1
|
Wu SK, Tsai CL, Mir A, Hynynen K. MRI-guided focused ultrasound for treating Parkinson's disease with human mesenchymal stem cells. Sci Rep 2025; 15:2029. [PMID: 39815002 PMCID: PMC11735764 DOI: 10.1038/s41598-025-85811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
Parkinson's disease (PD) is a progressive disorder that affects the nervous system and causes regions of the brain to deteriorate. In this study, we investigated the effects of MR-guided focused ultrasound (MRgFUS) for the delivery of human mesenchymal stem cells (MSCs) on the 6-hydroxydopamine (6-HODA)-induced PD rat model. MRgFUS-induced blood-brain barrier (BBB) permeability modulation was conducted using an acoustic controller with the targets at the striatum (ST) and SN. Human MSCs were injected immediately before sonication. Here, we show that we can deliver human MSCs into Parkinsonian rats through MRgFUS-induced BBB modulation using an acoustic controller. Stem cells were identified in the sonicated brain regions using surface markers, indicating the feasibility of MSC delivery via MRgFUS. MSCs + FUS treatment significantly improved the behavioural outcomes compared with control, FUS alone, and MSCs alone groups (p < 0.05). In the quantification analysis of the TH stain, a significant reservation of dopamine neurons was seen in the MSCs + FUS group as compared with the MSCs group (ST: p = 0.03; SN: p = 0.0005). Mesenchymal stem cell therapy may be a viable treatment option for neurodegenerative diseases such as Parkinson's. Transcranial MRgFUS serves as an efficacious and safe method for targeted and minimally invasive stem cell homing.
Collapse
Affiliation(s)
- Sheng-Kai Wu
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Chia-Lin Tsai
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Aisha Mir
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Li H, Mei L, Nie X, Wu L, Lv L, Ren X, Yang J, Cao H, Wu J, Zhang Y, Hu Y, Wang W, Turck CW, Shi B, Li J, Xu L, Hu X. The Tree Shrew Model of Parkinson Disease: A Cost-Effective Alternative to Nonhuman Primate Models. J Transl Med 2024; 104:102145. [PMID: 39343009 DOI: 10.1016/j.labinv.2024.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
The surge in demand for experimental monkeys has led to a rapid increase in their costs. Consequently, there is a growing need for a cost-effective model of Parkinson disease (PD) that exhibits all core clinical and pathologic phenotypes. Evolutionarily, tree shrews (Tupaia belangeri) are closer to primates in comparison with rodents and could be an ideal species for modeling PD. To develop a tree shrew PD model, we used the 1-methyl-4-phenylpyridinium (MPP+), a metabolite derived from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, to induce lesions in dopaminergic neurons of the unilateral substantia nigra. The induced tree shrew model consistently exhibited and maintained all classic clinical manifestations of PD for a 5-month period. The symptoms included bradykinesia, rest tremor, and postural instability, and ∼50% individuals showed apomorphine-induced rotations, a classic phenotype of unilateral PD models. All these are closely resembled the ones observed in PD monkeys. Meanwhile, this model was also sensitive to L-dopa treatment in a dose-dependent manner, which suggested that the motor deficits are dopamine dependent. Immunostaining showed a significant loss of dopaminergic neurons (∼95%) in the lesioned substantia nigra, which is a crucial PD pathological marker. Moreover, a control group of nigral saline injection did not show any motor deficits and pathological changes. Cytomorphologic analysis revealed that the size of nigral dopaminergic neurons in tree shrews is much bigger than that of rodents and is close to that of macaques. The morphologic similarity may be an important structural basis for the manifestation of the highly similar phenotypes between monkey and tree shrew PD models. Collectively, in this study, we have successfully developed a PD model in a small animal species that faithfully recapitulated the classic clinical symptoms and key pathological indicators of PD monkeys, providing a novel and low-cost avenue for evaluation of PD treatments and underlying mechanisms.
Collapse
Affiliation(s)
- Hao Li
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Leyi Mei
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Xiupeng Nie
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Liping Wu
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Longbao Lv
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Xiaofeng Ren
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Jitong Yang
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Haonan Cao
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jing Wu
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yuhua Zhang
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yingzhou Hu
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenchao Wang
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Christoph W Turck
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Max Planck Institute of Psychiatry, Munich, Germany.
| | - Bingyin Shi
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Jiali Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Department of Neurology, Hackensack Meridian School of Medicine, Nutley, New Jersey.
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | - Xintian Hu
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
3
|
Sanna F, Bratzu J, Angioni L, Pina Sorighe M, Cocco C, Argiolas A, Melis MR. Oxytocin-conjugated saporin injected into the substantia nigra of male rats alters the activity of the nigrostriatal dopaminergic system: A behavioral and neurochemical study. Brain Res 2021; 1773:147705. [PMID: 34744015 DOI: 10.1016/j.brainres.2021.147705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
Saporin conjugated to oxytocin (OXY-SAP) destroys neurons expressing oxytocinergic receptors. When injected unilaterally in the substantia nigra of male rats, OXY-SAP causes a dose-dependent decrease up to 55 % in nigral Tyrosine Hydroxylase (TH)-immunoreactivity compared to control mock peptide BLANK-SAP- and PBS-treated rats or the contralateral substantia nigra. TH decrease was parallel to a dopamine content decrease in the ipsilateral striatum compared to BLANK-SAP- or PBS-treated rats or the contralateral striatum. OXY-SAP-treated rats showed a small but significant increase of locomotor activity 28 days after intranigral injection in the Open field test compared to BLANK-SAP- or PBS-treated rats, in line with an inhibitory role of nigral oxytocin on locomotor activity. OXY-SAP-, but not BLANK-SAP- or PBS-treated rats, also showed marked dose-dependent rotational turning ipsilateral to the injected substantia nigra when challenged with d-amphetamine, but not with apomorphine. Under isoflurane anesthesia OXY-SAP-treated rats showed levels of extracellular dopamine in the dialysate from the ipsilateral striatum only half those of BLANK-SAP- or PBS-treated rats or the contralateral striatum. When treated with d-amphetamine, OXY-SAP_60/120 rats showed increased extracellular dopamine levels in the dialysate from the ipsilateral striatum two third/one third only of those found in BLANK-SAP- or PBS-treated rats or the contralateral striatum, respectively. These results show that OXY-SAP destroys nigrostriatal dopaminergic neurons expressing oxytocin receptors leading to a reduced striatal dopamine function.
Collapse
Affiliation(s)
- Fabrizio Sanna
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Jessica Bratzu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Laura Angioni
- Department of Biomedical Sciences, Neuro-Endocrine-Fluorescence (NEF) Laboratory, University of Cagliari, Italy.
| | - Maria Pina Sorighe
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Cristina Cocco
- Department of Biomedical Sciences, Neuro-Endocrine-Fluorescence (NEF) Laboratory, University of Cagliari, Italy.
| | - Antonio Argiolas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, Cagliari, Italy; Institute of Neuroscience, National Research Council, Cagliari Section, University of Cagliari, Cagliari, Italy.
| | - Maria Rosaria Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
4
|
Herrera ML, Deza-Ponzio R, Ghersi MS, de la Villarmois EA, Virgolini MB, Pérez MF, Molina VA, Bellini MJ, Hereñú CB. Early Cognitive Impairment Behind Nigrostriatal Circuit Neurotoxicity: Are Astrocytes Involved? ASN Neuro 2021; 12:1759091420925977. [PMID: 32466659 PMCID: PMC7263115 DOI: 10.1177/1759091420925977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cognitive dysfunction is one of the most severe nonmotor symptoms of nigrostriatal impairment. This occurs as a result of profound functional and morphological changes of different neuronal circuits, including modifications in the plasticity and architecture of hippocampal synapses. Such alterations can be implicated in the genesis and progression of dementia associated with neurodegenerative diseases including Parkinson-like symptoms. There are few studies regarding cognitive changes in nigrostriatal animal models. The aim of this study was to characterize the onset of memory deficit after induction of neurotoxicity with 6-hydroxydopamine (6-OHDA) and its correlation with hippocampal dysfunction. For this, we bilaterally microinjected 6-OHDA in dorsolateral Caudate-Putamen unit (CPu) and then, animals were tested weekly for working memory, spatial short-term memory, and motor performance. We evaluated tyrosine hydroxylase (TH) as a dopamine marker, aldehyde dehydrogenase 2 (ALDH2), a mitochondria detoxification enzyme and astrocyte glial fibrillar acid protein (GFAP) an immunoreactivity marker involved in different areas: CPu, substantia nigra, prefrontal cortex, and hippocampus. We observed a specific prefrontal cortex and nigrostriatal pathway TH reduction while ALDH2 showed a decrease-positive area in all the studied regions. Moreover, GFAP showed a specific CPu decrease and hippocampus increase of positively stained area on the third week after toxicity. We also evaluated the threshold to induce long-term potentiation in hippocampal excitability. Our findings showed that reduced hippocampal synaptic transmission was accompanied by deficits in memory processes, without affecting motor performance on the third-week post 6-OHDA administration. Our results suggest that 3 weeks after neurotoxic administration, astrocytes and ALDH2 mitochondrial enzyme modifications participate in altering the properties that negatively affect hippocampal function and consequently cognitive behavior.
