1
|
Cheng Q, Liu Y, Yang Z, Zhang M, Liu T, Niu Y, Liu W, Huang L, Feng Y, Zhang X, Luo X, Ning Q, Chen T. Evaluation of Plasma Neurodegenerative Biomarkers for Diagnosing Minimal Hepatic Encephalopathy and Predicting Overt Hepatic Encephalopathy in Chinese Patients with Hepatic Cirrhosis. J Clin Transl Hepatol 2025; 13:35-46. [PMID: 39801785 PMCID: PMC11712093 DOI: 10.14218/jcth.2024.00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Background and Aims The performance of neurodegenerative biomarkers-neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), tau, and ubiquitin carboxy-terminal hydrolase L1 (UCHL1)-in diagnosing minimal hepatic encephalopathy (MHE) has not been systematically evaluated, simultaneously, nor have their associations with the development of overt hepatic encephalopathy (OHE). This study aimed to evaluate the performance of plasma NfL, GFAP, tau, and UCHL1 in diagnosing MHE and predicting the development of OHE in Chinese patients with hepatic cirrhosis. Methods In this prospective study, 124 patients with hepatic cirrhosis were recruited. The Psychometric Hepatic Encephalopathy Score was used to diagnose MHE, and OHE development was observed during a 30-day follow-up period. Plasma levels of NfL, GFAP, tau, and UCHL1 were measured using the highly sensitive single-molecule array when MHE was diagnosed. Additionally, serum interleukin-6 (IL-6) levels and the model for end-stage liver disease (MELD) and MELD-Na scores were also measured. Results MHE was diagnosed in 57 (46.0%) patients. Patients with MHE had significantly higher plasma levels of NfL and GFAP (34.2 vs. 22.4 pg/mL and 173 vs. 97.6 pg/mL, respectively; both p < 0.001) and lower tau levels (8.4 vs. 11.6 pg/mL, p = 0.048) compared to those without MHE. Plasma NfL (odds ratios = 1.027, 95% confidence interval [CI]: 1.006-1.048; p = 0.013) and serum ammonia levels (odds ratios = 1.021, 95% CI: 1.006-1.036; p = 0.007) were independently associated with MHE occurrence. A combination of NfL, GFAP, tau, and UCHL1 was effective in diagnosing MHE in all cirrhotic patients (area under the receiver operating characteristic curve [hereinafter referred to as AUROC]: 0.748, 95% CI: 0.662-0.821), with an accuracy, sensitivity, and specificity of 71.0%, 71.9%, and 71.6%, respectively. In patients without previous OHE, the combination had an AUROC of 0.764 (95% CI: 0.673-0.840), with an accuracy, sensitivity, and specificity of 72.5%, 71.7%, and 73.0%, respectively. Furthermore, GFAP (hazard ratio (HR) = 1.003, 95% CI: 1.000-1.005; p = 0.044), IL-6 (HR = 1.003, 95% CI: 1.001-1.004; p < 0.001), and MELD score (HR = 1.139, 95% CI: 1.072-1.210; p < 0.001)-but not NfL, tau, and UCHL1-were identified as risk factors for 30-day OHE development. Conclusions The combination of plasma levels of NfL, GFAP, tau, and UCHL1 performs well in diagnosing MHE. Additionally, MELD score, IL-6, and GFAP appear to be significant predictors of OHE development in patients with hepatic cirrhosis.
Collapse
Affiliation(s)
- Qiuyu Cheng
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunhui Liu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongyuan Yang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Zhang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Liu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuxin Niu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Liu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lanyue Huang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuzhao Feng
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyun Zhang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Chen
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Gaetani L, Paolini Paoletti F, Mechelli A, Bellomo G, Parnetti L. Research advancement in fluid biomarkers for Parkinson's disease. Expert Rev Mol Diagn 2024; 24:885-898. [PMID: 39262126 DOI: 10.1080/14737159.2024.2403073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Diagnostic criteria for Parkinson's disease (PD) rely on clinical, mainly motor, features, implying that pre-motor phase cannot be accurately identified. To achieve a reliable early diagnosis, similar to what has been done for Alzheimer's disease (AD), a shift from clinical to biological identification of PD is being pursued. This shift has taken great advantage from the research on cerebrospinal fluid (CSF) biomarkers as they mirror the ongoing molecular pathogenic mechanisms taking place in PD, thus intercepting the disease timely with respect to clinical manifestations. AREAS COVERED CSF α-synuclein seed amplification assay (αS-SAA) has emerged as the most promising biomarker of α-synucleinopathy. CSF biomarkers reflecting AD-pathology and axonal damage (neurofilament light chain) and a novel marker of dopaminergic dysfunction (DOPA decarboxylase) add valuable diagnostic and prognostic information in the neurochemical characterization of PD. EXPERT OPINION A biological classification system of PD, encompassing pathophysiological and staging biomarkers, might ensure both early identification and prognostic characterization of the patients. This approach could allow for the best setting for disease-modifying treatments which are currently under investigation.
Collapse
Affiliation(s)
- Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Alessandro Mechelli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giovanni Bellomo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
3
|
Kasanga EA, Soto I, Centner A, McManus R, Shifflet MK, Navarrete W, Han Y, Lisk J, Ehrhardt T, Wheeler K, Mhatre-Winters I, Richardson JR, Bishop C, Nejtek VA, Salvatore MF. Moderate intensity aerobic exercise alleviates motor deficits in 6-OHDA lesioned rats and reduces serum levels of biomarkers of Parkinson's disease severity without recovery of striatal dopamine or tyrosine hydroxylase. Exp Neurol 2024; 379:114875. [PMID: 38944332 DOI: 10.1016/j.expneurol.2024.114875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
Alleviation of motor impairment by aerobic exercise (AE) in Parkinson's disease (PD) patients points to activation of neurobiological mechanisms that may be targetable by therapeutic approaches. However, evidence for AE-related recovery of striatal dopamine (DA) signaling or tyrosine hydroxylase (TH) loss has been inconsistent in rodent studies. This ambiguity may be related to the timing of AE intervention in relation to the status of nigrostriatal neuron loss. Here, we replicated human PD at diagnosis by establishing motor impairment with >80% striatal DA and TH loss prior to initiating AE, and assessed its potential to alleviate motor decline and restore DA and TH loss. We also evaluated if serum levels of neurofilament light (NfL) and glial fibrillary acidic protein (GFAP), biomarkers of human PD severity, changed in response to AE. 6-hydroxydopamine (6-OHDA) was infused unilaterally into rat medial forebrain bundle to induce progressive nigrostriatal neuron loss over 28 days. Moderate intensity AE (3× per week, 40 min/session), began 8-10 days post-lesion following establishment of impaired forelimb use. Striatal tissue DA, TH protein and mRNA, and serum levels of NfL/GFAP were determined 3-wks after AE began. Despite severe striatal DA depletion at AE initiation, forelimb use deficits and hypokinesia onset were alleviated by AE, without recovery of striatal DA or TH protein loss, but reduced NfL and GFAP serum levels. This proof-of-concept study shows AE alleviates motor impairment when initiated with >80% striatal DA loss without obligate recovery of striatal DA or TH protein. Moreover, the AE-related reduction of NfL and GFAP serum levels may serve as objective blood-based biomarkers of AE efficacy.
Collapse
Affiliation(s)
- Ella A Kasanga
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Isabel Soto
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Ashley Centner
- Department of Psychology, Binghamton University, Binghamton, NY, United States of America
| | - Robert McManus
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Marla K Shifflet
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Walter Navarrete
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Yoonhee Han
- Department of Environmental Health Sciences, Robert Stempel School of Public Health & Social Work, Florida International University, Miami, FL, United States of America; Isakson Center for Neurological Disease Research, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Jerome Lisk
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Travis Ehrhardt
- Clearcut Ortho Rehab & Diagnostics, Fort Worth, TX, United States of America
| | - Ken Wheeler
- Clearcut Ortho Rehab & Diagnostics, Fort Worth, TX, United States of America
| | - Isha Mhatre-Winters
- Department of Environmental Health Sciences, Robert Stempel School of Public Health & Social Work, Florida International University, Miami, FL, United States of America; Isakson Center for Neurological Disease Research, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Jason R Richardson
- Department of Environmental Health Sciences, Robert Stempel School of Public Health & Social Work, Florida International University, Miami, FL, United States of America; Isakson Center for Neurological Disease Research, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Christopher Bishop
- Department of Psychology, Binghamton University, Binghamton, NY, United States of America
| | - Vicki A Nejtek
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Michael F Salvatore
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America.
| |
Collapse
|
4
|
Pedersen CC, Ushakova A, Alves G, Tysnes OB, Blennow K, Zetterberg H, Maple-Grødem J, Lange J. Serum neurofilament light at diagnosis: a prognostic indicator for accelerated disease progression in Parkinson's Disease. NPJ Parkinsons Dis 2024; 10:162. [PMID: 39164268 PMCID: PMC11336184 DOI: 10.1038/s41531-024-00768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Neurofilament light chain (NFL) is elevated in neurodegenerative diseases, including Parkinson's disease (PD). This study aimed to investigate serum NFL in newly diagnosed PD and its association with cognitive and motor decline over 10 years. Serum NFL levels were measured in PD patients and controls from the ParkWest study at diagnosis (baseline) and after 3 and 5 years. Mixed-effects regression analyzed changes in NFL and the association with annual changes in MMSE and UPDRS-III scores over 10 years. PD patients had elevated serum NFL at all visits and a faster annual increase over 5 years compared to controls (0.09 pg/mL per year; p = 0.029). Higher baseline NFL predicted faster cognitive decline β -0.77 transformed MMSE; p = 0.010), and a 40% NFL increase predicted future motor decline (β 0.28 UPDRS-III; p = 0.004). Elevated serum NFL in early PD is linked to faster cognitive and motor impairment, suggesting its prognostic value in PD biomarker panels.
Collapse
Grants
- 287842 Norges Forskningsråd (Research Council of Norway)
- 177966 Norges Forskningsråd (Research Council of Norway)
- 287842 Norges Forskningsråd (Research Council of Norway)
- 287842 Norges Forskningsråd (Research Council of Norway)
- 29604 Western Norway Regional Health Authority | Stavanger Universitetssjukehus (Stavanger University Hospital (SUS))
- 911218 Western Norway Regional Health Authority | Stavanger Universitetssjukehus (Stavanger University Hospital (SUS))
- 29604 Helse Vest (Western Norway Regional Health Authority)
- #2017-00915 Vetenskapsrådet (Swedish Research Council)
- #2022-00732 Vetenskapsrådet (Swedish Research Council)
- #2023-00356 Vetenskapsrådet (Swedish Research Council)
- #2022-01018 Vetenskapsrådet (Swedish Research Council)
- #2019-02397 Vetenskapsrådet (Swedish Research Council)
- No 860197 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions)
- Norwegian Health Association (14846 and 16152) Rebergs legacy (no grant number)
- KB is also supported by the Swedish Alzheimer Foundation (#AF-930351, #AF-939721, #AF-968270, and #AF-994551), Hjärnfonden, Sweden (#FO2017-0243 and #ALZ2022-0006), the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986 and #ALFGBG-965240), the European Union Joint Program for Neurodegenerative Disorders (JPND2019-466-236), the Alzheimer’s Association 2021 Zenith Award (ZEN-21-848495), the Alzheimer’s Association 2022-2025 Grant (SG-23-1038904 QC), La Fondation Recherche Alzheimer (FRA), Paris, France, and the Kirsten and Freddy Johansen Foundation, Copenhagen, Denmark.
- Cure Alzheimer's Fund (Alzheimer's Disease Research Foundation)
- Familjen Erling-Perssons Stiftelse (Erling-Persson Family Foundation)
- HZ is a Wallenberg Scholar and is also supported by grants from the European Union’s Horizon Europe research and innovation programme under grant agreement No 101053962, Swedish State Support for Clinical Research (#ALFGBG-71320), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), the AD Strategic Fund and the Alzheimer's Association (#ADSF-21-831376-C, #ADSF-21-831381-C, and #ADSF-21-831377-C), the Bluefield Project, the Olav Thon Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden (#FO2022-0270), the European Union Joint Programme – Neurodegenerative Disease Research (JPND2021-00694), the National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre, and the UK Dementia Research Institute at UCL (UKDRI-1003).
