-3β-(4-fluorophenyl) tropane-PET showed decreased metabolism and dopamine transporter distribution in the bilateral putamen and caudate nucleus. 11C-Pittsburgh compound B -PET showed β-amyloid protein deposition. Genetic analysis identified a heterozygous de novo variant in PSEN1 (c.697A > G, p.M233V). CONCLUSIONS Screening for PSEN1 variations should be considered in patients with levodopa-responsive early-onset parkinsonism.
Collapse
Affiliation(s)
- Yueting Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peng Liu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Xie
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bo Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhiru Lin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Koros C, Stefanis L, Scarmeas N. Parkinsonism and dementia. J Neurol Sci 2021; 433:120015. [PMID: 34642023 DOI: 10.1016/j.jns.2021.120015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
The aim of the present review is to summarize literature data on dementia in parkinsonian disorders. Cognitive decline and the gradual development of dementia are considered to be key features in the majority of parkinsonian conditions. The burden of dementia in everyday life of parkinsonian patients and their caregivers is vast and can be even more challenging to handle than the motor component of the disease. Common pathogenetic mechanisms involve the aggregation and spreading of abnormal proteins like alpha-synuclein, tau or amyloid in cortical and subcortical regions with subsequent dysregulation of multiple neurotransmitter systems. The degree of cognitive deterioration in these disorders is variable and ranges from mild cognitive impairment to severe cognitive dysfunction. There is also variation in the number and type of affected cognitive domains which can involve either a single domain like executive or visuospatial function or multiple ones. Novel genetic, biological fluid or imaging biomarkers appear promising in facilitating the diagnosis and staging of dementia in parkinsonian conditions. A significant part of current research in Parkinson's disease and other parkinsonian syndromes is targeted towards the cognitive aspects of these disorders. Stabilization or amelioration of cognitive outcomes represents a primary endpoint in many ongoing clinical trials for novel disease modifying treatments in this field. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
Affiliation(s)
- Christos Koros
- 1st Department of Neurology, Aeginition University, Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, Aeginition University, Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece; Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aeginition University, Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece; The Gertrude H. Sergievsky Center, Department of Neurology, Taub Institute for Research in Alzheimer's, Disease and the Aging Brain, Columbia University, New York, USA.
| |
Collapse
|
13
|
Ravanidis S, Bougea A, Karampatsi D, Papagiannakis N, Maniati M, Stefanis L, Doxakis E. Differentially Expressed Circular RNAs in Peripheral Blood Mononuclear Cells of Patients with Parkinson's Disease. Mov Disord 2021; 36:1170-1179. [PMID: 33433033 PMCID: PMC8248110 DOI: 10.1002/mds.28467] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background New noninvasive and affordable molecular approaches that will complement current practices and increase the accuracy of Parkinson's disease (PD) diagnosis are urgently needed. Circular RNAs (circRNAs) are stable noncoding RNAs that accumulate with aging in neurons and are increasingly shown to regulate all aspects of neuronal development and function. Objectives Τhe aims of this study were to identify differentially expressed circRNAs in blood mononuclear cells of patients with idiopathic PD and explore the competing endogenous RNA networks affected. Methods Eighty‐seven circRNAs were initially selected based on relatively high gene expression in the human brain. More than half of these were readily detectable in blood mononuclear cells using real‐time reverse transcription‐polymerase chain reaction. Comparative expression analysis was then performed in blood mononuclear cells from 60 control subjects and 60 idiopathic subjects with PD. Results Six circRNAs were significantly down‐regulated in patients with PD. The classifier that best distinguished PD consisted of four circRNAs with an area under the curve of 0.84. Cross‐linking immunoprecipitation‐sequencing data revealed that the RNA‐binding proteins bound by most of the deregulated circRNAs include the neurodegeneration‐associated FUS, TDP43, FMR1, and ATXN2. MicroRNAs predicted to be sequestered by most deregulated circRNAs have the Gene Ontology categories “protein modification” and “transcription factor activity” mostly enriched. Conclusions This is the first study that identifies specific circRNAs that may serve as diagnostic biomarkers for PD. Because they are highly expressed in the brain and are derived from genes with essential brain functions, they may also hint on the PD pathways affected. © 2021 Biomedical Research Foundation, Academy of Athens. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Anastasia Bougea
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Dimitra Karampatsi
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Nikolaos Papagiannakis
- Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Matina Maniati
- Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Leonidas Stefanis
- Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Epaminondas Doxakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|