Collapse
Affiliation(s)
- Macarena L Herrera
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba.,Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Romina Deza-Ponzio
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - Marisa S Ghersi
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - Emilce A de la Villarmois
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - Miriam B Virgolini
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - Mariela F Pérez
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - Victor A Molina
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| | - María J Bellini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Claudia B Hereñú
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba
| |
Collapse
|
5
|
Bharatiya R, Bratzu J, Lobina C, Corda G, Cocco C, De Deurwaerdere P, Argiolas A, Melis MR, Sanna F. The pesticide fipronil injected into the substantia nigra of male rats decreases striatal dopamine content: A neurochemical, immunohistochemical and behavioral study. Behav Brain Res 2020; 384:112562. [DOI: 10.1016/j.bbr.2020.112562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/29/2020] [Accepted: 02/14/2020] [Indexed: 12/26/2022]
|
6
|
Sanphui P, Kumar Das A, Biswas SC. Forkhead Box O3a requires BAF57, a subunit of chromatin remodeler SWI/SNF complex for induction of p53 up‐regulated modulator of apoptosis (Puma) in a model of Parkinson’s disease. J Neurochem 2020; 154:547-561. [DOI: 10.1111/jnc.14969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Priyankar Sanphui
- Cell Biology and Physiology Division CSIR‐Indian Institute of Chemical Biology Kolkata India
| | - Anoy Kumar Das
- Cell Biology and Physiology Division CSIR‐Indian Institute of Chemical Biology Kolkata India
| | - Subhas C. Biswas
- Cell Biology and Physiology Division CSIR‐Indian Institute of Chemical Biology Kolkata India
| |
Collapse
|
7
|
Paul R, Dutta A, Phukan BC, Mazumder MK, Justin-Thenmozhi A, Manivasagam T, Bhattacharya P, Borah A. Accumulation of Cholesterol and Homocysteine in the Nigrostriatal Pathway of Brain Contributes to the Dopaminergic Neurodegeneration in Mice. Neuroscience 2018; 388:347-356. [DOI: 10.1016/j.neuroscience.2018.07.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/15/2018] [Accepted: 07/23/2018] [Indexed: 11/26/2022]
|
8
|
Paul R, Phukan BC, Justin Thenmozhi A, Manivasagam T, Bhattacharya P, Borah A. Melatonin protects against behavioral deficits, dopamine loss and oxidative stress in homocysteine model of Parkinson's disease. Life Sci 2017; 192:238-245. [PMID: 29138117 DOI: 10.1016/j.lfs.2017.11.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/10/2017] [Indexed: 10/18/2022]
Abstract
AIM Hyperhomocysteinemia and homocysteine (Hcy) mediated dopaminergic neurotoxicity is a matter of concern in the pathophysiology of Parkinson's disease (PD). Our previous study established the involvement of oxidative stress in the substantia nigra (SN) of Hcy rat model of PD; however, the role of antioxidants, such as melatonin, was not tested in this model. MAIN METHODS Melatonin (10, 20 and 30mg/kg, i.p.) was administered to rats injected with Hcy in right SN (1.0μmol in 2μl saline) to investigate its potency in attenuating the behavioral abnormalities, dopamine depletion and oxidative stress prompted by Hcy. KEY FINDINGS Treatment of melatonin protected against nigral dopamine loss and replenished the striatal dopamine loss that resulted in amelioration of rotational behavioral bias in Hcy denervated animals. Melatonin administration significantly improved mitochondrial complex-I activity and protected the SN neurons from the toxic insults of oxidative stress induced by Hcy. Amelioration of oxidative stress by melatonin in Hcy-infused SN was bought by dose-dependently scavenging of hydroxyl radicals, restoration of glutathione level and elevation in the activity of antioxidant enzymes. SIGNIFICANCE The observations bring into light the significant neuroprotective potentials of melatonin in Hcy model of PD which is attributed to the attenuation of oxidative stress in SN.
Collapse
Affiliation(s)
- Rajib Paul
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India; Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Eraligool-788723, Karimganj, Assam, India
| | - Banashree Chetia Phukan
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar-382355, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India.
| |
Collapse
|
9
|
Hypercholesterolemia causes psychomotor abnormalities in mice and alterations in cortico-striatal biogenic amine neurotransmitters: Relevance to Parkinson's disease. Neurochem Int 2017; 108:15-26. [DOI: 10.1016/j.neuint.2017.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 12/20/2022]
|
10
|
Chen X, Liu Z, Cao BB, Qiu YH, Peng YP. TGF-β1 Neuroprotection via Inhibition of Microglial Activation in a Rat Model of Parkinson's Disease. J Neuroimmune Pharmacol 2017; 12:433-446. [PMID: 28429275 DOI: 10.1007/s11481-017-9732-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/21/2017] [Indexed: 11/30/2022]
Abstract
Transforming growth factor (TGF)-β1 is a pleiotropic cytokine with immunosuppressive and anti-inflammatory properties. Recently we have shown that TGF-β1 pretreatment in vitro protects against 1-methyl-4-phenylpyridinium (MPP+)-induced dopaminergic neuronal loss that characterizes in Parkinson's disease (PD). Herein, we aimed to demonstrate that TGF-β1 administration in vivo after MPP+ toxicity has neuroprotection that is achieved by a mediation of microglia. A rat model of PD was prepared by injecting MPP+ unilaterally in the striatum. At 14 days after MPP+ injection, TGF-β1 was administrated in the right lateral cerebral ventricle. Primary ventral mesencephalic (VM) neurons and cerebral cortical microglia were treated by MPP+, respectively, and TGF-β1 was applied to neuronal or microglial cultures at 1 h after MPP+ treatment. As expected, MPP+ resulted in decrease in TGF-β1 production in the substantia nigra and in primary VM neurons and microglia. TGF-β1 intracerebroventricular administration alleviated MPP+-induced PD-like changes in pathology, motor coordination and behavior. Meanwhile, TGF-β1 ameliorated MPP+-induced microglial activation and inflammatory cytokine production in vivo. Interestingly, TGF-β1 treatment was not able to ameliorate MPP+-induced dopaminergic neuronal loss and caspase-3/9 activation in mono-neuron cultures, but TGF-β1 alleviated MPP+-induced microglial activation and inflammatory cytokine production in microglia-enriched cultures. This effect of TGF-β1 inhibiting microglial inflammatory response was blocked by Smad3 inhibitor SIS3. Importantly, neuronal exposure to supernatants of primary microglia that had been treated with TGF-β1 reduced dopaminergic neuronal loss and caspase-3/9 activation induced by MPP+-treated microglial supernatants. These findings establish that TGF-β1 exerts neuroprotective property in PD by inhibiting microglial inflammatory response via Smad3 signaling.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.,Department of Neurology, Affiliated Hospital, Nantong University, 20 Xisi Road, Nantong, Jiangsu Province, 226001, China
| | - Zhan Liu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Bei-Bei Cao
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Yi-Hua Qiu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| | - Yu-Ping Peng
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
11
|
Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress. PLoS One 2017; 12:e0171285. [PMID: 28170429 PMCID: PMC5295696 DOI: 10.1371/journal.pone.0171285] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/19/2017] [Indexed: 01/24/2023] Open
Abstract
Hypercholesterolemia is a known contributor to the pathogenesis of Alzheimer’s disease while its role in the occurrence of Parkinson’s disease (PD) is only conjecture and far from conclusive. Altered antioxidant homeostasis and mitochondrial functions are the key mechanisms in loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain in PD. Hypercholesterolemia is reported to cause oxidative stress and mitochondrial dysfunctions in the cortex and hippocampus regions of the brain in rodents. However, the impact of hypercholesterolemia on the midbrain dopaminergic neurons in animal models of PD remains elusive. We tested the hypothesis that hypercholesterolemia in MPTP model of PD would potentiate dopaminergic neuron loss in SN by disrupting mitochondrial functions and antioxidant homeostasis. It is evident from the present study that hypercholesterolemia in naïve animals caused dopamine neuronal loss in SN with subsequent reduction in striatal dopamine levels producing motor impairment. Moreover, in the MPTP model of PD, hypercholesterolemia exacerbated MPTP-induced reduction of striatal dopamine as well as dopaminergic neurons in SN with motor behavioral depreciation. Activity of mitochondrial complexes, mainly complex-I and III, was impaired severely in the nigrostriatal pathway of hypercholesterolemic animals treated with MPTP. Hypercholesterolemia caused oxidative stress in the nigrostriatal pathway with increased generation of hydroxyl radicals and enhanced activity of antioxidant enzymes, which were further aggravated in the hypercholesterolemic mice with Parkinsonism. In conclusion, our findings provide evidence of increased vulnerability of the midbrain dopaminergic neurons in PD with hypercholesterolemia.