- Norwegian Health Association (16152)
Collapse
Affiliation(s)
- Camilla Christina Pedersen
- The Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Anastasia Ushakova
- Section of Biostatistics, Department of Research, Stavanger University Hospital, Stavanger, Norway
| | - Guido Alves
- The Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
- Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Ole-Bjørn Tysnes
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jodi Maple-Grødem
- The Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Johannes Lange
- The Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway.
| |
Collapse
|
5
|
Mousele C, Holden D, Gnanapavan S. Neurofilaments in neurologic disease. Adv Clin Chem 2024; 123:65-128. [PMID: 39181624 DOI: 10.1016/bs.acc.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Neurofilaments (NFs), major cytoskeletal constituents of neurons, have emerged as universal biomarkers of neuronal injury. Neuroaxonal damage underlies permanent disability in various neurological conditions. It is crucial to accurately quantify and longitudinally monitor this damage to evaluate disease progression, evaluate treatment effectiveness, contribute to novel treatment development, and offer prognostic insights. Neurofilaments show promise for this purpose, as their levels increase with neuroaxonal damage in both cerebrospinal fluid and blood, independent of specific causal pathways. New assays with high sensitivity allow reliable measurement of neurofilaments in body fluids and open avenues to investigate their role in neurological disorders. This book chapter will delve into the evolving landscape of neurofilaments, starting with their structure and cellular functions within neurons. It will then provide a comprehensive overview of their broad clinical value as biomarkers in diseases affecting the central or peripheral nervous system.
Collapse
|
6
|
Couto B, Sousa M, Gonzalez-Latapi P, McArthur E, Lang A, Chen-Plotkin A, Marras C. Disease Progression and Sphingolipids and Neurofilament Light Chain in Early Idiopathic Parkinson's Disease. Can J Neurol Sci 2024; 51:573-576. [PMID: 37641969 DOI: 10.1017/cjn.2023.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Parkinson's disease(PD) lacks a biomarker for disease progression. To analyze how cerebrospinal fluid (CSF), glucosylceramide (GlcCer), sphingomyelin (SM), or serum neurofilament light chain (NfL) associate with progression of PD in a retrospective cohort, we used linear mixed-model regressions between baseline biomarkers and change in dopamine transporter brain-imaging (DaTscan©), Montreal cognitive assesment (MoCA), or global composite outcome (GCO) score. In 191 PD patients, biomarkers were not associated with DaTscan or MoCA change over 2.1 years. Higher baseline GlcCer/SM ratio and serum-NfL nonsignificantly associated with increase in GCO score. Results do not support a role for CSF-sphingolipid/serum-NfL to predict cognitive and DaTscan progression in early-PD. Potential prediction of global clinical change warrants further study.
Collapse
Affiliation(s)
- Blas Couto
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Institute of Cognitive and Traslational Neuroscience (INCyT), at the INECO-CONICET-Favaloro University Hospital, Buenos Aires, Argentina
| | - Mario Sousa
- Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Paulina Gonzalez-Latapi
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | | - Anthony Lang
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Connie Marras
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
7
|
Zhang Z, Wang Y, Wang J, Cai Y, Liu P, Liu S, Wu J, Xie X. The role of peripheral inflammation-related biomarkers in distinguishing Parkinson's disease. Parkinsonism Relat Disord 2024; 123:106102. [PMID: 38507892 DOI: 10.1016/j.parkreldis.2024.106102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Peripheral inflammation plays a significant role in Parkinson's disease (PD). Conflicting studies on whether inflammatory indicators in blood could serve as biomarkers to distinguish PD. OBJECTIVE Include a wider range of biomarkers and control confounding factors to comprehensively evaluate the value of peripheral inflammation-related indicators. METHODS A total of 80 PD patients were recruited and 80 one-to-one matched healthy controls (HCs). The levels of B-cell, T-cell, and natural killer (NK)-cell in blood were measured using flow cytometry. The levels of neurodegeneration-related proteins in serum were detected and clinical blood test results were collected. Multivariable logistic regression analysis was conducted to explore the role of significant variables in PD. Receiver operating characteristic curve analysis was performed to assess the potential value of these variables. RESULTS Compared to HCs, PD patients showed lower levels of lymphocyte, B-cell, T-cell, high-density lipoprotein cholesterol (HDL-C) and lymphocyte-to-monocyte ratio, while the levels of neutrophil, NK-cell, β-amyloid40, neurofilament light chain, neutrophil-to-lymphocyte ratio, and neutrophil-to-HDL-C ratio (NHR) were increased. A higher B-cell count was associated with a lower risk of PD, while higher levels of NK-cell and NHR were associated with a higher risk of PD. B-cell, NK-cell and NHR have potential value in distinguishing PD from non-PD. B-cell and NHR levels were significantly correlated with PD dyskinesia scores. CONCLUSIONS B-cell, NK-cell, and NHR may potentially contribute to distinguishing PD patients from HCs. There could be a correlation between the number of B-cell, the level of NHR, and the severity of PD dyskinesia.
Collapse
Affiliation(s)
- Zhuo Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yue Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Jin Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Ying Cai
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Peipei Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Shoufeng Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Jialing Wu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China.
| | - Xin Xie
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China.
| |
Collapse
|
8
|
Khalil M, Teunissen CE, Lehmann S, Otto M, Piehl F, Ziemssen T, Bittner S, Sormani MP, Gattringer T, Abu-Rumeileh S, Thebault S, Abdelhak A, Green A, Benkert P, Kappos L, Comabella M, Tumani H, Freedman MS, Petzold A, Blennow K, Zetterberg H, Leppert D, Kuhle J. Neurofilaments as biomarkers in neurological disorders - towards clinical application. Nat Rev Neurol 2024; 20:269-287. [PMID: 38609644 DOI: 10.1038/s41582-024-00955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Neurofilament proteins have been validated as specific body fluid biomarkers of neuro-axonal injury. The advent of highly sensitive analytical platforms that enable reliable quantification of neurofilaments in blood samples and simplify longitudinal follow-up has paved the way for the development of neurofilaments as a biomarker in clinical practice. Potential applications include assessment of disease activity, monitoring of treatment responses, and determining prognosis in many acute and chronic neurological disorders as well as their use as an outcome measure in trials of novel therapies. Progress has now moved the measurement of neurofilaments to the doorstep of routine clinical practice for the evaluation of individuals. In this Review, we first outline current knowledge on the structure and function of neurofilaments. We then discuss analytical and statistical approaches and challenges in determining neurofilament levels in different clinical contexts and assess the implications of neurofilament light chain (NfL) levels in normal ageing and the confounding factors that need to be considered when interpreting NfL measures. In addition, we summarize the current value and potential clinical applications of neurofilaments as a biomarker of neuro-axonal damage in a range of neurological disorders, including multiple sclerosis, Alzheimer disease, frontotemporal dementia, amyotrophic lateral sclerosis, stroke and cerebrovascular disease, traumatic brain injury, and Parkinson disease. We also consider the steps needed to complete the translation of neurofilaments from the laboratory to the management of neurological diseases in clinical practice.
Collapse
Affiliation(s)
- Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Simon Thebault
- Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Ari Green
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Pascal Benkert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Manuel Comabella
- Neurology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hayrettin Tumani
- Department of Neurology, CSF Laboratory, Ulm University Hospital, Ulm, Germany
| | - Mark S Freedman
- Department of Medicine, University of Ottawa, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Axel Petzold
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Centre and Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
- Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery and the Queen Square Institute of Neurology, UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P. R. China
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David Leppert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland.
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
9
|
Ou R, Liu K, Lin J, Yang T, Xiao Y, Wei Q, Hou Y, Li C, Zhang L, Jiang Z, Zhao B, Chen X, Song W, Wu Y, Shang H. Relationship between plasma NFL and disease progression in Parkinson's disease: a prospective cohort study. J Neurol 2024; 271:1837-1843. [PMID: 38063869 DOI: 10.1007/s00415-023-12117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 03/28/2024]
Abstract
OBJECTIVE We aimed to examine the longitudinal change of plasma neurofilament light chain (NFL) level and explore its diagnostic and prognostic implications in Parkinson's disease (PD). METHODS A total of 184 patients with early PD who completed 5-year annually repeated clinical assessments were included. Plasma NFL at baseline, 1 year, and 2 year were examined, which were quantified using the ultrasensitive Simoa technology. At baseline, blood from 86 sex- and age-matched healthy controls (HC) were obtained for comparison. RESULTS Plasma NFL in PD patients at baseline was significantly higher than those in HC (P = 0.046), and significantly increased after 2 years (P = 0.046). Receiver operating characteristic curve indicated that a plasma NFL cut-off value of 10.79 pg/mL resulted in 39.7% sensitivity and 84.0% specificity, with an area under the curve of 0.635, to distinguish PD from HC (P < 0.001). Linear mixed-effect models indicated that baseline plasma NFL (> 9.24 pg/mL) correlated with a greater increase in the Unified Parkinson's Disease Rating Scale III (estimate = 0.651, P = 0.001) and Hoehn & Yahr stage (estimate = 0.072, P < 0.001), and also correlated with a greater decrease in the Montreal Cognitive Assessment (estimate = - 0.387, P < 0.001) during follow-up visits. CONCLUSIONS Plasma NFL exhibits a tendency to increase with disease progression, and elevated baseline plasma NFL can serve as a predictor for accelerated motor deterioration and cognitive decline in PD. However, plasma NFL does not have high accuracy to distinguish individuals with early-stage PD from HC.
Collapse
Affiliation(s)
- Ruwei Ou
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Kuncheng Liu
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Junyu Lin
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Tianmi Yang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Yi Xiao
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Qianqian Wei
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Yanbing Hou
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Chunyu Li
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Lingyu Zhang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Zheng Jiang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Bi Zhao
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Xueping Chen
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Wei Song
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Ying Wu
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Huifang Shang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
10
|
Pan G, Jiang Y, Zhang W, Zhang X, Wang L, Cheng W. Identification of Parkinson's disease subtypes with distinct brain atrophy progression and its association with clinical progression. PSYCHORADIOLOGY 2024; 4:kkae002. [PMID: 38666137 PMCID: PMC10953620 DOI: 10.1093/psyrad/kkae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/27/2024] [Accepted: 02/23/2024] [Indexed: 04/28/2024]
Abstract
Background Parkinson's disease (PD) patients suffer from progressive gray matter volume (GMV) loss, but whether distinct patterns of atrophy progression exist within PD are still unclear. Objective This study aims to identify PD subtypes with different rates of GMV loss and assess their association with clinical progression. Methods This study included 107 PD patients (mean age: 60.06 ± 9.98 years, 70.09% male) with baseline and ≥ 3-year follow-up structural MRI scans. A linear mixed-effects model was employed to assess the rates of regional GMV loss. Hierarchical cluster analysis was conducted to explore potential subtypes based on individual rates of GMV loss. Clinical score changes were then compared across these subtypes. Results Two PD subtypes were identified based on brain atrophy rates. Subtype 1 (n = 63) showed moderate atrophy, notably in the prefrontal and lateral temporal lobes, while Subtype 2 (n = 44) had faster atrophy across the brain, particularly in the lateral temporal region. Furthermore, subtype 2 exhibited faster deterioration in non-motor (MDS-UPDRS-Part Ⅰ, β = 1.26 ± 0.18, P = 0.016) and motor (MDS-UPDRS-Part Ⅱ, β = 1.34 ± 0.20, P = 0.017) symptoms, autonomic dysfunction (SCOPA-AUT, β = 1.15 ± 0.22, P = 0.043), memory (HVLT-Retention, β = -0.02 ± 0.01, P = 0.016) and depression (GDS, β = 0.26 ± 0.083, P = 0.019) compared to subtype 1. Conclusion The study has identified two PD subtypes with distinct patterns of atrophy progression and clinical progression, which may have implications for developing personalized treatment strategies.