Collapse
|
12
|
Konieczny J, Czarnecka A, Lenda T, Kamińska K, Antkiewicz-Michaluk L. The significance of rotational behavior and sensitivity of striatal dopamine receptors in hemiparkinsonian rats: A comparative study of lactacystin and 6-OHDA. Neuroscience 2016; 340:308-318. [PMID: 27826109 DOI: 10.1016/j.neuroscience.2016.10.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/26/2016] [Accepted: 10/29/2016] [Indexed: 11/18/2022]
Abstract
A growing body of evidence indicates that impairment of the ubiquitin-proteasome (UPS) system in the substantia nigra (SN) plays an important role in the pathogenesis of Parkinson's disease (PD). The aim of our study was to compare two unilateral rat models, one produced by intranigral administration of the UPS inhibitor lactacystin or the other induced by 6-OHDA, in terms of their effect on the amphetamine- and apomorphine-induced rotational behavior, striatal dopamine (DA) D1 and D2 receptor sensitivity and tissue levels of DA and its metabolites. We found that these models did not differ in the intensity of ipsilateral rotations induced by amphetamine. In contrast, apomorphine produced contralateral rotations only in 6-OHDA-lesioned rats, and, depending on the dose, it induced either no or moderate ipsilateral rotations in the lactacystin-lesioned group. In addition, lactacystin induced a strong reduction in the tissue DA level and its metabolites in the lesioned striatum and SN when measured three weeks after the administration which was aggravated six weeks post-lesion, reaching the level comparable to the 6-OHDA group. Binding of [3H]raclopride to D2 receptors was increased in the lesioned striatum in both investigated (PD) models six weeks after lesion. In turn, binding of [3H]SCH23390 to the striatal D1 receptors was not changed in the lactacystin group but was increased bilaterally in the 6-OHDA group. The present results add a new value to the study of DA receptor sensitivity and are discussed in the context of the validity of the lactacystin model as a suitable model of Parkinson's disease.
Collapse
Affiliation(s)
- Jolanta Konieczny
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuropsychopharmacology, 31-343 Kraków, Smętna Street 12, Poland.
| | - Anna Czarnecka
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuropsychopharmacology, 31-343 Kraków, Smętna Street 12, Poland
| | - Tomasz Lenda
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuropsychopharmacology, 31-343 Kraków, Smętna Street 12, Poland
| | - Kinga Kamińska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuropsychopharmacology, 31-343 Kraków, Smętna Street 12, Poland
| | - Lucyna Antkiewicz-Michaluk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurochemistry, 31-343 Kraków, Smętna Street 12, Poland
| |
Collapse
|
13
|
Ray A, Kambali M, Ravindranath V. Thiol Oxidation by Diamide Leads to Dopaminergic Degeneration and Parkinsonism Phenotype in Mice: A Model for Parkinson's Disease. Antioxid Redox Signal 2016; 25:252-67. [PMID: 27121974 DOI: 10.1089/ars.2015.6602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS This study investigates the role of thiol homeostasis disruption in Parkinson's disease (PD) pathogenesis using a novel animal model. A single unilateral administration of the thiol oxidant, diamide (1.45 μmol) into substantia nigra (SN) of mice leads to locomotor deficits and degeneration of dopaminergic (DA) neurons in SN pars compacta (SNpc). RESULTS Diamide-injected mice showed hemiparkinsonian behavior, measured as spontaneous contralateral body rotations, poor grip strength, and impaired locomotion on a rotarod. We observed a significant loss of DA neurons in ipsilateral but not contralateral SNpc and their striatal fibers. This was accompanied by increased Fluoro-Jade C-positive cells and a loss of NeuN-positive neurons, indicative of neurodegeneration. Importantly, diamide injection led to α-synuclein aggregation in ipsilateral SNpc, a hallmark of PD pathology not often seen in animal models of PD. On investigating putative mechanism(s) involved, we observed a loss of glutathione, which is essential for maintaining protein thiol homeostasis (PTH). Concomitantly, the redox-sensitive ASK1-p38 mitogen-activated protein kinase (MAPK) death signaling pathway was activated in the ipsilateral but not contralateral ventral midbrain through dissociation of ASK1-Trx1 complex. In Neuro-2a cells, diamide activated ASK1-p38 cascade through Trx1 oxidation, leading to cell death, which was abolished by ASK1 knockdown. INNOVATION Since diamide selectively disrupts PTH, DA neurons appear to be vulnerable to such perturbations and even a single insult with a thiol oxidant can result in long-lasting degeneration. CONCLUSION Identification of the role of PTH dysregulation in neurodegeneration, especially in early PD, not only facilitates an understanding of novel regulatory features of molecular signaling cascades but also may aid in developing disease-modifying strategies for PD. Antioxid. Redox Signal. 25, 252-267.
Collapse
Affiliation(s)
- Ajit Ray
- 1 Centre for Neuroscience, Indian Institute of Science , Bangalore, India .,2 National Brain Research Centre , Manesar, India
| | - Maltesh Kambali
- 1 Centre for Neuroscience, Indian Institute of Science , Bangalore, India
| | | |
Collapse
|
14
|
Dos-Santos-Pereira M, da-Silva CA, Guimarães FS, Del-Bel E. Co-administration of cannabidiol and capsazepine reduces L-DOPA-induced dyskinesia in mice: Possible mechanism of action. Neurobiol Dis 2016; 94:179-95. [PMID: 27373843 DOI: 10.1016/j.nbd.2016.06.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/22/2022] Open
Affiliation(s)
- Maurício Dos-Santos-Pereira
- University of São Paulo (USP), School of Odontology of Ribeirão Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School of Ribeirão Preto, Department of Physiology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Célia Aparecida da-Silva
- University of São Paulo (USP), School of Odontology of Ribeirão Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil
| | - Francisco Silveira Guimarães
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School of Ribeirão Preto, Department of Pharmacology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Elaine Del-Bel
- University of São Paulo (USP), School of Odontology of Ribeirão Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School of Ribeirão Preto, Department of Physiology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; USP, Medical School of Ribeirão Preto, Department of Pharmacology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
15
|
Konieczny J, Lenda T, Czarnecka A. Early increase in dopamine release in the ipsilateral striatum after unilateral intranigral administration of lactacystin produces spontaneous contralateral rotations in rats. Neuroscience 2016; 324:92-106. [PMID: 26964686 DOI: 10.1016/j.neuroscience.2016.02.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 11/26/2022]
Abstract
Since the discovery of the role of the ubiquitin-proteasome system (UPS) in the pathogenesis of Parkinson's disease, UPS inhibitors, such as lactacystin have been used to investigate the relationship between UPS impairment and degeneration of dopamine (DA) neurons. However, mostly long-term neurotoxic effects of lactacystin have been studied in animal models. Therefore, the aim of our study was to investigate behavioral and biochemical changes related to the DA system during the first week following unilateral intranigral injection of lactacystin to rats. We found that lactacystin produced early spontaneous contralateral rotations which were inhibited by combined administration of DA D1 and D2 receptor antagonists. Simultaneously, an increase in the extracellular level of DA and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) was found in the ipsilateral striatum. In contrast, one week after lesion, when turning behavior was no longer visible, a decrease in the extracellular level of DA, DOPAC and HVA was demonstrated. It was accompanied by a substantial reduction in the tissue levels of DA and its metabolites in the lesioned substantia nigra and striatum. We concluded that unilateral intranigral administration of lactacystin produces an early increase in DA neurotransmission which precedes a decrease in the striatal and nigral tissue DA content. It is manifested by the appearance of spontaneous contralateral rotations and an elevation of the extracellular DA level in the ipsilateral striatum. Since similar behavior was previously observed after intranigral administration of rotenone and MPP(+) but not 6-hydroxydopamine (6-OHDA), it may indicate a common mechanism of action shared by these neurotoxins.
Collapse
Affiliation(s)
- J Konieczny
- Department of Neuropsychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Krakow, Poland.
| | - T Lenda
- Department of Neuropsychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Krakow, Poland
| | - A Czarnecka
- Department of Neuropsychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Krakow, Poland
| |
Collapse
|
16
|
Haobam R, Tripathy D, Kaidery NA, Mohanakumar KP. Embryonic stem cells derived neuron transplantation recovery in models of parkinsonism in relation to severity of the disorder in rats. Rejuvenation Res 2016; 18:173-84. [PMID: 25546608 DOI: 10.1089/rej.2014.1626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
6-Hydroxydopamine (6-OHDA)- and 1-methyl-4-phenylpyridinium (MPP(+))-induced hemi-parkinsonism was investigated in relation to the severity of the disorder in terms of behavioral disability and nigral neuronal loss and recovery regarding the number of stem cell-derived neurons transplanted in the striatum. Intra-median forebrain bundle infusion of the parkinsonian neurotoxins and intra-striatal transplantation of differentiated embryonic stem cells (ESCs) were carried out by rat brain stereotaxic surgery. The severity of the disease was determined using the number of amphetamine- or apomorphine-induced rotations, striatal dopamine levels as estimated by high-performance liquid chromatography (HPLC)-electrochemistry, and the number of surviving tyrosine hydroxylase immunoreactive dopaminergic neurons in the substantia nigra pars compacta. Rats that received unilateral infusion of 6-OHDA or MPP(+) responded with dose-dependent, unilateral bias in turning behavior when amphetamine or apomorphine was administered. Rotational asymmetry in both models correlated significantly well with the loss in the number of nigral dopaminergic neurons and striatal dopamine depletion. Transplantation of 2×10(5) differentiated murine ESCs revealed remarkably similar kinds of recovery in both animal models. The survival of the grafted dopaminergic cells in the striatum was better in animals with low-severity parkinsonism, but poor in the animals with severe parkinsonism. Amphetamine-induced rotational recovery correlated positively with an increasing number of cells transplanted in animals with uniform nigral neuronal lesion. These results suggest that disease severity is an important factor for determining the number of cells to be transplanted in parkinsonian rats for desirable recovery, which may be true in clinical conditions too.