Collapse
Affiliation(s)
- Guoqing Pan
- School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China
- Fudan ISTBI—ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua 321004, China
| | - Yuchao Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Shanghai 201210, China
| | - Wei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Shanghai 201210, China
| | - Xuejuan Zhang
- School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China
- Fudan ISTBI—ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua 321004, China
| | - Linbo Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Shanghai 201210, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Shanghai 201210, China
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer Center, Shanghai 200032, China
| |
Collapse
|
11
|
Frank A, Bendig J, Schnalke N, Klingelhoefer L, Reichmann H, Akgün K, Ziemssen T, Falkenburger BH. Serum neurofilament indicates accelerated neurodegeneration and predicts mortality in late-stage Parkinson's disease. NPJ Parkinsons Dis 2024; 10:14. [PMID: 38195715 PMCID: PMC10776839 DOI: 10.1038/s41531-023-00605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 11/17/2023] [Indexed: 01/11/2024] Open
Abstract
Different stages of Parkinson's disease (PD) are defined by clinical criteria, while late-stage PD is marked by the onset of morbidity milestones and rapid clinical deterioration. Based on neuropathological evidence, degeneration in the dopaminergic system occurs primarily in the early stage of PD, raising the question of what drives disease progression in late-stage PD. This study aimed to investigate whether late-stage PD is associated with increased neurodegeneration dynamics rather than functional decompensation using the blood-based biomarker serum neurofilament light chain (sNfL) as a proxy for the rate of neurodegeneration. The study included 118 patients with PD in the transition and late-stage (minimum disease duration 5 years, mean (SD) disease duration 15 (±7) years). The presence of clinical milestones (hallucinations, dementia, recurrent falls, and admission to a nursing home) and mortality were determined based on chart review. We found that sNfL was higher in patients who presented with at least one clinical milestone and increased with a higher number of milestones (Spearman's ρ = 0.66, p < 0.001). Above a cutoff value of 26.9 pg/ml, death was 13.6 times more likely during the follow-up period (95% CI: 3.53-52.3, p < 0.001), corresponding to a sensitivity of 85.0% and a specificity of 85.7% (AUC 0.91, 95% CI: 0.85-0.97). Similar values were obtained when using an age-adjusted cutoff percentile of 90% for sNfL. Our findings suggest that the rate of ongoing neurodegeneration is higher in advanced PD (as defined by the presence of morbidity milestones) than in earlier disease stages. A better understanding of the biological basis of stage-dependent neurodegeneration may facilitate the development of neuroprotective means.
Collapse
Affiliation(s)
- Anika Frank
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.
| | - Jonas Bendig
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nils Schnalke
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lisa Klingelhoefer
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Heinz Reichmann
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Katja Akgün
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Center of Clinical Neuroscience, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Center of Clinical Neuroscience, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Björn H Falkenburger
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| |
Collapse
|
12
|
Schaeffer E, Kluge A, Schulte C, Deuschle C, Bunk J, Welzel J, Maetzler W, Berg D. Association of Misfolded α-Synuclein Derived from Neuronal Exosomes in Blood with Parkinson's Disease Diagnosis and Duration. JOURNAL OF PARKINSON'S DISEASE 2024; 14:667-679. [PMID: 38669557 PMCID: PMC11191501 DOI: 10.3233/jpd-230390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/28/2024]
Abstract
Background Misfolded α-synuclein can be detected in blood samples of Parkinson's disease (PD) patients by a seed amplification assay (SAA), but the association with disease duration is not clear, yet. Objective In the present study we aimed to elucidate whether seeding activity of misfolded α-synuclein derived from neuronal exosomes in blood is associated with PD diagnosis and disease duration. Methods Cross-sectional samples of PD patients were analyzed and compared to samples of age- and gender-matched healthy controls using a blood-based SAA. Presence of α-synuclein seeding activity and differences in seeding parameters, including fluorescence response (in arbitrary units) at the end of the amplification assay (F60) were analyzed. Additionally, available PD samples collected longitudinally over 5-9 years were included. Results In the cross-sectional dataset, 79 of 80 PD patients (mean age 69 years, SD = 8; 56% male) and none of the healthy controls (n = 20, mean age 70 years, SD = 10; 55% male) showed seeding activity (sensitivity 98.8%). When comparing subgroups divided by disease duration, longer disease duration was associated with lower α-synuclein seeding activity (F60: p < 0.001). In the longitudinal analysis 10/11 patients showed a gradual decrease of α-synuclein seeding activity over time. Conclusions This study confirms the high sensitivity of the blood-based α-synuclein SAA applied here. The negative association of α-synuclein seeding activity in blood with disease duration makes this parameter potentially interesting as biomarker for future studies on the pathophysiology of disease progression in PD, and for biologically oriented trials in this field.
Collapse
Affiliation(s)
- Eva Schaeffer
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Annika Kluge
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Claudia Schulte
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Christian Deuschle
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Josina Bunk
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Julius Welzel
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Daniela Berg
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
13
|
Liu X, Liu X, Liu Y, Yang B, Li Y, Li F, Qian K, Zu J, Zhang W, Zhou S, Zhang T, Liu J, Cui G, Xu C. Utility of serum neurofilament light chain and glial fibrillary acidic protein as diagnostic biomarkers of freezing of gait in Parkinson's disease. Brain Res 2024; 1822:148660. [PMID: 37924925 DOI: 10.1016/j.brainres.2023.148660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/11/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
Freezing of gait (FOG) is one of the most distressing features of Parkinson's disease (PD), increasing the risks of fractures and seriously affecting patients' quality of life. We aimed to examine the potential diagnostic roles of serum neurofilament light chain (NFL) and glial fibrillary acidic protein (GFAP) in PD patients with FOG (PD-FOG). We included 99 patients, comprising 54 PD patients without FOG (PD-NoFOG), 45 PD-FOG and 37 healthy controls (HCs). Our results indicated serum markers were significantly higher in PD-FOG and postural instability and gait difficulty (PIGD) motor subtype patients than in PD-NoFOG and non-PIGD subtype patients (P < 0.05), respectively. Patients with high concentrations of the markers NFL and GFAP had higher PIGD scores and greater FOG severity than those with low concentrations. Moreover, serum levels of both NFL and GFAP were significantly positively associated with age, FOG severity, PD-FOG status, and negatively associated with Mini-Mental State Examination (MMSE) scores. Logistic regression analysis identified serum levels of NFL and GFAP as independent risk factors for PD-FOG. Mediation analysis revealed that MMSE scores fully mediated the relationship between serum GFAP levels and FOG-Q scores, accounting for 33.33% of the total effects (indirect effect = 0.01, 95% CI 0.01-0.02). NFL levels differentiated PD-FOG from PD-NoFOG with reliable diagnostic accuracy (AUC 0.75, 95% CI 0.66-0.84), and the combination of NFL, GFAP, duration and MMSE scores demonstrated high accuracy (AUC 0.84, 95% CI 0.76-0.91). Our findings support the notion that NFL and GFAP may be potential biomarkers for the diagnosis of PD-FOG.
Collapse
Affiliation(s)
- Xu Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Xuanjing Liu
- Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Yuning Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Bo Yang
- Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Yangdanyu Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Fujia Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Kun Qian
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Jie Zu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Wei Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Su Zhou
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Tao Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Jing Liu
- Department of Cell Biology and Neurobiology, Life Sciences College, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China.
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China.
| | - Chuanying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China.
| |
Collapse
|
14
|
Vijiaratnam N, Foltynie T. How should we be using biomarkers in trials of disease modification in Parkinson's disease? Brain 2023; 146:4845-4869. [PMID: 37536279 PMCID: PMC10690028 DOI: 10.1093/brain/awad265] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
The recent validation of the α-synuclein seed amplification assay as a biomarker with high sensitivity and specificity for the diagnosis of Parkinson's disease has formed the backbone for a proposed staging system for incorporation in Parkinson's disease clinical studies and trials. The routine use of this biomarker should greatly aid in the accuracy of diagnosis during recruitment of Parkinson's disease patients into trials (as distinct from patients with non-Parkinson's disease parkinsonism or non-Parkinson's disease tremors). There remain, however, further challenges in the pursuit of biomarkers for clinical trials of disease modifying agents in Parkinson's disease, namely: optimizing the distinction between different α-synucleinopathies; the selection of subgroups most likely to benefit from a candidate disease modifying agent; a sensitive means of confirming target engagement; and the early prediction of longer-term clinical benefit. For example, levels of CSF proteins such as the lysosomal enzyme β-glucocerebrosidase may assist in prognostication or allow enrichment of appropriate patients into disease modifying trials of agents with this enzyme as the target; the presence of coexisting Alzheimer's disease-like pathology (detectable through CSF levels of amyloid-β42 and tau) can predict subsequent cognitive decline; imaging techniques such as free-water or neuromelanin MRI may objectively track decline in Parkinson's disease even in its later stages. The exploitation of additional biomarkers to the α-synuclein seed amplification assay will, therefore, greatly add to our ability to plan trials and assess the disease modifying properties of interventions. The choice of which biomarker(s) to use in the context of disease modifying clinical trials will depend on the intervention, the stage (at risk, premotor, motor, complex) of the population recruited and the aims of the trial. The progress already made lends hope that panels of fluid biomarkers in tandem with structural or functional imaging may provide sensitive and objective methods of confirming that an intervention is modifying a key pathophysiological process of Parkinson's disease. However, correlation with clinical progression does not necessarily equate to causation, and the ongoing validation of quantitative biomarkers will depend on insightful clinical-genetic-pathophysiological comparisons incorporating longitudinal biomarker changes from those at genetic risk with evidence of onset of the pathophysiology and those at each stage of manifest clinical Parkinson's disease.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
15
|
Zhang Z, Xie X, Cai Y, Liu P, Liu S, Chen R, Wang J, Wang Y, Zhao Y, Zhu Z, Zhang X, Wu J. Abnormal immune function of B lymphocyte in peripheral blood of Parkinson's disease. Parkinsonism Relat Disord 2023; 116:105890. [PMID: 37839276 DOI: 10.1016/j.parkreldis.2023.105890] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is associated with peripheral inflammation and abnormal peripheral blood lymphocyte immune responses. Peripheral blood B-lymphocyte subset distributions and whether they are associated with PD are unclear. METHODS Sixty-one PD patients and sixty-one one-to-one paired healthy controls (HCs) were enrolled. We used flow cytometry to perform immunophenotyping of peripheral B-lymphocyte, in vitro stimulation and measured serum cytokine. The relationship between variables and PD were assessed. RESULTS The percentage of naive B cells in blood of PD patients was decreased, whereas the percentages of regulatory B cells (Bregs), plasma blast cells (PBCs), and double-negative (DN) B cells were increased. The absolute counts of B-lymphocyte and naive B cells in blood of PD patients were decreased. Regression analysis revealed that alterations in the absolute counts of B-lymphocyte and the percentage of Bregs and DN B cells were associated with PD. After stimulation, the percentages of Bregs, PBCs, and switched memory (SwM) B cells increased in PD patients. Additionally, increases in GM-CSF-producing B-cell, IFN-γ-producing B-cell, and TNF-α-producing B-cell percentages were noted in PD. Serum levels of a proliferation-inducing ligand (APRIL), B-cell activating factor (BAFF) and soluble CD40 ligand (sCD40L) were elevated in PD and correlated negatively with the UPDRS III score. CONCLUSIONS Abnormal B-lymphocyte immune responses in peripheral blood may contribute to PD development. Alterations in the absolute counts of B-lymphocyte and the percentage of Bregs and DN B cells are associated with PD. Furthermore, APRIL, BAFF, and sCD40L could be potential targets for intervention in PD.
Collapse
Affiliation(s)
- Zhuo Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Xin Xie
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China; Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Ying Cai
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Peipei Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Shoufeng Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Rongjie Chen
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Jin Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Yue Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yanan Zhao
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhizhong Zhu
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
| | - Xinyuan Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Jialing Wu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China; Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.
| |
Collapse
|
16
|
Vijayakumari AA, Mandava N, Hogue O, Fernandez HH, Walter BL. A novel MRI-based volumetric index for monitoring the motor symptoms in Parkinson's disease. J Neurol Sci 2023; 453:120813. [PMID: 37742348 DOI: 10.1016/j.jns.2023.120813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Conventional MRI scans have limited usefulness in monitoring Parkinson's disease as they typically do not show any disease-specific brain abnormalities. This study aimed to identify an imaging biomarker for tracking motor symptom progression by using a multivariate statistical approach that can combine gray matter volume information from multiple brain regions into a single score specific to each PD patient. METHODS A cohort of 150 patients underwent MRI at baseline and had their motor symptoms tracked for up to 10 years using MDS-UPDRS-III, with motor symptoms focused on total and subscores, including rigidity, bradykinesia, postural instability, and gait disturbances, resting tremor, and postural-kinetic tremor. Gray matter volume extracted from MRI data was summarized into a patient-specific summary score using Mahalanobis distance, MGMV. MDS-UPDRS-III's progression and its association with MGMV were modeled via linear mixed-effects models over 5- and 10-year follow-up periods. RESULTS Over the 5-year follow-up, there was a significant increase (P < 0.05) in MDS-UPDRS-III total and subscores, except for postural-kinetic tremor. Over the 10-year follow-up, all MDS-UPDRS-III scores increased significantly (P < 0.05). A higher baseline MGMV was associated with a significant increase in MDS-UPDRS-III total, bradykinesia, postural instability and gait disturbances, and resting tremor (P < 0.05) over the 5-year follow-up, but only with total, bradykinesia, and postural instability and gait disturbances during the 10-year follow-up (P < 0.05). CONCLUSIONS Higher MGMV scores were linked to faster motor symptom progression, suggesting it could be a valuable marker for clinicians monitoring Parkinson's disease over time.