Collapse
Affiliation(s)
- Reena Haobam
- 1 Division of Cell Biology & Physiology, Laboratory of Clinical and Experimental Neuroscience, CSIR-Indian Institute of Chemical Biology , Jadavpur, Kolkata, India
| | | | | | | |
Collapse
|
17
|
Sengupta T, Vinayagam J, Singh R, Jaisankar P, Mohanakumar KP. Plant-Derived Natural Products for Parkinson's Disease Therapy. ADVANCES IN NEUROBIOLOGY 2016; 12:415-96. [PMID: 27651267 DOI: 10.1007/978-3-319-28383-8_23] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plant-derived natural products have made their own niche in the treatment of neurological diseases since time immemorial. Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, has no cure and the treatment available currently is symptomatic. This chapter thoughtfully and objectively assesses the scientific basis that supports the increasing use of these plant-derived natural products for the treatment of this chronic and progressive disorder. Proper considerations are made on the chemical nature, sources, preclinical tests and their validity, and mechanisms of behavioural or biochemical recovery observed following treatment with various plants derived natural products relevant to PD therapy. The scientific basis underlying the neuroprotective effect of 6 Ayurvedic herbs/formulations, 12 Chinese medicinal herbs/formulations, 33 other plants, and 5 plant-derived molecules have been judiciously examined emphasizing behavioral, cellular, or biochemical aspects of neuroprotection observed in the cellular or animal models of the disease. The molecular mechanisms triggered by these natural products to promote cell survivability and to reduce the risk of cellular degeneration have also been brought to light in this study. The study helped to reveal certain limitations in the scenario: lack of preclinical studies in all cases barring two; heavy dependence on in vitro test systems; singular animal or cellular model to establish any therapeutic potential of drugs. This strongly warrants further studies so as to reproduce and confirm these reported effects. However, the current literature offers scientific credence to traditionally used plant-derived natural products for the treatment of PD.
Collapse
Affiliation(s)
- T Sengupta
- Division of Cell Biology & Physiology, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | - J Vinayagam
- Division of Chemistry, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - R Singh
- Division of Cell Biology & Physiology, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | - P Jaisankar
- Division of Chemistry, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - K P Mohanakumar
- Division of Cell Biology & Physiology, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700 032, India. .,Inter University Centre for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam, 686009, Kerala, India.
| |
Collapse
|
18
|
Carriere CH, Kang NH, Niles LP. Chronic low-dose melatonin treatment maintains nigrostriatal integrity in an intrastriatal rotenone model of Parkinson's disease. Brain Res 2015; 1633:115-125. [PMID: 26740407 DOI: 10.1016/j.brainres.2015.12.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/11/2015] [Accepted: 12/18/2015] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is a major neurodegenerative disorder which primarily involves the loss of dopaminergic neurons in the substantia nigra and related projections in the striatum. The pesticide/neurotoxin, rotenone, has been shown to cause systemic inhibition of mitochondrial complex I activity in nigral dopaminergic neurons, with consequent degeneration of the nigrostriatal pathway, as observed in Parkinson's disease. A novel intrastriatal rotenone model of Parkinson's disease was used to examine the neuroprotective effects of chronic low-dose treatment with the antioxidant indoleamine, melatonin, which can upregulate neurotrophic factors and other protective proteins in the brain. Sham or lesioned rats were treated with either vehicle (0.04% ethanol in drinking water) or melatonin at a dose of 4 µg/mL in drinking water. The right striatum was lesioned by stereotactic injection of rotenone at three sites (4 μg/site) along its rostrocaudal axis. Apomorphine administration to lesioned animals resulted in a significant (p<0.001) increase in ipsilateral rotations, which was suppressed by melatonin. Nine weeks post-surgery, animals were sacrificed by transcardial perfusion. Subsequent immunohistochemical examination revealed a decrease in tyrosine hydroxylase immunoreactivity within the striatum and substantia nigra of rotenone-lesioned animals. Melatonin treatment attenuated the decrease in tyrosine hydroxylase in the striatum and abolished it in the substantia nigra. Stereological cell counts indicated a significant (p<0.05) decrease in dopamine neurons in the substantia nigra of rotenone-lesioned animals, which was confirmed by Nissl staining. Importantly, chronic melatonin treatment blocked the loss of dopamine neurons in rotenone-lesioned animals. These findings strongly support the therapeutic potential of long-term and low-dose melatonin treatment in Parkinson's disease.
Collapse
Affiliation(s)
- Candace H Carriere
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, HSC-4N77, 1200 Main Street West, Hamilton, ON, Canada L8N 3Z5.
| | - Na Hyea Kang
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, HSC-4N77, 1200 Main Street West, Hamilton, ON, Canada L8N 3Z5.
| | - Lennard P Niles
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, HSC-4N77, 1200 Main Street West, Hamilton, ON, Canada L8N 3Z5.
| |
Collapse
|
19
|
Dutta D, Mohanakumar KP. Tea and Parkinson's disease: Constituents of tea synergize with antiparkinsonian drugs to provide better therapeutic benefits. Neurochem Int 2015; 89:181-90. [DOI: 10.1016/j.neuint.2015.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
|
20
|
Tripathy D, Chakraborty J, Mohanakumar KP. Antagonistic pleiotropic effects of nitric oxide in the pathophysiology of Parkinson's disease. Free Radic Res 2015; 49:1129-39. [DOI: 10.3109/10715762.2015.1045505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Konieczny J, Czarnecka A, Kamińska K, Lenda T, Nowak P. Decreased behavioral response to intranigrally administered GABAA agonist muscimol in the lactacystin model of Parkinson's disease may result from partial lesion of nigral non-dopamine neurons: comparison to the classical neurotoxin 6-OHDA. Behav Brain Res 2015; 283:203-14. [PMID: 25655509 DOI: 10.1016/j.bbr.2015.01.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/22/2015] [Accepted: 01/24/2015] [Indexed: 12/28/2022]
Abstract
Lactacystin is a selective UPS inhibitor recently used to destroy dopamine (DA) neurons in animal models of Parkinson's disease (PD). However, both in vitro and in vivo studies show discrepancies in terms of the sensitivity of non-DA neurons to its toxicity. Therefore, our study was aimed to examine the toxic effect of intranigral administration of lactacystin on DA and non-DA neurons in the rat substantia nigra (SN), compared to the classic neurotoxin 6-OHDA. Tissue DA levels in the striatum and SN and GABA levels in the SN were also examined. Moreover, behavioral response of nigral GABAA receptors to locally administered muscimol was evaluated in these two PD models. We found that both lactacystin and 6-OHDA induced a strong decrease in DA level in the lesioned striatum and SN but only lactacystin slightly reduced GABA levels in the SN. A stereological analysis showed that both neurotoxins highly decreased the number of DA neurons in the SN, while only lactacystin moderately reduced the number of non-DA ones. Finally, in the lactacystin group, the number of contralateral rotations after intranigrally administrated muscimol was decreased in contrast to the increased response in the 6-OHDA model. Our study proves that, although lactacystin is not a fully selective to DA neurons, these neurons are much more vulnerable to its toxicity. Partial lesion of nigral non-DA neurons in this model may explain the decreased behavioral response to the GABAA agonist muscimol.
Collapse
Affiliation(s)
- Jolanta Konieczny
- Department of Neuropsychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland.
| | - Anna Czarnecka
- Department of Neuropsychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Kinga Kamińska
- Department of Neuropsychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Tomasz Lenda
- Department of Neuropsychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Przemysław Nowak
- Department of Toxicology and Occupational Health Protection, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice Ligota, Poland
| |
Collapse
|
22
|
Tripathy D, Verma P, Nthenge-Ngumbau DN, Banerjee M, Mohanakumar KP. Regenerative therapy in experimental parkinsonism: mixed population of differentiated mouse embryonic stem cells, rather than magnetically sorted and enriched dopaminergic cells provide neuroprotection. CNS Neurosci Ther 2014; 20:717-27. [PMID: 24954161 DOI: 10.1111/cns.12295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/25/2014] [Accepted: 05/12/2014] [Indexed: 01/17/2023] Open
Abstract
AIM The objective of the study was to develop regenerative therapy by transplanting varied populations of dopaminergic neurons, differentiated from mouse embryonic stem cells (mES) in the striatum for correcting experimental parkinsonism in rats. METHODS mES differentiated by default for 7 days in serum-free media (7D), or by enhanced differentiation of 7D in retinoic acid (7R), or dopaminergic neurons enriched by manual magnetic sorting from 7D (SSEA-) were characterized and transplanted in the ipsilateral striatum of 6-hydroxydopamine-induced hemiparkinsonian rats. Neurochemical, neuronal, glial and neurobehavioral recoveries were examined. RESULTS 7R and SSEA- contained significantly reduced NANOG and high MAP2 mRNA and protein levels as revealed, respectively, by reverse transcriptase-PCR and immunocytochemistry, compared with 7D. Striatal engraftment of 7D resulted in a significantly better behavioral and neurochemical recovery, as compared to the animals that received either 7R or SSEA-. The 7R transplanted animals showed improvement neither in behavior nor in striatal dopamine level. The grafted striatum revealed increased GFAP staining intensity in 7D and SSEA-, but not in 7R cells transplanted group, suggesting a vital role played by glial cells in the recovery. Substantia nigra ipsilateral to the side of the striatum, which received transplants showed more tyrosine hydroxylase immunostained neurons, as compared to 6-hydroxydopamine-infused animals. CONCLUSION These results demonstrate that default differentiated mixed population of cells are better than sorted, enriched dopaminergic cells, or cells containing more mature neurons for transplantation recovery in hemiparkinsonian rats.