Collapse
Affiliation(s)
- Anupa A Vijayakumari
- Center for Neurological Restoration, Neurological Institute, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nymisha Mandava
- Department of Quantitative Health Sciences, Lerner Research Institute, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Olivia Hogue
- Department of Quantitative Health Sciences, Lerner Research Institute, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hubert H Fernandez
- Center for Neurological Restoration, Neurological Institute, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Benjamin L Walter
- Center for Neurological Restoration, Neurological Institute, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
17
|
Vo A, Tremblay C, Rahayel S, Shafiei G, Hansen JY, Yau Y, Misic B, Dagher A. Network connectivity and local transcriptomic vulnerability underpin cortical atrophy progression in Parkinson's disease. Neuroimage Clin 2023; 40:103523. [PMID: 38016407 PMCID: PMC10687705 DOI: 10.1016/j.nicl.2023.103523] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/30/2023]
Abstract
Parkinson's disease pathology is hypothesized to spread through the brain via axonal connections between regions and is further modulated by local vulnerabilities within those regions. The resulting changes to brain morphology have previously been demonstrated in both prodromal and de novo Parkinson's disease patients. However, it remains unclear whether the pattern of atrophy progression in Parkinson's disease over time is similarly explained by network-based spreading and local vulnerability. We address this gap by mapping the trajectory of cortical atrophy rates in a large, multi-centre cohort of Parkinson's disease patients and relate this atrophy progression pattern to network architecture and gene expression profiles. Across 4-year follow-up visits, increased atrophy rates were observed in posterior, temporal, and superior frontal cortices. We demonstrated that this progression pattern was shaped by network connectivity. Regional atrophy rates were strongly related to atrophy rates across structurally and functionally connected regions. We also found that atrophy progression was associated with specific gene expression profiles. The genes whose spatial distribution in the brain was most related to atrophy rate were those enriched for mitochondrial and metabolic function. Taken together, our findings demonstrate that both global and local brain features influence vulnerability to neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Andrew Vo
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Christina Tremblay
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Shady Rahayel
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada; Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Canada
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Justine Y Hansen
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Yvonne Yau
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
18
|
Urso D, Batzu L, Logroscino G, Ray Chaudhuri K, Pereira JB. Neurofilament light predicts worse nonmotor symptoms and depression in Parkinson's disease. Neurobiol Dis 2023; 185:106237. [PMID: 37499883 DOI: 10.1016/j.nbd.2023.106237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/18/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND The identification of biomarkers that reflect worse progression of nonmotor symptoms (NMS) in Parkinson's disease (PD) is currently an unmet need. The main aim of this study was to investigate whether cerebrospinal fluid (CSF) and serum neurofilament light (NfL), measured at baseline or longitudinally, can be used to predict the progression of NMS in patients with PD. METHODS Baseline and longitudinal NfL levels were measured in the CSF and serum in 392 PD patients and 184 healthy controls from the Parkinson's Progression Marker Initiative. NMS were assessed using several scales, including, but not restricted to, the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part I, the Geriatric Depression Scale (GDS) and the State-Trait Anxiety Inventory (STAI). The relationship between baseline and longitudinal NfL levels with changes in NMS was assessed using linear mixed effects models (LME) in PD patients. In addition, we compared CSF and serum NfL levels between groups and assessed the relationship between NfL biomarkers with baseline NMS. Finally, to assess the specificity of our findings we ran the previous LME models using other biomarkers such as CSF amyloid-β1-42, total tau, phosphorylated tau181 and total α-synuclein and we also ran the models in healthy controls. RESULTS Baseline levels and longitudinal changes in serum and CSF NfL predicted worse longitudinal MDS-UPDRS-I and depression scores over time in PD (p < 0.01). This relationship remained significant only for CSF NfL when controlling for motor and cognitive status. Furthermore, longitudinal changes in serum and CSF NfL were associated with worse anxiety over time in PD patients (p < 0.05). In contrast to CSF NfL, serum NfL levels were slightly higher at baseline (p = 0.043) and showed significant longitudinal increases (p < 0.001) in PD patients compared to controls. There were no significant correlations between NfL levels (CSF or serum) with other NMS scales, baseline NMS variables, other biomarkers or in healthy controls. CONCLUSIONS Our findings indicate that both serum and CSF NfL are associated with worse longitudinal NMS burden, particularly in relation to the progression of depression and anxiety. Serum NfL showed stronger associations with NMS suggesting it could potentially be used as a non-invasive marker of NMS progression for PD.
Collapse
Affiliation(s)
- Daniele Urso
- Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital, Denmark Hill, London SE5 9RS, United Kingdom; Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G. Panico", Tricase, Lecce, Italy.
| | - Lucia Batzu
- Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital, Denmark Hill, London SE5 9RS, United Kingdom
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G. Panico", Tricase, Lecce, Italy
| | - K Ray Chaudhuri
- Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital, Denmark Hill, London SE5 9RS, United Kingdom
| | - Joana B Pereira
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden; Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden..
| |
Collapse
|
19
|
Elmers J, Colzato LS, Akgün K, Ziemssen T, Beste C. Neurofilaments - Small proteins of physiological significance and predictive power for future neurodegeneration and cognitive decline across the life span. Ageing Res Rev 2023; 90:102037. [PMID: 37619618 DOI: 10.1016/j.arr.2023.102037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Neurofilaments (NFs) are not only important for axonal integrity and nerve conduction in large myelinated axons but they are also thought to be crucial for receptor and synaptic functioning. Therefore, NFs may play a critical role in cognitive functions, as cognitive processes are known to depend on synaptic integrity and are modulated by dopaminergic signaling. Here, we present a theory-driven interdisciplinary approach that NFs may link inflammation, neurodegeneration, and cognitive functions. We base our hypothesis on a wealth of evidence suggesting a causal link between inflammation and neurodegeneration and between these two and cognitive decline (see Fig. 1), also taking dopaminergic signaling into account. We conclude that NFs may not only serve as biomarkers for inflammatory, neurodegenerative, and cognitive processes but also represent a potential mechanical hinge between them, moreover, they may even have predictive power regarding future cognitive decline. In addition, we advocate the use of both NFs and MRI parameters, as their synthesis offers the opportunity to individualize medical treatment by providing a comprehensive view of underlying disease activity in neurological diseases. Since our society will become significantly older in the upcoming years and decades, maintaining cognitive functions and healthy aging will play an important role. Thanks to technological advances in recent decades, NFs could serve as a rapid, noninvasive, and relatively inexpensive early warning system to identify individuals at increased risk for cognitive decline and could facilitate the management of cognitive dysfunctions across the lifespan.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Lorenza S Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
20
|
Park DG, Kim JY, Kim MS, Kim MH, An YS, Chang J, Yoon JH. Neurofilament light chain and cardiac MIBG uptake as predictors for phenoconversion in isolated REM sleep behavior disorder. J Neurol 2023; 270:4393-4402. [PMID: 37233802 DOI: 10.1007/s00415-023-11785-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Isolated rapid-eye-movement (REM) sleep behavior disorder (iRBD) is considered as a prodromal stage of either multiple system atrophy (MSA) or Lewy body disease (LBD; Parkinson's disease and dementia with Lewy bodies). However, current knowledge is limited in predicting and differentiating the type of future phenoconversion in iRBD patients. We investigated the role of plasma neurofilament light chain (NfL) and cardiac metaiodobenzylguanidine (MIBG) uptake as predictors for phenoconversion. METHODS Forty patients with iRBD were enrolled between April 2018 and October 2019 and prospectively followed every 3 months to determine phenoconversion to either MSA or LBD. Plasma NfL levels were measured at enrollment. Cardiac MIBG uptake and striatal dopamine transporter uptake were assessed at baseline. RESULTS Patients were followed for a median of 2.92 years. Four patients converted to MSA and 7 to LBD. Plasma NfL level at baseline was significantly higher in future MSA-converters (median 23.2 pg/mL) when compared with the rest of the samples (median 14.1 pg/mL, p = 0.003). NfL level above 21.3 pg/mL predicted phenoconversion to MSA with the sensitivity of 100% and specificity of 94.3%. Baseline MIBG heart-to-mediastinum ratio of LBD-converters (median 1.10) was significantly lower when compared with the rest (median 2.00, p < 0.001). Heart-to-mediastinum ratio below 1.545 predicted phenoconversion to LBD with the sensitivity of 100% and specificity of 92.9%. CONCLUSIONS Plasma NfL and cardiac MIBG uptake may be useful biomarkers in predicting phenoconversion of iRBD. Elevated plasma NfL levels may suggest imminent phenoconversion to MSA, whereas low cardiac MIBG uptake suggests phenoconversion to LBD.
Collapse
Affiliation(s)
- Don Gueu Park
- Department of Neurology, Ajou University School of Medicine, 164, Worldcup-Ro, Songjae Hall, Suwon-Si, Gyeonggi-Do, 16499, South Korea
| | - Ju Yeong Kim
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon-Si, Republic of Korea
| | - Min Seung Kim
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, South Korea
| | - Mi Hee Kim
- Department of Neurology, Ajou University School of Medicine, 164, Worldcup-Ro, Songjae Hall, Suwon-Si, Gyeonggi-Do, 16499, South Korea
| | - Young-Sil An
- Department of Nuclear Medicine, Ajou University School of Medicine, Suwon-Si, Republic of Korea
| | - Jaerak Chang
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon-Si, Republic of Korea.
- Department of Brain Science, Ajou University School of Medicine, 164, Worldcup-Ro, Songjae Hall, Suwon-Si, Gyeonggi-Do, 16499, South Korea.
| | - Jung Han Yoon
- Department of Neurology, Ajou University School of Medicine, 164, Worldcup-Ro, Songjae Hall, Suwon-Si, Gyeonggi-Do, 16499, South Korea.
| |
Collapse
|
21
|
Duffy MF, Ding J, Langston RG, Shah SI, Nalls MA, Scholz SW, Whitaker DT, Auluck PK, Marenco S, Gibbs JR, Cookson MR. Divergent patterns of healthy aging across human brain regions at single-cell resolution reveal links to neurodegenerative disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551097. [PMID: 37577533 PMCID: PMC10418086 DOI: 10.1101/2023.07.31.551097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Age is a major common risk factor underlying neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Previous studies reported that chronological age correlates with differential gene expression across different brain regions. However, prior datasets have not disambiguated whether expression associations with age are due to changes in cell numbers and/or gene expression per cell. In this study, we leveraged single nucleus RNA-sequencing (snRNAseq) to examine changes in cell proportions and transcriptomes in four different brain regions, each from 12 donors aged 20-30 years (young) or 60-85 years (old). We sampled 155,192 nuclei from two cortical regions (entorhinal cortex and middle temporal gyrus) and two subcortical regions (putamen and subventricular zone) relevant to neurodegenerative diseases or the proliferative niche. We found no changes in cellular composition of different brain regions with healthy aging. Surprisingly, we did find that each brain region has a distinct aging signature, with only minor overlap in differentially associated genes across regions. Moreover, each cell type shows distinct age-associated expression changes, including loss of protein synthesis genes in cortical inhibitory neurons, axonogenesis genes in excitatory neurons and oligodendrocyte precursor cells, enhanced gliosis markers in astrocytes and disease-associated markers in microglia, and genes critical for neuron-glia communication. Importantly, we find cell type-specific enrichments of age associations with genes nominated by Alzheimer's disease and Parkinson's disease genome-wide association studies (GWAS), such as apolipoprotein E (APOE), and leucine-rich repeat kinase 2 (LRRK2) in microglia that are independent of overall expression levels across cell types. We present this data as a new resource which highlights, first, region- and cell type-specific transcriptomic changes in healthy aging that may contribute to selective vulnerability and, second, provide context for testing GWAS-nominated disease risk genes in relevant subtypes and developing more targeted therapeutic strategies. The data is readily accessible without requirement for extensive computational support in a public website, https://brainexp-hykyffa56a-uc.a.run.app/.
Collapse
Affiliation(s)
- Megan F. Duffy
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Rebekah G. Langston
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Syed I. Shah
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Mike A. Nalls
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Sonja W. Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - D. Thad Whitaker
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Pavan K. Auluck
- Human Brain Collection Core, Division of Intramural Research, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Stefano Marenco
- Human Brain Collection Core, Division of Intramural Research, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - J. Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 20892
| |
Collapse
|
22
|
Buhmann C, Magnus T, Choe CU. Blood neurofilament light chain in Parkinson's disease. J Neural Transm (Vienna) 2023; 130:755-762. [PMID: 37067597 PMCID: PMC10199845 DOI: 10.1007/s00702-023-02632-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/01/2023] [Indexed: 04/18/2023]
Abstract
Blood neurofilament light chain (NfL) is an easily accessible, highly sensitive and reliable biomarker for neuroaxonal damage. Currently, its role in Parkinson's disease (PD) remains unclear. Here, we demonstrate that blood NfL can distinguish idiopathic PD from atypical parkinsonian syndromes (APS) with high sensitivity and specificity. In cross-sectional studies, some found significant correlations between blood NfL with motor and cognitive function, whereas others did not. In contrast, prospective studies reported very consistent associations between baseline blood NfL with motor progression and cognitive worsening. Amongst PD subtypes, especially postural instability and gait disorder (PIGD) subtype, symptoms and scores are reliably linked with blood NfL. Different non-motor PD comorbidities have also been associated with high blood NfL levels suggesting that the neuroaxonal damage of the autonomic nervous system as well as serotonergic, cholinergic and noradrenergic neurons is quantifiable. Numerous absolute NfL cutoff levels have been suggested in different cohort studies; however, validation across cohorts remains weak. However, age-adjusted percentiles and intra-individual blood NfL changes might represent more valid and consistent parameters compared with absolute NfL concentrations. In summary, blood NfL has the potential as biomarker in PD patients to be used in clinical practice for prediction of disease severity and especially progression.
Collapse
Affiliation(s)
- Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Neurology, Klinikum Itzehoe, Robert-Koch-Straße 2, 25524, Itzehoe, Germany.
| |
Collapse
|
23
|
Zhang X, Ma L, Liang D, Song B, Chen J, Huang Y, Xu L, Zhao P, Wu W, Zhang N, Xue R. Neurofilament Light Protein Predicts Disease Progression in Idiopathic REM Sleep Behavior Disorder. JOURNAL OF PARKINSON'S DISEASE 2023:JPD223519. [PMID: 37182898 DOI: 10.3233/jpd-223519] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Idiopathic rapid eye movement sleep behavior disorder (iRBD) is increasingly recognized as a manifestation preceding the α-synucleinopathies like Parkinson's disease (PD). Neurofilament light chain (NfL) have been reported to be higher in synucleinopathies as a sign of neurodegeneration. OBJECTIVE To evaluate whether plasma NfL is valuable in reflecting cognitive and motor status in iRBD and PD with a premorbid history of RBD (PDRBD), and predicting disease progression in iRBD. METHODS Thirty-one patients with iRBD, 30 with PDRBD, and 18 healthy controls were included in the cross-sectional and prospective study. Another cohort from the Parkinson's Progression Markers Initiative (PPMI) dataset was enrolled for verification analysis. All patients received evaluations of cognitive, motor, and autonomic function by a battery of clinical tests at baseline and follow-up. Blood NfL was measured by the Quanterix Simoa HD-1. RESULTS In our cohort, 26 patients with iRBD completed the follow-up evaluations, among whom eight (30.8%) patients displayed phenoconversion. Baseline plasma NfL cutoff value of 22.93 pg/mL performed best in distinguishing the iRBD converters from non-converters (sensitivity: 75.0%, specificity: 83.3%, area under the curve: 0.84). Cognitive and motor function were significantly correlated with NfL levels in PDRBD (correlation coefficients: -0.379, 0.399; respectively). Higher baseline NfL levels in iRBD were significantly associated with higher risks for cognitive, motor, autonomic function progression, and phenoconversion at follow-up (hazard ratios: 1.069, 1.065, 1.170, 1.065; respectively). The findings were supported by the PPMI dataset. CONCLUSION Plasma NfL is valuable in reflecting disease severity of PDRBD and predicting disease progression and phenoconversion in iRBD.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Li Ma
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Danqi Liang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Bingxin Song
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingshan Chen
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaqin Huang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin Xu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Zhao
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Wu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Nan Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Rong Xue
- Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
24
|
Kartau M, Melkas S, Kartau J, Arola A, Laakso H, Pitkänen J, Lempiäinen J, Koikkalainen J, Lötjönen J, Korvenoja A, Ahlström M, Herukka SK, Erkinjuntti T, Jokinen H. Neurofilament light level correlates with brain atrophy, and cognitive and motor performance. Front Aging Neurosci 2023; 14:939155. [PMID: 36688160 PMCID: PMC9849573 DOI: 10.3389/fnagi.2022.939155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Background The usefulness of neurofilament light (NfL) as a biomarker for small vessel disease has not been established. We examined the relationship between NfL, neuroimaging changes, and clinical findings in subjects with varying degrees of white matter hyperintensity (WMH). Methods A subgroup of participants (n = 35) in the Helsinki Small Vessel Disease Study underwent an analysis of NfL in cerebrospinal fluid (CSF) as well as brain magnetic resonance imaging (MRI) and neuropsychological and motor performance assessments. WMH and structural brain volumes were obtained with automatic segmentation. Results CSF NfL did not correlate significantly with total WMH volume (r = 0.278, p = 0.105). However, strong correlations were observed between CSF NfL and volumes of cerebral grey matter (r = -0.569, p < 0.001), cerebral cortex (r = -0.563, p < 0.001), and hippocampi (r = -0.492, p = 0.003). CSF NfL also correlated with composite measures of global cognition (r = -0.403, p = 0.016), executive functions (r = -0.402, p = 0.017), memory (r = -0.463, p = 0.005), and processing speed (r = -0.386, p = 0.022). Regarding motor performance, CSF NfL was correlated with Timed Up and Go (TUG) test (r = 0.531, p = 0.001), and gait speed (r = -0.450, p = 0.007), but not with single-leg stance. After adjusting for age, associations with volumes in MRI, functional mobility (TUG), and gait speed remained significant, whereas associations with cognitive performance attenuated below the significance level despite medium to large effect sizes. Conclusion NfL was strongly related to global gray matter and hippocampal atrophy, but not to WMH severity. NfL was also associated with motor performance. Our results suggest that NfL is independently associated with brain atrophy and functional mobility, but is not a reliable marker for cerebral small vessel disease.
Collapse
Affiliation(s)
- Marge Kartau
- Department of Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland,*Correspondence: Marge Kartau, ✉
| | - Susanna Melkas
- Department of Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Joonas Kartau
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Anne Arola
- Division of Neuropsychology, HUS Neurocenter, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Hanna Laakso
- Division of Neuropsychology, HUS Neurocenter, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Johanna Pitkänen
- Department of Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Juha Lempiäinen
- Department of Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Juha Koikkalainen
- Combinostics Ltd, Tampere, Finland,Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jyrki Lötjönen
- Combinostics Ltd, Tampere, Finland,Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland
| | - Antti Korvenoja
- Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Matti Ahlström
- Department of Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sanna-Kaisa Herukka
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, Helsinki, Finland
| | - Timo Erkinjuntti
- Department of Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Hanna Jokinen
- Division of Neuropsychology, HUS Neurocenter, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Fu Y, Zhou L, Li H, Hsiao JHT, Li B, Tanglay O, Auwyang AD, Wang E, Feng J, Kim WS, Liu J, Halliday GM. Adaptive structural changes in the motor cortex and white matter in Parkinson's disease. Acta Neuropathol 2022; 144:861-879. [PMID: 36053316 PMCID: PMC9547807 DOI: 10.1007/s00401-022-02488-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 01/26/2023]
Abstract
Parkinson's disease (PD) is a movement disorder characterized by the early loss of nigrostriatal dopaminergic pathways producing significant network changes impacting motor coordination. Recently three motor stages of PD have been proposed (a silent period when nigrostriatal loss begins, a prodromal motor period with subtle focal manifestations, and clinical PD) with evidence that motor cortex abnormalities occur to produce clinical PD[8]. We directly assess structural changes in the primary motor cortex and corticospinal tract using parallel analyses of longitudinal clinical and cross-sectional pathological cohorts thought to represent different stages of PD. 18F-FP-CIT positron emission tomography and subtle motor features identified patients with idiopathic rapid-eye-movement sleep behaviour disorder (n = 8) that developed prodromal motor signs of PD. Longitudinal diffusion tensor imaging before and after the development of prodromal motor PD showed higher fractional anisotropy in motor cortex and corticospinal tract compared to controls, indicating adaptive structural changes in motor networks in concert with nigrostriatal dopamine loss. Histological analyses of the white matter underlying the motor cortex showed progressive disorientation of axons with segmental replacement of neurofilaments with α-synuclein, enlargement of myelinating oligodendrocytes and increased density of their precursors. There was no loss of neurons in the motor cortex in early or late pathologically confirmed motor PD compared to controls, although there were early cortical increases in neuronal neurofilament light chain and myelin proteins in association with α-synuclein accumulation. Our results collectively provide evidence of a direct impact of PD on primary motor cortex and its output pathways that begins in the prodromal motor stage of PD with structural changes confirmed in early PD. These adaptive structural changes become considerable as the disease advances potentially contributing to motor PD.
Collapse
Affiliation(s)
- YuHong Fu
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongyun Li
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Jen-Hsiang T Hsiao
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Binyin Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Onur Tanglay
- Neuroscience Research Australia & Faculty of Medicine School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Andrew D Auwyang
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Elinor Wang
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Jieyao Feng
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Woojin S Kim
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia
- Neuroscience Research Australia & Faculty of Medicine School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Glenda M Halliday
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia.
- Neuroscience Research Australia & Faculty of Medicine School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
26
|
Petzold A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J Neurochem 2022; 163:179-219. [PMID: 35950263 PMCID: PMC9826399 DOI: 10.1111/jnc.15682] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofilament proteins (Nf) have been validated and established as a reliable body fluid biomarker for neurodegenerative pathology. This review covers seven Nf isoforms, Nf light (NfL), two splicing variants of Nf medium (NfM), two splicing variants of Nf heavy (NfH),α -internexin (INA) and peripherin (PRPH). The genetic and epigenetic aspects of Nf are discussed as relevant for neurodegenerative diseases and oncology. The comprehensive list of mutations for all Nf isoforms covers Amyotrophic Lateral Sclerosis, Charcot-Marie Tooth disease, Spinal muscular atrophy, Parkinson Disease and Lewy Body Dementia. Next, emphasis is given to the expanding field of post-translational modifications (PTM) of the Nf amino acid residues. Protein structural aspects are reviewed alongside PTMs causing neurodegenerative pathology and human autoimmunity. Molecular visualisations of NF PTMs, assembly and stoichiometry make use of Alphafold2 modelling. The implications for Nf function on the cellular level and axonal transport are discussed. Neurofilament aggregate formation and proteolytic breakdown are reviewed as relevant for biomarker tests and disease. Likewise, Nf stoichiometry is reviewed with regard to in vitro experiments and as a compensatory mechanism in neurodegeneration. The review of Nf across a spectrum of 87 diseases from all parts of medicine is followed by a critical appraisal of 33 meta-analyses on Nf body fluid levels. The review concludes with considerations for clinical trial design and an outlook for future research.