Collapse
Affiliation(s)
- Debasmita Tripathy
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Laboratory of Clinical & Experimental Neuroscience, Jadavpur, India
| | | | | | | | | |
Collapse
|
23
|
Engraftment of mouse embryonic stem cells differentiated by default leads to neuroprotection, behaviour revival and astrogliosis in parkinsonian rats. PLoS One 2013; 8:e72501. [PMID: 24069147 PMCID: PMC3772067 DOI: 10.1371/journal.pone.0072501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022] Open
Abstract
We report here protection against rotenone-induced behavioural dysfunction, striatal dopamine depletion and nigral neuronal loss, following intra-striatal transplantation of neurons differentiated from murine embryonic stem cells (mES). mES maintained in serum free medium exhibited increase in neuronal, and decrease in stem cell markers by 7th and 10th days as revealed by RT-PCR and immunoblot analyses. Tyrosine hydroxylase, NURR1, PITX3, LMX1b and c-RET mRNA showed a significant higher expression in differentiated cells than in mES. Dopamine level was increased by 3-fold on 10th day as compared to 7 days differentiated cells. Severity of rotenone-induced striatal dopamine loss was attenuated, and amphetamine-induced unilateral rotations were significantly reduced in animals transplanted with 7 days differentiated cells, but not in animals that received undifferentiated ES transplant. However, the ratio of contralateral to ipsilateral swings in elevated body swing test was significantly reduced in both the transplanted groups, as compared to control. Striatal grafts exhibited the presence of tyrosine hydroxylase positive cells, and the percentage of dopaminergic neurons in the substantia nigra was also found to be higher in the ipsilateral side of 7 days and mES grafted animals. Increased expression of CD11b and IBA-1, suggested a significant contribution of these microglia-derived factors in controlling the limited survival of the grafted cells. Astrocytosis in the grafted striatum, and significant increase in the levels of glial cell line derived neurotrophic factor may have contributed to the recovery observed in the hemiparkinsonian rats following transplantation.
Collapse
|
24
|
Sanders LH, Timothy Greenamyre J. Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radic Biol Med 2013; 62:111-120. [PMID: 23328732 PMCID: PMC3677955 DOI: 10.1016/j.freeradbiomed.2013.01.003] [Citation(s) in RCA: 425] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 11/25/2022]
Abstract
Parkinson disease (PD), the most common neurodegenerative movement disorder, is associated with selective degeneration of nigrostriatal dopamine neurons. Although the underlying mechanisms contributing to neurodegeneration in PD seem to be multifactorial, mitochondrial impairment and oxidative stress are widely considered to be central to many forms of the disease. Whether oxidative stress is a cause or a consequence of dopaminergic death, there is substantial evidence for oxidative stress both in human PD patients and in animal models of PD, especially using rotenone, a complex I inhibitor. There are many indices of oxidative stress, but this review covers the recent evidence for oxidative damage to nucleic acids, lipids, and proteins in both the brain and the peripheral tissues in human PD and in the rotenone model. Limitations of the existing literature and future perspectives are discussed. Understanding how each particular macromolecule is damaged by oxidative stress and the interplay of secondary damage to other biomolecules may help us design better targets for the treatment of PD.
Collapse
Affiliation(s)
- Laurie H Sanders
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
25
|
Borah A, Paul R, Mazumder MK, Bhattacharjee N. Contribution of β-phenethylamine, a component of chocolate and wine, to dopaminergic neurodegeneration: implications for the pathogenesis of Parkinson's disease. Neurosci Bull 2013; 29:655-60. [PMID: 23575894 DOI: 10.1007/s12264-013-1330-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022] Open
Abstract
While the cause of dopaminergic neuronal cell death in Parkinson's disease (PD) is not yet understood, many endogenous molecules have been implicated in its pathogenesis. β-phenethylamine (β-PEA), a component of various food items including chocolate and wine, is an endogenous molecule produced from phenylalanine in the brain. It has been reported recently that long-term administration of β-PEA in rodents causes neurochemical and behavioral alterations similar to that produced by parkinsonian neurotoxins. The toxicity of β-PEA has been linked to the production of hydroxyl radical ((·)OH) and the generation of oxidative stress in dopaminergic areas of the brain, and this may be mediated by inhibition of mitochondrial complex-I. Another significant observation is that administration of β-PEA to rodents reduces striatal dopamine content and induces movement disorders similar to those of parkinsonian rodents. However, no reports are available on the extent of dopaminergic neuronal cell death after administration of β-PEA. Based on the literature, we set out to establish β-PEA as an endogenous molecule that potentially contributes to the progressive development of PD. The sequence of molecular events that could be responsible for dopaminergic neuronal cell death in PD by consumption of β-PEA-containing foods is proposed here. Thus, long-term over-consumption of food items containing β-PEA could be a neurological risk factor having significant pathological consequences.
Collapse
Affiliation(s)
- Anupom Borah
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India,
| | | | | | | |
Collapse
|
26
|
Madathil SK, Karuppagounder SS, Mohanakumar KP. Sodium salicylate protects against rotenone-induced Parkinsonism in rats. Synapse 2013; 67:502-14. [DOI: 10.1002/syn.21658] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 02/22/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Sindhu K. Madathil
- Division of Cell Biology and Physiology; Laboratory of Clinical and Experimental Neuroscience, CSIR-Indian Institute of Chemical Biology; Kolkata; 700032; West Bengal; India
| | - Saravanan S. Karuppagounder
- Division of Cell Biology and Physiology; Laboratory of Clinical and Experimental Neuroscience, CSIR-Indian Institute of Chemical Biology; Kolkata; 700032; West Bengal; India
| | - Kochupurackal P. Mohanakumar
- Division of Cell Biology and Physiology; Laboratory of Clinical and Experimental Neuroscience, CSIR-Indian Institute of Chemical Biology; Kolkata; 700032; West Bengal; India
| |
Collapse
|
27
|
Induction of ferroxidase enzymatic activity by copper reduces MPP+-evoked neurotoxicity in rats. Neurosci Res 2013; 75:250-5. [DOI: 10.1016/j.neures.2012.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 12/21/2022]
|
28
|
Madathil KS, Karuppagounder SS, Haobam R, Varghese M, Rajamma U, Mohanakumar KP. Nitric oxide synthase inhibitors protect against rotenone-induced, oxidative stress mediated parkinsonism in rats. Neurochem Int 2013; 62:674-83. [PMID: 23353925 DOI: 10.1016/j.neuint.2013.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 12/24/2012] [Accepted: 01/08/2013] [Indexed: 12/14/2022]
Abstract
Rotenone is known to cause progressive dopaminergic neuronal loss in rodents, but it remains unclear how this mitochondrial complex-I inhibitor mediates neurodegeneration specific to substantia nigra pars compacta (SNpc). One of the proposed mechanisms is increased free radical generation owing to mitochondrial electron transport chain dysfunction following complex-I inhibition. The present study examined the role of nitric oxide (NO) and hydroxyl radicals (OH) in mediating rotenone-induced dopaminergic neurotoxicity. Indications of NO involvement are evidenced by inducible nitric oxide synthase (NOS) over-expression, and increased NADPH-diaphorase staining in SNpc neurons 96h following rotenone administration. Treatment of these animals with specific neuronal NOS inhibitor, 7-nitroindazole (7-NI) and non-specific NOS inhibitor, N-ω-nitro-l-argenine methyl ester (l-NAME) caused reversal of rotenone-induced striatal dopamine depletion, and attenuation of the neurotoxin-induced decrease in the number of tyrosine hydroxylase immunoreactive neurons in SNpc, as well as in apomorphine and amphetamine-induced unilateral rotations. Interestingly, the study also demonstrated the contribution of OH in mediating rotenone nigral toxicity since there appeared a significant generation of the reactive oxygen species in vivo 24h following rotenone administration, a copious loss of reduced and oxidized glutathione, and increased superoxide dismutase and catalase activities in the cytosolic fractions of the ipsilateral SNpc area on the 5th day. An OH scavenging capacity of 7-NI and l-NAME in a Fenton-like reaction, as well as complete reversal of the rotenone-induced increases in the antioxidant enzyme activities, and the loss in reduced and oxidized glutathione contents in the SNpc supported OH involvement in rotenone-induced dopaminergic neurotoxicity. While these results strongly suggest the contribution of both OH and NO, resulting in acute oxidative stress culminating in dopaminergic neurodegeneration caused by rotenone, the course of events indicated generation of OH as the primary event in the neurotoxic processes.