Collapse
Affiliation(s)
- Axel Petzold
- Department of NeurodegenerationQueen Square Insitute of Neurology, UCLLondonUK
| |
Collapse
|
27
|
Patterson CG, Joslin E, Gil AB, Spigle W, Nemet T, Chahine L, Christiansen CL, Melanson E, Kohrt WM, Mancini M, Josbeno D, Balfany K, Griffith G, Dunlap MK, Lamotte G, Suttman E, Larson D, Branson C, McKee KE, Goelz L, Poon C, Tilley B, Kang UJ, Tansey MG, Luthra N, Tanner CM, Haus JM, Fantuzzi G, McFarland NR, Gonzalez-Latapi P, Foroud T, Motl R, Schwarzschild MA, Simuni T, Marek K, Naito A, Lungu C, Corcos DM, The SPARX3-PSG Investigators EllisTerry D.ShihLudy C.NordahlTimothy J.StevensonMichael T.AlbertsJay L.RaoAshwini K.LandisCoreyNoceraJoe R.HackneyMadeleine E.StegemollerElizabeth L.RidgelAngela L.HondzinskiJan M.JohannsenNeil M.DrummondPatrickMiltonHeatherHinkleDavid A.HorakFay B.AfshariMitraHurtChristopher P.KidwellArielConroyCorinnaPanchalNeilSchultzBrookeMarchbankJesBloemerAaronChristouDemetra D.VaillancourtDavid E.LapierreStephanieMacKinnonColum D.Amundsen-HuffmasterSommerGarlandKristinRasmussenBlake B.ChapmanSummerSpahnJessicaWuLauraDibbleLee E.OlivierGenevieve N.WeltmanArtDalrympleWilliam AlexEdwardsDavidRyndersCoreyMillerLaurenEarhartGammon M.RawsonKerri S.JonesKelvinNellesKristaAlmeidaQuincy J.Saint-HilaireMarieFactorStewart A.KilbaneCamillaCopelandBrian J.DaleMarian L.EspayAlberto J.Ramirez-ZamoraAdolfoFessendenAmandaDeikAndres F.CamicioliRichard. Study in Parkinson's disease of exercise phase 3 (SPARX3): study protocol for a randomized controlled trial. Trials 2022; 23:855. [PMID: 36203214 PMCID: PMC9535216 DOI: 10.1186/s13063-022-06703-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To date, no medication has slowed the progression of Parkinson's disease (PD). Preclinical, epidemiological, and experimental data on humans all support many benefits of endurance exercise among persons with PD. The key question is whether there is a definitive additional benefit of exercising at high intensity, in terms of slowing disease progression, beyond the well-documented benefit of endurance training on a treadmill for fitness, gait, and functional mobility. This study will determine the efficacy of high-intensity endurance exercise as first-line therapy for persons diagnosed with PD within 3 years, and untreated with symptomatic therapy at baseline. METHODS This is a multicenter, randomized, evaluator-blinded study of endurance exercise training. The exercise intervention will be delivered by treadmill at 2 doses over 18 months: moderate intensity (4 days/week for 30 min per session at 60-65% maximum heart rate) and high intensity (4 days/week for 30 min per session at 80-85% maximum heart rate). We will randomize 370 participants and follow them at multiple time points for 24 months. The primary outcome is the Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) motor score (Part III) with the primary analysis assessing the change in MDS-UPDRS motor score (Part III) over 12 months, or until initiation of symptomatic antiparkinsonian treatment if before 12 months. Secondary outcomes are striatal dopamine transporter binding, 6-min walk distance, number of daily steps, cognitive function, physical fitness, quality of life, time to initiate dopaminergic medication, circulating levels of C-reactive protein (CRP), and brain-derived neurotrophic factor (BDNF). Tertiary outcomes are walking stride length and turning velocity. DISCUSSION SPARX3 is a Phase 3 clinical trial designed to determine the efficacy of high-intensity, endurance treadmill exercise to slow the progression of PD as measured by the MDS-UPDRS motor score. Establishing whether high-intensity endurance treadmill exercise can slow the progression of PD would mark a significant breakthrough in treating PD. It would have a meaningful impact on the quality of life of people with PD, their caregivers and public health. TRIAL REGISTRATION ClinicalTrials.gov NCT04284436 . Registered on February 25, 2020.
Collapse
Affiliation(s)
- Charity G. Patterson
- grid.21925.3d0000 0004 1936 9000Department of Physical Therapy, University of Pittsburgh, School of Health and Rehabilitation Sciences, 100 Technology Drive, Suite 500, Pittsburgh, PA 15219 USA
| | - Elizabeth Joslin
- grid.16753.360000 0001 2299 3507Department of Physical Therapy and Human Science, Northwestern University, Feinberg School of Medicine, Suite 1100, 645 North Michigan Avenue, Chicago, IL 60305 USA
| | - Alexandra B. Gil
- grid.21925.3d0000 0004 1936 9000Department of Physical Therapy, University of Pittsburgh, School of Health and Rehabilitation Sciences, 100 Technology Drive, Suite 500, Pittsburgh, PA 15219 USA
| | - Wendy Spigle
- grid.21925.3d0000 0004 1936 9000Department of Physical Therapy, University of Pittsburgh, School of Health and Rehabilitation Sciences, 100 Technology Drive, Suite 500, Pittsburgh, PA 15219 USA
| | - Todd Nemet
- grid.21925.3d0000 0004 1936 9000Department of Physical Therapy, University of Pittsburgh, School of Health and Rehabilitation Sciences, 100 Technology Drive, Suite 500, Pittsburgh, PA 15219 USA
| | - Lana Chahine
- grid.21925.3d0000 0004 1936 9000Department of Neurology, University of Pittsburgh, School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Cory L. Christiansen
- grid.430503.10000 0001 0703 675XDepartment of Physical Medicine & Rehabilitation, University of Colorado, School of Medicine, Aurora, CO 80217 USA
| | - Ed Melanson
- grid.430503.10000 0001 0703 675XDivision of Endocrinology, Metabolism and Diabetes, and Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA ,grid.280930.0Eastern Colorado VA Health Care System, Geriatric Research Education and Clinical Center (GRECC), Denver, CO USA
| | - Wendy M. Kohrt
- grid.430503.10000 0001 0703 675XDivision of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA ,grid.422100.50000 0000 9751 469XEastern Colorado Geriatric Research, Education, and Clinical Center, Rocky Mountain Regional VAMC, Aurora, USA
| | - Martina Mancini
- grid.5288.70000 0000 9758 5690Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Road, Portland, OR 97219 USA
| | - Deborah Josbeno
- grid.21925.3d0000 0004 1936 9000Department of Physical Therapy, University of Pittsburgh, School of Health and Rehabilitation Sciences, 100 Technology Drive, Suite 500, Pittsburgh, PA 15219 USA
| | - Katherine Balfany
- grid.430503.10000 0001 0703 675XDepartment of Physical Medicine & Rehabilitation, University of Colorado, School of Medicine, Aurora, CO 80217 USA
| | - Garett Griffith
- grid.16753.360000 0001 2299 3507Department of Physical Therapy and Human Science, Northwestern University, Feinberg School of Medicine, Suite 1100, 645 North Michigan Avenue, Chicago, IL 60305 USA
| | - Mac Kenzie Dunlap
- grid.239578.20000 0001 0675 4725Neurological Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195 USA
| | - Guillaume Lamotte
- grid.223827.e0000 0001 2193 0096Movement Disorders Division, Department of Neurology, University of Utah, 175 Medical Dr N, Salt Lake City, UT 84132 USA
| | - Erin Suttman
- grid.223827.e0000 0001 2193 0096Department of Physical Therapy & Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84115 USA
| | - Danielle Larson
- grid.16753.360000 0001 2299 3507Department of Neurology, Feinberg School of Medicine, Northwestern University, Suite 115, 710 N Lake Shore Drive, Chicago, IL 60611 USA
| | - Chantale Branson
- grid.9001.80000 0001 2228 775XMorehouse School of Medicine, 720 Westview Dr SW, Atlanta, GA 30310 USA
| | - Kathleen E. McKee
- grid.420884.20000 0004 0460 774XNeurosciences Clinical Program, Intermountain Healthcare, 5171 S Cottonwood Street, Suite 810, Murray, UT 84107 USA
| | - Li Goelz
- grid.185648.60000 0001 2175 0319Department of Kinesiology and Nutrition, UIC College of Applied Health Sciences, 919 W Taylor Street, Chicago, IL 60612 USA
| | - Cynthia Poon
- grid.16753.360000 0001 2299 3507Department of Neurology, Feinberg School of Medicine, Northwestern University, Suite 115, 710 N Lake Shore Drive, Chicago, IL 60611 USA
| | - Barbara Tilley
- grid.267308.80000 0000 9206 2401Department of Biostatistics and Data Science, University of Texas Health Science Center School of Public Health, 1200 Pressler Street E835, Houston, TX 77030 USA
| | - Un Jung Kang
- grid.240324.30000 0001 2109 4251NYU Langone Health, NYU Grossman School of Medicine, 435 E 30th Street, Science Building 1305, New York, NY 10016 USA
| | - Malú Gámez Tansey
- grid.15276.370000 0004 1936 8091Department of Neuroscience and Neurology, Normal Fixel Institute for Neurological Diseases and College of Medicine, University of Florida, 4911 Newell Road, Gainesville, FL 32610 USA
| | - Nijee Luthra
- grid.266102.10000 0001 2297 6811Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, 1651 4th Street, San Francisco, CA 94158 USA
| | - Caroline M. Tanner
- grid.266102.10000 0001 2297 6811Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, 1651 4th Street, San Francisco, CA 94158 USA
| | - Jacob M. Haus
- grid.214458.e0000000086837370School of Kinesiology, University of Michigan, 830 N. University Ave, Ann Arbor, MI 48109 USA
| | - Giamila Fantuzzi
- grid.185648.60000 0001 2175 0319Department of Kinesiology and Nutrition, UIC College of Applied Health Sciences, 919 W Taylor Street, Chicago, IL 60612 USA
| | - Nikolaus R. McFarland
- grid.15276.370000 0004 1936 8091Department of Neurology, Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL 32608 USA
| | - Paulina Gonzalez-Latapi
- grid.16753.360000 0001 2299 3507Department of Neurology, Feinberg School of Medicine, Northwestern University, Suite 115, 710 N Lake Shore Drive, Chicago, IL 60611 USA
| | - Tatiana Foroud
- grid.257413.60000 0001 2287 3919Department of Medical and Molecular Genetics, Indiana University School of Medicine, 410 W. 10th Street, Indianapolis, IN 46220 USA
| | - Robert Motl
- grid.185648.60000 0001 2175 0319Department of Kinesiology and Nutrition, UIC College of Applied Health Sciences, 919 W Taylor Street, Chicago, IL 60612 USA
| | - Michael A. Schwarzschild
- grid.32224.350000 0004 0386 9924Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Rm 3002, 114 16th Street, Boston, MA 02129 USA
| | - Tanya Simuni
- grid.16753.360000 0001 2299 3507Department of Neurology, Feinberg School of Medicine, Northwestern University, Suite 115, 710 N Lake Shore Drive, Chicago, IL 60611 USA
| | - Kenneth Marek
- grid.429091.7Institute for Neurodegenerative Disorders, 60 Temple St, New Haven, CT 06510 USA
| | - Anna Naito
- grid.453428.c0000 0001 2236 2879Parkinson’s Foundation 200 SE 1st Street Suite 800, Miami, FL 33131 USA
| | - Codrin Lungu
- grid.416870.c0000 0001 2177 357XNational Institute of Neurological Disorders and Stroke, NIH, 6001 Executive Blvd, #2188, Rockville, MD 20852 USA
| | - Daniel M. Corcos
- grid.16753.360000 0001 2299 3507Department of Physical Therapy and Human Science, Northwestern University, Feinberg School of Medicine, Suite 1100, 645 North Michigan Avenue, Chicago, IL 60305 USA
| | | |
Collapse
|
28
|
Liu Y, Dou K, Xue L, Li X, Xie A. Neurofilament light as a biomarker for motor decline in Parkinson’s disease. Front Neurosci 2022; 16:959261. [PMID: 36117629 PMCID: PMC9477093 DOI: 10.3389/fnins.2022.959261] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022] Open
Abstract
Objectives The aim of this study was to determine whether neurofifilament light (NfL) could reflect motor decline and compare the predictive values of cerebrospinal fluid (CSF) and serum NfL in individuals with PD. Methods CSF/serum samples were collected from patients with PD and healthy controls (HCs) with motor assessments at baseline and after three years of follow-up from the Parkinson’s Progression Markers Initiative (PPMI). Multiple linear regression models and linear mixed-effects models were used to investigate the associations of motor assessments with baseline and longitudinal CSF/serum NfL. Associations between the change rates of motor assessments and CSF/serum NfL were further investigated via multiple linear regression models. Mediating effect analysis was used to research whether CSF alpha-synuclein (α-syn) acts as the mediator between NfL and motor assessments. Results We found patients with PD had higher baseline CSF/serum NfL levels than HCs. Both baseline CSF/serum NfLs and their change rates predicted measurable motor decline in PD assessed by different motor scores. Baseline serum NfL and its rate of change were strongly associated with CSF NfL levels in patients with PD (P < 0.001). Besides, there were also significant differences in CSF/serum NfL levels and predicted values of motor decline between men and women with PD. Mediating effect analysis showed CSF α-syn mediated the effect of CSF NfL on total Unified Parkinson’s Disease Rating Scale (UPDRS) scores and UPDRSIII with 30.6 and 20.2% mediation, respectively. Conclusion Our results indicated that NfL, especially serum NfL concentration, could serve as an easily accessible biomarker to monitor the severity and progression of motor decline in individuals with PD, especially in men with PD. Besides, CSF α-syn acts as a mediator between NfL and motor progression.
Collapse
Affiliation(s)
- Yumei Liu
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaixin Dou
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ling Xue
- Department of Nursing, Tai’an City Central Hospital, Tai’an, China
| | - Xiaoyuan Li
- Department of Traditional Chinese Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Anmu Xie,
| |
Collapse
|
29
|
Tönges L, Buhmann C, Klebe S, Klucken J, Kwon EH, Müller T, Pedrosa DJ, Schröter N, Riederer P, Lingor P. Blood-based biomarker in Parkinson's disease: potential for future applications in clinical research and practice. J Neural Transm (Vienna) 2022; 129:1201-1217. [PMID: 35428925 PMCID: PMC9463345 DOI: 10.1007/s00702-022-02498-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/27/2022] [Indexed: 12/12/2022]
Abstract
The clinical presentation of Parkinson's disease (PD) is both complex and heterogeneous, and its precise classification often requires an intensive work-up. The differential diagnosis, assessment of disease progression, evaluation of therapeutic responses, or identification of PD subtypes frequently remains uncertain from a clinical point of view. Various tissue- and fluid-based biomarkers are currently being investigated to improve the description of PD. From a clinician's perspective, signatures from blood that are relatively easy to obtain would have great potential for use in clinical practice if they fulfill the necessary requirements as PD biomarker. In this review article, we summarize the knowledge on blood-based PD biomarkers and present both a researcher's and a clinician's perspective on recent developments and potential future applications.
Collapse
Affiliation(s)
- Lars Tönges
- Department of Neurology, Ruhr-University Bochum, St. Josef Hospital, Gudrunstr. 56, 44791, Bochum, Germany.
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, 44801, Bochum, Nordrhein-Westfalen, Germany.
| | - Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, 45147, Essen, Germany
| | - Jochen Klucken
- Department of Digital Medicine, University Luxembourg, LCSB, L-4367, Belval, Luxembourg
- Digital Medicine Research Group, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
- Centre Hospitalier de Luxembourg, Digital Medicine Research Clinic, L-1210, Luxembourg, Luxembourg
| | - Eun Hae Kwon
- Department of Neurology, Ruhr-University Bochum, St. Josef Hospital, Gudrunstr. 56, 44791, Bochum, Germany
| | - Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, 13088, Berlin, Germany
| | - David J Pedrosa
- Department of Neurology, Universitätsklinikum Gießen and Marburg, Marburg Site, 35043, Marburg, Germany
- Center of Mind, Brain and Behaviour (CMBB), Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Nils Schröter
- Department of Neurology and Clinical Neuroscience, University of Freiburg, 79106, Freiburg, Germany
| | - Peter Riederer
- Psychosomatics and Psychotherapy, University Hospital Wuerzburg, Clinic and Policlinic for Psychiatry, 97080, Wuerzburg, Germany
- University of Southern Denmark Odense, 5000, Odense, Denmark
| | - Paul Lingor
- School of Medicine, Klinikum Rechts Der Isar, Department of Neurology, Technical University of Munich, 81675, München, Germany
| |
Collapse
|
30
|
Prange S, Theis H, Banwinkler M, van Eimeren T. Molecular Imaging in Parkinsonian Disorders—What’s New and Hot? Brain Sci 2022; 12:brainsci12091146. [PMID: 36138882 PMCID: PMC9496752 DOI: 10.3390/brainsci12091146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Highlights Abstract Neurodegenerative parkinsonian disorders are characterized by a great diversity of clinical symptoms and underlying neuropathology, yet differential diagnosis during lifetime remains probabilistic. Molecular imaging is a powerful method to detect pathological changes in vivo on a cellular and molecular level with high specificity. Thereby, molecular imaging enables to investigate functional changes and pathological hallmarks in neurodegenerative disorders, thus allowing to better differentiate between different forms of degenerative parkinsonism, improve the accuracy of the clinical diagnosis and disentangle the pathophysiology of disease-related symptoms. The past decade led to significant progress in the field of molecular imaging, including the development of multiple new and promising radioactive tracers for single photon emission computed tomography (SPECT) and positron emission tomography (PET) as well as novel analytical methods. Here, we review the most recent advances in molecular imaging for the diagnosis, prognosis, and mechanistic understanding of parkinsonian disorders. First, advances in imaging of neurotransmission abnormalities, metabolism, synaptic density, inflammation, and pathological protein aggregation are reviewed, highlighting our renewed understanding regarding the multiplicity of neurodegenerative processes involved in parkinsonian disorders. Consequently, we review the role of molecular imaging in the context of disease-modifying interventions to follow neurodegeneration, ensure stratification, and target engagement in clinical trials.
Collapse
Affiliation(s)
- Stéphane Prange
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Université de Lyon, 69675 Bron, France
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| | - Hendrik Theis
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Magdalena Banwinkler
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| |
Collapse
|
31
|
Yang X, Li Z, Bai L, Shen X, Wang F, Han X, Zhang R, Li Z, Zhang J, Dong M, Wang Y, Cao T, Zhao S, Chu C, Liu C, Zhu X. Association of Plasma and Electroencephalography Markers With Motor Subtypes of Parkinson’s Disease. Front Aging Neurosci 2022; 14:911221. [PMID: 35903537 PMCID: PMC9314775 DOI: 10.3389/fnagi.2022.911221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
Objective The aim of this study was to investigate the correlations of plasma neurodegenerative proteins and electroencephalography (EEG) dynamic functional network (DFN) parameters with disease progression in early Parkinson’s disease (PD) with different motor subtypes, including tremor-dominant (TD) and postural instability and gait disorder (PIGD). Methods In our study, 33 patients with PD (21 TD and 12 PIGD) and 33 healthy controls (HCs) were enrolled. Plasma neurofilament light chain (NfL), α-synuclein (α-syn), total-tau (t-tau), β-amyloid 42 (Aβ42), and β-amyloid 40 (Aβ40) levels were measured using an ultrasensitive single-molecule array (Simoa) immunoassay. All the patients with PD underwent EEG quantified by DFN analysis. The motor and non-motor performances were evaluated by a series of clinical assessments. Subsequently, a correlation analysis of plasma biomarkers and EEG measures with clinical scales was conducted. Results In the TD group, plasma NfL exhibited a significant association with MDS-UPDRS III and Montreal Cognitive Assessment (MoCA). A higher Aβ42/40 level was significantly related to a decrease in Hamilton Depression Rating Scale (HAMD) and Hamilton Anxiety Rating Scale (HAMA) in the PIGD group. In terms of the correlation between EEG characteristic parameters and clinical outcomes, trapping time (TT) delta was positively correlated with MDS-UPDRS III and MoCA scores in the TD group, especially in the prefrontal and frontal regions. For other non-motor symptoms, there were significant direct associations of kPLI theta with HAMD and HAMA, especially in the prefrontal region, and kPLI gamma was particularly correlated with Rapid Eye Movement Sleep Behavior Disorder Screening Questionnaire (RBDSQ) scores in the prefrontal, frontal, and parietal regions in the TD group. Furthermore, there was a significant positive correlation between plasma t-tau and kPLI, and pairwise correlations were found among plasma NfL, theta TT, and MoCA scores in the TD group. Conclusion These results provide evidence that plasma neurodegenerative proteins and EEG measures have great potential in predicting the disease progression of PD subtypes, especially for the TD subtype. A combination of these two kinds of markers may have a superposition effect on monitoring and estimating the prognosis of PD subtypes and deserves further research in larger, follow-up PD cohorts.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhen Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lipeng Bai
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiao Shen
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fei Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoxuan Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Rui Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhuo Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinghui Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengmeng Dong
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanlin Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Tingyu Cao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shujun Zhao
- National Health Commission Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute Endocrinology, Tianjin Medical University, Tianjin, China
| | - Chunguang Chu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
- *Correspondence: Chunguang Chu,
| | - Chen Liu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
- Chen Liu,
| | - Xiaodong Zhu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Xiaodong Zhu,
| |
Collapse
|
32
|
Wang L, Zhang W, Liu F, Mao C, Liu CF, Cheng W, Feng J. Association of Cerebrospinal Fluid Neurofilament Heavy Protein Levels With Clinical Progression in Patients With Parkinson Disease. JAMA Netw Open 2022; 5:e2223821. [PMID: 35881392 PMCID: PMC9327574 DOI: 10.1001/jamanetworkopen.2022.23821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Neurofilament light in biofluids has been associated with progression of Parkinson disease (PD), but the association between neurofilament heavy (NfH) and progression of PD has not been investigated. OBJECTIVE To evaluate the associations of cerebrospinal fluid (CSF) NfH (cNfH) levels and motor and cognitive progression in PD. DESIGN, SETTING, AND PARTICIPANTS This cohort study used data from the Parkinson Progression Marker Initiative ranging from June 2010 to November 2018. Participants were recruited from 24 participating sites worldwide (United States, Europe, and Australia). Data were analyzed from October 20 to December 18, 2021. EXPOSURES Concentrations of NfH in CSF. MAIN OUTCOMES AND MEASURES The primary outcomes were Movement Disorder Society-sponsored revisions of the Unified Parkinson Disease Rating Scale (MDS-UPDRS) Part III; scores range from 0 to 132, with higher scores indicating worse motor function, and Montreal Cognitive Assessment (MoCA); scores range from 0 to 30, with higher scores indicating better cognitive function. The associations of cNfH levels and longitudinal change in MDS-UPDRS-Part-III and MoCA were examined using linear mixed-effects models with PD duration as the time scale. Partial correlation analysis was conducted to examine the associations of cNfH levels and α-synuclein, amyloid-β 1-42 (Aβ42), phosphorylated tau at threonine 181 position (P-tau), and total tau (T-tau) levels in CSF. RESULTS A total of 404 patients with PD (mean [SD] age, 61.7 [9.7] years; 263 were men [65.1%]; within 2 years of diagnosis; Hoehn and Yahr <3) were included. Higher baseline cNfH levels were associated with greater increases in MDS-UPDRS Part-III (β = 0.39; 95% CI, 0.12-0.66; P = .003) and faster decreases in MoCA (β = -0.18; CI, -0.24 to -0.11; P < .001). Levels of cNfH were correlated with CSF levels of α-synuclein (Spearman r = 0.25; 95% CI, 0.15-0.34; P < .001), Aβ42 (Spearman r = 0.18; 95% CI, 0.08-0.27; P < .001), P-tau (Spearman r = 0.25; 95% CI, 0.15-0.35; P < .001), and T-tau (Spearman r = 0.31; 95% CI, 0.21-0.40; P < .001) at baseline. CONCLUSIONS AND RELEVANCE Higher baseline cNfH levels were associated with faster motor and cognitive progression. This finding suggests that cNfH may be of some value for stratifying patients with PD who have different progression rates.