Collapse
Affiliation(s)
- K S Madathil
- Division of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | | | | | | | | | | |
Collapse
|
29
|
Gao H, Yang W, Qi Z, Lu L, Duan C, Zhao C, Yang H. DJ-1 protects dopaminergic neurons against rotenone-induced apoptosis by enhancing ERK-dependent mitophagy. J Mol Biol 2012; 423:232-48. [PMID: 22898350 DOI: 10.1016/j.jmb.2012.06.034] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 04/28/2012] [Accepted: 06/24/2012] [Indexed: 12/13/2022]
Abstract
Loss-of-function mutations in the gene encoding the multifunctional protein, DJ-1, have been implicated in the pathogenesis of early-onset familial Parkinson's disease (PD), suggesting that DJ-1 may act as a neuroprotectant for dopaminergic (DA) neurons. Enhanced autophagy may benefit PD by clearing damaged organelles and protein aggregates; thus, we determined if DJ-1 protects DA neurons against mitochondrial dysfunction and oxidative stress through an autophagic pathway. Cultured DA cells (MN9D) overexpressing DJ-1 were treated with the mitochondrial complex I inhibitor, rotenone. In addition, rotenone was injected into the left substantia nigra of rats 4weeks after injection with a DJ-1 expression vector. Overexpression of DJ-1 protected MN9D cells against apoptosis, significantly enhanced the survival of nigral DA neurons after rotenone treatment in vivo, and rescued rat behavioral abnormalities. Overexpression of DJ-1 enhanced rotenone-evoked expression of the autophagic markers, beclin-1 and LC3II, while transmission electron microscopy and confocal imaging revealed that the ultrastructural signs of autophagy were increased by DJ-1. The neuroprotective effects of DJ-1 were blocked by phosphoinositol 3-kinase and the autophagy inhibitor, 3-methyladenine, and by the ERK pathway inhibitor, U0126. Confocal imaging revealed that the size of p62-positive puncta decreased significantly in DJ-1 overexpression of MN9D cells 12h after rotenone treatment, suggesting that DJ-1 reveals the ability to clear aggregated p62 associated with PD. Factors that control autophagy, including DJ-1, may inhibit rotenone-induced apoptosis and present novel targets for therapeutic intervention in PD.
Collapse
Affiliation(s)
- H Gao
- Beijing Institute for Neuroscience, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing Key Laboratory of Brain Major Disorders-State Key Lab Incubation Base, Beijing Neuroscience Disciplines, Beijing 100069, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Pienaar IS, Lu B, Schallert T. Closing the gap between clinic and cage: sensori-motor and cognitive behavioural testing regimens in neurotoxin-induced animal models of Parkinson's disease. Neurosci Biobehav Rev 2012; 36:2305-24. [PMID: 22910679 DOI: 10.1016/j.neubiorev.2012.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 06/28/2012] [Accepted: 07/16/2012] [Indexed: 12/21/2022]
Abstract
Animal models that make use of chemical toxins to adversely affect the nigrostriatal dopaminergic pathway of rodents and primates have contributed significantly towards the development of symptomatic therapies for Parkinson's disease (PD) patients. Although their use in developing neuro-therapeutic and -regenerative compounds remains to be ascertained, toxin-based mammalian and a range of non-mammalian models of PD are important tools in the identification and validation of candidate biomarkers for earlier diagnosis, as well as in the development of novel treatments that are currently working their way into the clinic. Toxin models of PD have and continue to be important models to use for understanding the consequences of nigrostriatal dopamine cell loss. Functional assessment of these models is also a critical component for eventual translational success. Sensitive behavioural testing regimens for assessing the extent of dysfunction exhibited in the toxin models, the degree of protection or improvement afforded by potential treatment modalities, and the correlation of these findings with what is observed clinically in PD patients, ultimately determines whether a potential treatment moves to clinical trials. Here, we review existing published work that describes the use of such behavioural outcome measures associated with toxin models of parkinsonism. In particular, we focus on tests assessing sensorimotor and cognitive function, both of which are significantly and progressively impaired in PD.
Collapse
Affiliation(s)
- Ilse S Pienaar
- Institute for Ageing and Health, Department of Neurology, The University of Newcastle, Newcastle-Upon-Tyne, United Kingdom.
| | | | | |
Collapse
|
31
|
Abstract
Animal models of Parkinson's disease are essential to explore pathophysiological hypotheses and to test new treatment options, including neurotrophic factors. Catecholaminergic neurotoxins used to generate such models are 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. These neurotoxins predominantly kill dopaminergic neurons through oxidative damage and mitochondrial failure, although 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine fails to induce a significant dopaminergic neurodegeneration in rats. The present chapter describes a protocol for the 6-hydroxydopamine rat model based on stereotaxic injection performed only unilaterally, which mimics an early-to-mid stage of the disease.
Collapse
Affiliation(s)
- Giulia Mercanti
- Department of Pharmacology and Anesthesiology, University of Padova, Padova, Italy.
| | | | | |
Collapse
|
32
|
Mulcahy P, O'Doherty A, Paucard A, O'Brien T, Kirik D, Dowd E. Development and characterisation of a novel rat model of Parkinson's disease induced by sequential intranigral administration of AAV-α-synuclein and the pesticide, rotenone. Neuroscience 2011; 203:170-9. [PMID: 22198020 DOI: 10.1016/j.neuroscience.2011.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/05/2011] [Accepted: 12/05/2011] [Indexed: 12/21/2022]
Abstract
Modeling Parkinson's disease remains a major challenge for preclinical researchers, as existing models fail to reliably recapitulate all of the classic features of the disease, namely, the progressive emergence of a bradykinetic motor syndrome with underlying nigrostriatal α-synuclein protein accumulation and nigrostriatal neurodegeneration. One limitation of the existing models is that they are normally induced by a single neuropathological insult, whereas the human disease is thought to be multifactorial with genetic and environmental factors contributing to the disease pathogenesis. Thus, in order to develop a more relevant model, we sought to determine if administration of the Parkinson's disease-associated pesticide, rotenone, into the substantia nigra of rats overexpressing the Parkinson's disease-associated protein, α-synuclein, could reliably model the triad of classic features of the human disease. To do so, rats underwent stereotaxic surgery for unilateral delivery of the adeno-associated virus (AAV)-α-synuclein into the substantia nigra. This was followed 13 weeks later by delivery of rotenone into the same site. The effect of the genetic and environmental insults alone or in combination on lateralised motor performance (Corridor, Stepping, and Whisker Tests), nigrostriatal integrity (tyrosine hydroxylase immunohistochemistry), and α-synucleinopathy (α-synuclein immunohistochemistry) was assessed. We found that rats treated with either AAV-α-synuclein or rotenone developed significant motor dysfunction with underlying nigrostriatal neurodegeneration. However, when the genetic and environmental insults were sequentially administered, the detrimental impact of the combined insults on motor performance and nigrostriatal integrity was significantly greater than the impact of either insult alone. This indicates that sequential exposure to relevant genetic and environmental insults is a valid approach to modeling human Parkinson's disease in the rat.
Collapse
Affiliation(s)
- P Mulcahy
- Department of Pharmacology and Therapeutics, National University of Ireland, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
33
|
Mulcahy P, Walsh S, Paucard A, Rea K, Dowd E. Characterisation of a novel model of Parkinson's disease by intra-striatal infusion of the pesticide rotenone. Neuroscience 2011; 181:234-42. [DOI: 10.1016/j.neuroscience.2011.01.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 12/21/2022]
|
34
|
Norazit A, Meedeniya AC, Nguyen MN, Mackay-Sim A. Progressive loss of dopaminergic neurons induced by unilateral rotenone infusion into the medial forebrain bundle. Brain Res 2010; 1360:119-29. [DOI: 10.1016/j.brainres.2010.08.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 08/20/2010] [Accepted: 08/22/2010] [Indexed: 12/21/2022]
|
35
|
Borah A, Mohanakumar KP. l-DOPA-induced 6-hydroxydopamine production in the striata of rodents is sensitive to the degree of denervation. Neurochem Int 2010; 56:357-62. [DOI: 10.1016/j.neuint.2009.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 11/17/2022]
|
36
|
Hung SY, Liou HC, Fu WM. The mechanism of heme oxygenase-1 action involved in the enhancement of neurotrophic factor expression. Neuropharmacology 2009; 58:321-9. [PMID: 19925812 DOI: 10.1016/j.neuropharm.2009.11.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 11/07/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
Heme oxygenase-1 (HO-1) is up-regulated in response to oxidative stress and catalyzes the degradation of pro-oxidant heme to carbon monoxide (CO), iron and bilirubin. Bilirubin is a potent antioxidant and neuroprotectant. Neurotrophic factors of BDNF and GDNF also play important roles in survival and morphological differentiation of dopaminergic neurons. We have previously found that HO-1 induction by adenovirus containing human HO-1 gene (Ad-HO-1) in substantia nigra of rat increases BDNF and GDNF expression. We here further examined the possible mechanism of HO-1 action involved in the enhancement of neurotrophic factor expression. Treatment of anti-BDNF/GDNF antibody significantly enhanced dopaminergic neuronal death, whereas Ad-HO-1 co-treatment was able to antagonize the apoptosis-inducing effect of these antibodies. The confocal imaging shows that HO-1 induction appeared in dopaminergic neuron, astrocyte and microglia at 24 h after injecting Ad-HO-1. HO-1 induced-BDNF/GDNF mRNA expression in substantia nigra was 26/21 folds of that of the contralateral Ad-injected side. The downstream product bilirubin increased GDNF expression through ERK and PI3K-Akt pathways, and also enhanced NFkappaB (p65 and p50) nuclear translocation in glia-enriched cultures. In addition, bilirubin also enhanced BDNF expression through similar pathway in cortical neuron-enriched cultures. We also examined the effect of another HO-1 product, CO, by using CO donor. [Ru(CO)3Cl2]2 increased neurotrophic factor expression via sGC-PKG pathway in both neuron and glia. These results indicate that the downstream products of HO-1, i.e. bilirubin and CO, modulate BDNF and GDNF expression in neuron and astrocyte.
Collapse
Affiliation(s)
- Shih-Ya Hung
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | | |
Collapse
|
37
|
Borah A, Mohanakumar KP. Melatonin inhibits 6-hydroxydopamine production in the brain to protect against experimental parkinsonism in rodents. J Pineal Res 2009; 47:293-300. [PMID: 19796048 DOI: 10.1111/j.1600-079x.2009.00713.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We tested the hypothesis that melatonin regulates formation of 6-hydroxydopamine (6-OHDA) in the brain and thereby protects animals from dopaminergic neurotoxicity and the development of parkinsonism in animals. Employing a ferrous-ascorbate-dopamine (FAD) hydroxyl radical ((*)OH) generating system, in the present study we demonstrate a dose-dependent attenuation of 6-OHDA generation by melatonin in vitro. Intra-median forebrain bundle infusion of FAD caused significant depletion of striatal dopamine (DA), which was blocked by melatonin. Per-oral administration of l-3,4-dihydroxyphenylalanine (L-DOPA) for 7 days caused a dose-dependent increase in the formation of 6-OHDA in the mouse striatum, which was increased synergistically by the systemic administration of the parkinsonian neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the 7th day of L-DOPA treatment. Melatonin treatment significantly attenuated both the L-DOPA and MPTP-induced increases in the levels of striatal 6-OHDA, and protected against striatal DA depletion caused by the neurotoxin. These observations suggest a novel mode of melatonin-induced dopaminergic neuroprotection in two models of Parkinson's disease, and suggest the possible therapeutic use of this well-known antioxidant indoleamine neurohormone in parkinsonism.
Collapse
Affiliation(s)
- Anupom Borah
- Division of Cell Biology and Physiology, Laboratory of Clinical & Experimental Neuroscience, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | | |
Collapse
|
38
|
Rojas JC, Simola N, Kermath BA, Kane JR, Schallert T, Gonzalez-Lima F. Striatal neuroprotection with methylene blue. Neuroscience 2009; 163:877-89. [PMID: 19596056 DOI: 10.1016/j.neuroscience.2009.07.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 07/03/2009] [Accepted: 07/07/2009] [Indexed: 12/31/2022]
Abstract
Recent literature indicates that low-dose Methylene Blue (MB), an autoxidizable dye with powerful antioxidant and metabolic enhancing properties, might prevent neurotoxin-induced neural damage and associated functional deficits. This study evaluated whether local MB may counteract the anatomical and functional effects of the intrastriatal infusion of the neurotoxin rotenone (Rot) in the rat. To this end, stereological analyses of striatal lesion volumes were performed and changes in oxidative energy metabolism in the striatum and related motor regions were mapped using cytochrome oxidase histochemistry. The influence of MB on striatal levels of oxidative stress induced by Rot was determined, and behavioral tests were used to investigate the effect of unilateral MB coadministration on motor asymmetry. Rot induced large anatomical lesions resembling "metabolic strokes," whose size was greatly reduced in MB-treated rats. Moreover, MB prevented the decrease in cytochrome oxidase activity and the perilesional increase in oxidative stress associated with Rot infusion in the striatum. MB also prevented the indirect effects of the Rot-induced lesion on cytochrome oxidase activity in related motor regions, such as the striatal regions rostral and caudal to the lesion, the substantia nigra compacta and reticulata, and the pedunculopontine nucleus. At a network level, MB maintained a global strengthening of functional connectivity in basal ganglia-thalamocortical motor circuits, as opposed to the functional decoupling observed in Rot-alone subjects. Finally, MB partially prevented the behavioral sensorimotor asymmetries elicited by Rot. These results are consistent with protective effects of MB against neurotoxic damage in the brain parenchyma. This study provides the first demonstration of the anatomical, metabolic and behavioral neuroprotective effects of MB in the striatum in vivo, and supports the notion that MB could be a valuable intervention against neural damage associated with oxidative stress and energy hypometabolism.
Collapse
Affiliation(s)
- J C Rojas
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | | | | | | | | | | |
Collapse
|
39
|
Mendieta L, Venegas B, Moreno N, Patricio A, Martínez I, Aguilera J, Limón ID. The carboxyl-terminal domain of the heavy chain of tetanus toxin prevents dopaminergic degeneration and improves motor behavior in rats with striatal MPP(+)-lesions. Neurosci Res 2009; 65:98-106. [PMID: 19523997 DOI: 10.1016/j.neures.2009.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/11/2009] [Accepted: 06/01/2009] [Indexed: 01/03/2023]
Abstract
Recently it has been shown that the C-terminus fragment of the tetanus toxin (Hc-TeTx) is transported retrogradely and had shown neuroprotective effects, preventing neuronal death by apoptosis. This could be a new alternative preventing ongoing cell death and restoring the motor function in Parkinson's disease (PD), which is characterized by dopaminergic neurodegeneration. Our aim was to evaluate the effects of local administration of Hc-TeTx on motor behavior and the dopamine (DA) levels in the striatum of MPP(+)-treated rats. In the rotational behavior task, the Hc-TeTx [2 microM]+MPP(+) group had a decreased number of contralateral rotations and the cylinder test improved for both forelimb-use asymmetry compared to the MPP(+) group. The staircase test showed that the Hc-TeTx+MPP(+) group had an improvement of fine motor skills compared to the same limb performance of the MPP(+) group. The group of animals with Hc-TeTx+MPP(+) had higher DA and metabolite levels compared to the MPP(+) group. Our study clearly shows that Hc-TeTx improves different motor behavior strongly, which favors the hypothesis of the Hc-TeTx fragment enhancing survival pathways that result in amelioration of the dopaminergic system of rats with a dopaminergic lesion.
Collapse
Affiliation(s)
- Liliana Mendieta
- Laboratorio de Neurofarmacología, FCQ-Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | | | | | | | | | | |
Collapse
|
40
|
Pienaar IS, Schallert T, Hattingh S, Daniels WMU. Behavioral and quantitative mitochondrial proteome analyses of the effects of simvastatin: implications for models of neural degeneration. J Neural Transm (Vienna) 2009; 116:791-806. [PMID: 19504041 DOI: 10.1007/s00702-009-0247-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 05/15/2009] [Indexed: 01/20/2023]
Abstract
The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, simvastatin, is used for lowering elevated low-density lipoprotein cholesterol concentrations. This translates into reduced cardiovascular disease-related morbidity and mortality, while the drugs' anti-oxidant and anti-inflammatory properties have earmarked it as a potential treatment strategy against various neurological conditions. Statins have been shown to protect neurons from degeneration in a number of animal models. Although no mechanism completely explains the multiple benefits exerted by statins, emerging evidence suggests that in some degenerative and brain injury models, mitochondrial impairment may play a contributive rate. However, [corrected] evidence lacks to support a directly influencing role for statins on mitochondria-related proteins and motor behavior. Mitochondrial dysfunction may increase oxygen free radical production, which in turn leaves cells susceptible to energy failure, apoptosis and related events [corrected] which could prove fatal. The potential link between simvastatin treatment and mitochondrial function would be supported if key mitochondrial proteins were altered by simvastatin exposure. Using mass spectroscopy (MS), we identified 24 mitochondrial proteins that differed significantly (P < 0.05) in relative abundancy as a result of simvastatin treatment. The identified proteins represented many facets of mitochondrial integrity, with the majority forming part of the electron transport chain machinery, which is necessary for energy production. In a follow-up study, we then addressed whether simvastatin is capable of altering sensorimotor function in a mitochondrial toxin-induced animal model. Rats were pre-treated with simvastatin for 14 days, followed by a single unihemispheric (substantia nigra; SN) injection of rotenone, a mitochondrial complex I (Co-I) inhibitor. Results showed that simvastatin improved motor performance in rotenone-infused rats. The data are consistent with the possibility that alteration of mitochondrial function may contribute to the beneficial effects associated with statin use.