Collapse
Affiliation(s)
- Linbo Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Wei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Fengtao Liu
- Department of Neurology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Chengjie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
33
|
Rydbirk R, Østergaard O, Folke J, Hempel C, DellaValle B, Andresen TL, Løkkegaard A, Hejl AM, Bode M, Blaabjerg M, Møller M, Danielsen EH, Salvesen L, Starhof CC, Bech S, Winge K, Rungby J, Pakkenberg B, Brudek T, Olsen JV, Aznar S. Brain proteome profiling implicates the complement and coagulation cascade in multiple system atrophy brain pathology. Cell Mol Life Sci 2022; 79:336. [PMID: 35657417 PMCID: PMC9164190 DOI: 10.1007/s00018-022-04378-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Multiple system atrophy (MSA) is a rare, progressive, neurodegenerative disorder presenting glia pathology. Still, disease etiology and pathophysiology are unknown, but neuro-inflammation and vascular disruption may be contributing factors to the disease progression. Here, we performed an ex vivo deep proteome profiling of the prefrontal cortex of MSA patients to reveal disease-relevant molecular neuropathological processes. Observations were validated in plasma and cerebrospinal fluid (CSF) of novel cross-sectional patient cohorts. METHODS Brains from 45 MSA patients and 30 normal controls (CTRLs) were included. Brain samples were homogenized and trypsinized for peptide formation and analyzed by high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS). Results were supplemented by western blotting, immuno-capture, tissue clearing and 3D imaging, immunohistochemistry and immunofluorescence. Subsequent measurements of glial fibrillary acid protein (GFAP) and neuro-filament light chain (NFL) levels were performed by immunoblotting in plasma of 20 MSA patients and 20 CTRLs. Finally, we performed a proteome profiling of 144 CSF samples from MSA and CTRLs, as well as other parkinsonian disorders. Data were analyzed using relevant parametric and non-parametric two-sample tests or linear regression tests followed by post hoc tests corrected for multiple testing. Additionally, high-throughput bioinformatic analyses were applied. RESULTS We quantified more than 4,000 proteins across samples and identified 49 differentially expressed proteins with significantly different abundances in MSA patients compared with CTRLs. Pathway analyses showed enrichment of processes related to fibrinolysis and complement cascade activation. Increased fibrinogen subunit β (FGB) protein levels were further verified, and we identified an enriched recognition of FGB by IgGs as well as intra-parenchymal accumulation around blood vessels. We corroborated blood-brain barrier leakage by a significant increase in GFAP and NFL plasma levels in MSA patients that correlated to disease severity and/or duration. Proteome profiling of CSF samples acquired during the disease course, confirmed increased total fibrinogen levels and immune-related components in the soluble fraction of MSA patients. This was also true for the other atypical parkinsonian disorders, dementia with Lewy bodies and progressive supra-nuclear palsy, but not for Parkinson's disease patients. CONCLUSION Our results implicate activation of the fibrinolytic cascade and immune system in the brain as contributing factors in MSA associated with a more severe disease course.
Collapse
Affiliation(s)
- Rasmus Rydbirk
- Centre for Neuroscience and Stereology, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
- Biotech Research and Innovation Centre, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Ole Østergaard
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Jonas Folke
- Centre for Neuroscience and Stereology, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
| | - Casper Hempel
- Department of Health Technology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- GLX Analytix ApS, 2200, Copenhagen N, Denmark
| | - Brian DellaValle
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
- GLX Analytix ApS, 2200, Copenhagen N, Denmark
| | - Thomas L Andresen
- Department of Health Technology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Annemette Løkkegaard
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, 2200, Copenhagen N, Denmark
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, 2400, Copenhagen NW, Denmark
| | - Anne-Mette Hejl
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, 2400, Copenhagen NW, Denmark
| | - Matthias Bode
- Department of Neurology, Odense University Hospital, J.B. Winsløws Vej 4, 5000, Odense, Denmark
| | - Morten Blaabjerg
- Department of Neurology, Odense University Hospital, J.B. Winsløws Vej 4, 5000, Odense, Denmark
| | - Mette Møller
- Department of Neurology, Aarhus University Hospital, 8200, Aarhus, Denmark
| | - Erik H Danielsen
- Department of Neurology, Aarhus University Hospital, 8200, Aarhus, Denmark
| | - Lisette Salvesen
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, 2400, Copenhagen NW, Denmark
| | - Charlotte C Starhof
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, 2400, Copenhagen NW, Denmark
| | - Sara Bech
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, 2400, Copenhagen NW, Denmark
| | - Kristian Winge
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, 2400, Copenhagen NW, Denmark
- Department of Neurology, Odense University Hospital, J.B. Winsløws Vej 4, 5000, Odense, Denmark
| | - Jørgen Rungby
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
- Department of Endocrinology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
| | - Bente Pakkenberg
- Centre for Neuroscience and Stereology, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Tomasz Brudek
- Centre for Neuroscience and Stereology, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark.
| | - Susana Aznar
- Centre for Neuroscience and Stereology, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark.
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark.
| |
Collapse
|
34
|
Serum neurofilament light chain and postural instability/gait difficulty (PIGD) subtypes of Parkinson’s disease in the MARK-PD study. J Neural Transm (Vienna) 2022; 129:295-300. [PMID: 35072765 PMCID: PMC8930951 DOI: 10.1007/s00702-022-02464-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/12/2022] [Indexed: 11/04/2022]
Abstract
The PIGD (postural instability / gait difficulty) subtype of Parkinson´s disease (PD) is associated with faster cognitive and motor decline. So far, there are no quantifiable biomarkers to aid clinical subtyping. Neurofilament light chain (NfL) is a highly specific marker of neuro-axonal damage and can be assessed in blood. Here, we investigated if serum NfL concentrations are associated with PIGD subtype and PIGD scores in PD patients at advanced disease stages. Furthermore, we evaluated if serum NfL is associated with motor and cognitive function assessed with MDS-UPDRS part III and Montreal cognitive assessment (MoCA). Serum NfL levels were analyzed with Single Molecule Assays (Simoa) in blood of 223 PD patients from the bioMARKers in Parkinson’s Disease (MARK-PD) study. Serum NfL concentrations were higher in PIGD patients independent of age, sex and disease duration. In linear regression analysis, serum NfL levels were associated with MoCA, MDS-UPDRS III and PIGD scores in unadjusted models, but remained significant after adjustment only with PIGD scores. In conclusion, increased serum NfL levels were associated with PIGD subtype and PIGD scores in patients with advanced PD.
Collapse
|
35
|
Watts CR, Zhang Y. Progression of Self-Perceived Speech and Swallowing Impairment in Early Stage Parkinson's Disease: Longitudinal Analysis of the Unified Parkinson's Disease Rating Scale. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2022; 65:146-158. [PMID: 34851686 DOI: 10.1044/2021_jslhr-21-00216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
PURPOSE The purpose of this study was to investigate the presence and progression of self-perceived speech and swallowing impairments in newly diagnosed people with Parkinson's disease (PD) longitudinally across 6 years. METHOD Longitudinal data from the Parkinson's Progression Markers Initiative were analyzed across six consecutive years in a cohort of 269 newly diagnosed people with PD, and a subset of those (n = 211) who were assessed at every time point across the 6 years. Dependent variables included self-perceived ratings of speech and swallowing impairment severity from the Unified Parkinson's Disease Rating Scale. Patient-centered factors of age at diagnosis and motor phenotype were also assessed to determine if they were related to the change in self-perceived speech and swallowing impairments. RESULTS Overall, self-perceived speech and swallowing impairments were present in newly diagnosed people with PD, although over time, the degree of severity for both remained in the mild range. However, the rate of change over time was significant for perceived speech impairment, F(5.5, 1158.8) = 21.1, p < .001), and perceived swallowing impairment, F(5.2, 1082.6) = 8.6, p < .001. Changes for speech and swallowing impairment were both in the direction of progressive severity. There were no effects of age at diagnosis or motor phenotype on the degree of change for either speech or swallowing. CONCLUSIONS Self-perceptions of speech and swallowing impairment changed significantly over time in newly diagnosed people with PD (PWPD). Consistent with existing literature, self-perceptions of speech impairment were rated as more severe than those of swallowing impairment. These findings reveal that even in the early years postdiagnoses, PWPD are experiencing changes to speech and swallowing function, albeit within the mildly severe range. The presence of self-perceived mild speech and swallowing impairments in the initial years postdiagnosis may support the need for intervention to improve and or sustain function over time.
Collapse
Affiliation(s)
- Christopher R Watts
- Harris College of Nursing & Health Sciences, Texas Christian University, Fort Worth
| | - Yan Zhang
- Harris College of Nursing & Health Sciences, Texas Christian University, Fort Worth
| |
Collapse
|
36
|
Lv Y, Xu B, Zhang X, Chen C, Gao Y, Li N. Association of serum cholesterol with Parkinson's disease in a cohort of statin-free individuals. Brain Behav 2022; 12:e2454. [PMID: 34894416 PMCID: PMC8785640 DOI: 10.1002/brb3.2454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/13/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The role of serum cholesterol in the pathogenesis of Parkinson's disease (PD) remains unclear. The objective of this study was to assess the association between serum cholesterol and PD in a cohort of statin-free newly diagnosed PD patients. METHODS This retrospective study used fasting lipid profiles obtained from 672 consecutive statin-free newly diagnosed PD individuals and 540 controls. These PD individuals were identified from three medical institutions during 2017-2021, and the controls were identified from three physical examination centers during the same time period. Logistic regressions were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs), with adjustment of age, sex, and tobacco use history. RESULTS Among 672 PD individuals, 112 were excluded in accordance with the current criteria, leaving 560 PD patients. The multivariate binary logistic regression analysis showed that LDL-C was the only variable contributing to the occurrence of PD (OR 1.39, 95% CI: 1.07-2.31, p < .001) after adjusting for age, sex, and tobacco use history; this association persisted following further adjustment for TC and HDL-C. In the subgroup analysis of the adjusted results of LDL-C after correcting for TC and HDL-C, lower LDL-C was associated with a higher risk of PD. CONCLUSION Among selected populations of statin-free newly diagnosed PD individuals, low LDL-C might be associated with the occurrence of PD.
Collapse
Affiliation(s)
- Yukai Lv
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Xu
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuejuan Zhang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunhuan Chen
- Department of Anaesthesiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yan Gao
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Ning Li
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
37
|
Yuan A, Nixon RA. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front Neurosci 2021; 15:689938. [PMID: 34646114 PMCID: PMC8503617 DOI: 10.3389/fnins.2021.689938] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
Biomarkers of neurodegeneration and neuronal injury have the potential to improve diagnostic accuracy, disease monitoring, prognosis, and measure treatment efficacy. Neurofilament proteins (NfPs) are well suited as biomarkers in these contexts because they are major neuron-specific components that maintain structural integrity and are sensitive to neurodegeneration and neuronal injury across a wide range of neurologic diseases. Low levels of NfPs are constantly released from neurons into the extracellular space and ultimately reach the cerebrospinal fluid (CSF) and blood under physiological conditions throughout normal brain development, maturation, and aging. NfP levels in CSF and blood rise above normal in response to neuronal injury and neurodegeneration independently of cause. NfPs in CSF measured by lumbar puncture are about 40-fold more concentrated than in blood in healthy individuals. New ultra-sensitive methods now allow minimally invasive measurement of these low levels of NfPs in serum or plasma to track disease onset and progression in neurological disorders or nervous system injury and assess responses to therapeutic interventions. Any of the five Nf subunits - neurofilament light chain (NfL), neurofilament medium chain (NfM), neurofilament heavy chain (NfH), alpha-internexin (INA) and peripherin (PRPH) may be altered in a given neuropathological condition. In familial and sporadic Alzheimer's disease (AD), plasma NfL levels may rise as early as 22 years before clinical onset in familial AD and 10 years before sporadic AD. The major determinants of elevated levels of NfPs and degradation fragments in CSF and blood are the magnitude of damaged or degenerating axons of fiber tracks, the affected axon caliber sizes and the rate of release of NfP and fragments at different stages of a given neurological disease or condition directly or indirectly affecting central nervous system (CNS) and/or peripheral nervous system (PNS). NfPs are rapidly emerging as transformative blood biomarkers in neurology providing novel insights into a wide range of neurological diseases and advancing clinical trials. Here we summarize the current understanding of intracellular NfP physiology, pathophysiology and extracellular kinetics of NfPs in biofluids and review the value and limitations of NfPs and degradation fragments as biomarkers of neurodegeneration and neuronal injury.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
- Department of Cell Biology, New York University Grossman School of Medicine, (NYU), Neuroscience Institute, New York, NY, United States
| |
Collapse
|
38
|
Kim R, Jeon B. Serum neurofilament light chain predicts future freezing of gait in Parkinson's disease. Parkinsonism Relat Disord 2021; 91:102-104. [PMID: 34555572 DOI: 10.1016/j.parkreldis.2021.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/20/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Ryul Kim
- Department of Neurology, Inha University Hospital, Incheon, South Korea
| | - Beomseok Jeon
- Department of Neurology, College of Medicine, Seoul National University Hospital, Seoul, South Korea.
| |
Collapse
|