Collapse
Affiliation(s)
- Ilse S Pienaar
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | | | | | | |
Collapse
|
41
|
New evidences for fractalkine/CX3CL1 involved in substantia nigral microglial activation and behavioral changes in a rat model of Parkinson's disease. Neurobiol Aging 2009; 32:443-58. [PMID: 19368990 DOI: 10.1016/j.neurobiolaging.2009.03.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 02/13/2009] [Accepted: 03/05/2009] [Indexed: 11/23/2022]
Abstract
Activated microglia are instrumental to neurodegeneration in Parkinson's disease (PD). Fractalkine, as an exclusive ligand for CX3CR1 expressed on microglia, has recently been reported to be released out by neurons, and induce microglial activation as a neuron-to-glia signal in the spinal cord. However, the role of fractalkine-induced microglial activation in PD remains unknown. In our study, we injected 1-methyl-4-phenylpyridinium (MPP(+)) into unilateral substantia nigra (SN) which induced ipsilateral endogenous fractalkine expression on neuron and observe the increase of CX3CR1 expression in response to MPP(+) by Western blotting analysis. Moreover, pre-administration of anti-CX3CR1 neutralizing antibody which potentially blocked microglial activation can promote rotation behaviors. To further investigate the role of fractalkine in PD, we injected exogenous fractalkine in unilateral SN, and observed microglial activation, dopaminergic cell depletion, and motor dysfunction. All these effects can be totally abolished by cerebroventricular administration of anti-CX3CR1. Intracerebroventricular administration of minocycline, a selective microglia inhibitor, can prevent fractalkine-induced rotation behaviors, and inhibit dopaminergic neurons from degeneration in the way of dose-dependent. Our studies demonstrate that fractalkine-induced microglial activation plays an important role in the development of PD, and provide an evidence of fractalkine and CX3CR1 as new therapeutic targets for PD treatment.
Collapse
|
42
|
Hung SY, Liou HC, Kang KH, Wu RM, Wen CC, Fu WM. Overexpression of heme oxygenase-1 protects dopaminergic neurons against 1-methyl-4-phenylpyridinium-induced neurotoxicity. Mol Pharmacol 2008; 74:1564-75. [PMID: 18799798 DOI: 10.1124/mol.108.048611] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Heme oxygenase-1 (HO-1) is up-regulated in response to oxidative stress and catalyzes the degradation of pro-oxidant heme to carbon monoxide (CO), iron, and bilirubin. Intense HO-1 immunostaining in the Parkinsonian brain is demonstrated, indicating that HO-1 may be involved in the pathogenesis of Parkinsonism. We here locally injected adenovirus containing human HO-1 gene (Ad-HO-1) into rat substantia nigra concomitantly with 1-methyl-4-phenylpyridinium (MPP(+)). Seven days after injection of MPP(+) and Ad-HO-1, the brain was isolated for immunostaining and for measurement of dopamine content and inflammatory cytokines. It was found that overexpression of HO-1 significantly increased the survival rate of dopaminergic neurons; reduced the production of tumor necrosis factor alpha (TNF-alpha) and interleukin-1beta (IL-1beta) in substantia nigra; antagonized the reduction of striatal dopamine content induced by MPP(+); and also up-regulated brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) expression in substantia nigra. Apomorphine-induced rotation after MPP(+) treatment was also inhibited by Ad-HO-1. On the other hand, inhibition of HO enzymatic activity by zinc protoporphyrin-IX facilitated the MPP(+)-induced rotatory behavior and enhanced the reduction of dopamine content. HO-1 overexpression also protected dopaminergic neurons against MPP(+)-induced neurotoxicity in midbrain neuron-glia cocultures. Overexpression of HO-1 increased the expression of BDNF and GDNF in astrocytes and BDNF in neurons. Our results indicate that HO-1 induction exerts neuroprotection both in vitro and in vivo. Pharmacological or genetic approaches targeting HO-1 may represent a promising and novel therapeutic strategy in treating Parkinsonism.
Collapse
Affiliation(s)
- Shih-Ya Hung
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
43
|
Da Cunha C, Wietzikoski EC, Ferro MM, Martinez GR, Vital MABF, Hipólide D, Tufik S, Canteras NS. Hemiparkinsonian rats rotate toward the side with the weaker dopaminergic neurotransmission. Behav Brain Res 2008; 189:364-72. [DOI: 10.1016/j.bbr.2008.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
|
44
|
Banerjee R, Saravanan KS, Thomas B, Sindhu KM, Mohanakumar KP. Evidence for Hydroxyl Radical Scavenging Action of Nitric Oxide Donors in the Protection Against 1-Methyl-4-phenylpyridinium-induced Neurotoxicity in Rats. Neurochem Res 2007; 33:985-95. [PMID: 17763941 DOI: 10.1007/s11064-007-9473-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 08/08/2007] [Indexed: 10/22/2022]
Abstract
In the present study we provide evidence for hydroxyl radical (*OH) scavenging action of nitric oxide (NO*), and subsequent dopaminergic neuroprotection in a hemiparkinsonian rat model. Reactive oxygen species are strongly implicated in the nigrostriatal dopaminergic neurotoxicity caused by the parkinsonian neurotoxin, 1-methyl-4-phenylpyridinium (MPP+). Since the role of this free radical as a neurotoxicant or neuroprotectant is debatable, we investigated the effects of some of the NO* donors such as S-nitroso-N-acetylpenicillamine (SNAP), 3-morpholinosydnonimine hydrochloride (SIN-1), sodium nitroprusside (SNP) and nitroglycerin (NG) on in vitro *OH generation in a Fenton-like reaction involving ferrous citrate, as well as in MPP+-induced *OH production in the mitochondria. We also tested whether co-administration of NO* donor and MPP+ could protect against MPP+-induced dopaminergic neurotoxicity in rats. While NG, SNAP and SIN-1 attenuated MPP+-induced *OH generation in the mitochondria, and in a Fenton-like reaction, SNP caused up to 18-fold increase in *OH production in the latter reaction. Striatal dopaminergic depletion following intranigral infusion of MPP+ in rats was significantly attenuated by NG, SNAP and SIN-1, but not by SNP. Solutions of NG, SNAP and SIN-1, exposed to air for 48 h to remove NO*, when administered similarly failed to attenuate MPP+-induced neurotoxicity in vivo. Conversely, long-time air-exposed SNP solution when administered in rats intranigrally, caused a dose-dependent depletion of the striatal dopamine. These results confirm the involvement of *OH in the nigrostriatal degeneration caused by MPP+, indicate the *OH scavenging ability of NO*, and demonstrate protection by NO* donors against MPP+-induced dopaminergic neurotoxicity in rats.
Collapse
Affiliation(s)
- Rebecca Banerjee
- Division of Cell Biology & Physiology, Laboratory of Clinical and Experimental Neuroscience, Indian Institute of Chemical Biology, 4, Raja S C Mullick Road, Kolkata 700 032, India
| | | | | | | | | |
Collapse
|
45
|
Banerjee R, Sreetama S, Saravanan KS, Dey SN, Mohanakumar KP. Apoptotic Mode of Cell Death in Substantia Nigra Following Intranigral Infusion of the Parkinsonian Neurotoxin, MPP+ in Sprague-Dawley Rats: Cellular, Molecular and Ultrastructural Evidences. Neurochem Res 2007; 32:1238-47. [PMID: 17401660 DOI: 10.1007/s11064-007-9299-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 01/30/2007] [Indexed: 02/03/2023]
Abstract
The potent parkinsonian neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) is known to cause dopaminergic neurodegeneration in nigrostriatal system. In the present study we investigated the nuclear morphology of cells in the substantia nigra pars compacta (SNpc) region of rats following unilateral intranigral infusion of the active metabolite, 1-methyl-4-phenyl pyridinium ion (MPP(+)), which resulted in a dose-dependent and prolonged dopamine depletion in the ipsilateral striatum. There appeared a substantial loss of tyrosine hydroxylase immunoreactive neurons in the SNpc that received the neurotoxin. Specific nuclear staining with Hoechst 33342 or acridine orange revealed bright pyknotic, shrunken, distorted nuclei and condensed chromatin with perinuclear nucleolus respectively following visualization with the former and latter dyes in the ipsilateral SNpc, as compared to the round, intact nuclei and centrally positioned nucleolus in the contralateral side. Ultrastructural details of the nucleus under transmission electron microscope confirmed distorted nuclear organization with shrunken or condensed nuclei and disrupted nuclear membrane. These features are typical of nucleus undergoing apoptosis, and suggest that MPP(+) causes dopaminergic neuronal death through an apoptotic mode. Typical laddering pattern of genomic DNA isolated from the ipsilateral SN in agarose gel electrophoresis conclusively established apoptosis following intranigral administration of MPP(+) in rats.
Collapse
Affiliation(s)
- Rebecca Banerjee
- Division of Cell Biology and Physiology, Laboratory of Clinical and Experimental Neuroscience, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | | | | | | | | |
Collapse
|