1
|
Elvig SK, McGinn MA, Smith C, Arends MA, Koob GF, Vendruscolo LF. Tolerance to alcohol: A critical yet understudied factor in alcohol addiction. Pharmacol Biochem Behav 2021; 204:173155. [PMID: 33631255 PMCID: PMC8917511 DOI: 10.1016/j.pbb.2021.173155] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/06/2021] [Accepted: 02/18/2021] [Indexed: 11/19/2022]
Abstract
Alcohol tolerance refers to a lower effect of alcohol with repeated exposure. Although alcohol tolerance has been historically included in diagnostic manuals as one of the key criteria for a diagnosis of alcohol use disorder (AUD), understanding its neurobiological mechanisms has been neglected in preclinical studies. In this mini-review, we provide a theoretical framework for alcohol tolerance. We then briefly describe chronic tolerance, followed by a longer discussion of behavioral and neurobiological aspects that underlie rapid tolerance in rodent models. Glutamate/nitric oxide, γ-aminobutyric acid, opioids, serotonin, dopamine, adenosine, cannabinoids, norepinephrine, vasopressin, neuropeptide Y, neurosteroids, and protein kinase C all modulate rapid tolerance. Most studies have evaluated the ability of pharmacological manipulations to block the development of rapid tolerance, but only a few studies have assessed their ability to reverse already established tolerance. Notably, only a few studies analyzed sex differences. Neglected areas of study include the incorporation of a key element of tolerance that involves opponent process-like neuroadaptations. Compared with alcohol drinking models, models of rapid tolerance are relatively shorter in duration and are temporally defined, which make them suitable for combining with a wide range of classic and modern research tools, such as pharmacology, optogenetics, calcium imaging, in vivo electrophysiology, and DREADDs, for in-depth studies of tolerance. We conclude that studies of the neurobiology of alcohol tolerance should be revisited with modern conceptualizations of addiction and modern neurobiological tools. This may contribute to our understanding of AUD and uncover potential targets that can attenuate hazardous alcohol drinking.
Collapse
Affiliation(s)
- Sophie K Elvig
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - M Adrienne McGinn
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Caroline Smith
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | - George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
2
|
Radcliffe RA, Dowell R, Odell AT, Richmond PA, Bennett B, Larson C, Kechris K, Saba LM, Rudra P, Wen S. Systems genetics analysis of the LXS recombinant inbred mouse strains:Genetic and molecular insights into acute ethanol tolerance. PLoS One 2020; 15:e0240253. [PMID: 33095786 PMCID: PMC7584226 DOI: 10.1371/journal.pone.0240253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022] Open
Abstract
We have been using the Inbred Long- and Short-Sleep mouse strains (ILS, ISS) and a recombinant inbred panel derived from them, the LXS, to investigate the genetic underpinnings of acute ethanol tolerance which is considered to be a risk factor for alcohol use disorders (AUDs). Here, we have used RNA-seq to examine the transcriptome of whole brain in 40 of the LXS strains 8 hours after a saline or ethanol "pretreatment" as in previous behavioral studies. Approximately 1/3 of the 14,184 expressed genes were significantly heritable and many were unique to the pretreatment. Several thousand cis- and trans-eQTLs were mapped; a portion of these also were unique to pretreatment. Ethanol pretreatment caused differential expression (DE) of 1,230 genes. Gene Ontology (GO) enrichment analysis suggested involvement in numerous biological processes including astrocyte differentiation, histone acetylation, mRNA splicing, and neuron projection development. Genetic correlation analysis identified hundreds of genes that were correlated to the behaviors. GO analysis indicated that these genes are involved in gene expression, chromosome organization, and protein transport, among others. The expression profiles of the DE genes and genes correlated to AFT in the ethanol pretreatment group (AFT-Et) were found to be similar to profiles of HDAC inhibitors. Hdac1, a cis-regulated gene that is located at the peak of a previously mapped QTL for AFT-Et, was correlated to 437 genes, most of which were also correlated to AFT-Et. GO analysis of these genes identified several enriched biological process terms including neuron-neuron synaptic transmission and potassium transport. In summary, the results suggest widespread genetic effects on gene expression, including effects that are pretreatment-specific. A number of candidate genes and biological functions were identified that could be mediating the behavioral responses. The most prominent of these was Hdac1 which may be regulating genes associated with glutamatergic signaling and potassium conductance.
Collapse
Affiliation(s)
- Richard A. Radcliffe
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder CO, United States of America
| | - Robin Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States of America
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States of America
| | - Aaron T. Odell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Phillip A. Richmond
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Beth Bennett
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Colin Larson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Laura M. Saba
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Pratyaydipta Rudra
- Department of Statistics, Oklahoma State University, Stillwater, OK, United States of America
| | - Shi Wen
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| |
Collapse
|
3
|
Parker CC, Lusk R, Saba LM. Alcohol Sensitivity as an Endophenotype of Alcohol Use Disorder: Exploring Its Translational Utility between Rodents and Humans. Brain Sci 2020; 10:E725. [PMID: 33066036 PMCID: PMC7600833 DOI: 10.3390/brainsci10100725] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022] Open
Abstract
Alcohol use disorder (AUD) is a complex, chronic, relapsing disorder with multiple interacting genetic and environmental influences. Numerous studies have verified the influence of genetics on AUD, yet the underlying biological pathways remain unknown. One strategy to interrogate complex diseases is the use of endophenotypes, which deconstruct current diagnostic categories into component traits that may be more amenable to genetic research. In this review, we explore how an endophenotype such as sensitivity to alcohol can be used in conjunction with rodent models to provide mechanistic insights into AUD. We evaluate three alcohol sensitivity endophenotypes (stimulation, intoxication, and aversion) for their translatability across human and rodent research by examining the underlying neurobiology and its relationship to consumption and AUD. We show examples in which results gleaned from rodents are successfully integrated with information from human studies to gain insight in the genetic underpinnings of AUD and AUD-related endophenotypes. Finally, we identify areas for future translational research that could greatly expand our knowledge of the biological and molecular aspects of the transition to AUD with the broad hope of finding better ways to treat this devastating disorder.
Collapse
Affiliation(s)
- Clarissa C. Parker
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, VT 05753, USA
| | - Ryan Lusk
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Laura M. Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| |
Collapse
|
4
|
Blednov YA, Da Costa AJ, Harris RA, Messing RO. Apremilast Alters Behavioral Responses to Ethanol in Mice: II. Increased Sedation, Intoxication, and Reduced Acute Functional Tolerance. Alcohol Clin Exp Res 2018; 42:939-951. [PMID: 29469954 DOI: 10.1111/acer.13615] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/15/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND In our companion paper, we reported that the phosphodiesterase type 4 inhibitor apremilast reduced ethanol (EtOH) intake and preference in different drinking models in male and female C57BL/6J mice. In this study, we measured the effects of apremilast on other behaviors that are correlated with EtOH consumption. METHODS The effects of apremilast (20 mg/kg) on the following behaviors were studied in male and female C57BL/6J mice: locomotor response to a novel situation; EtOH- and lithium chloride (LiCl)-induced conditioned taste aversion (CTA) to saccharin; conditioned place preference (CPP) and conditioned place avoidance (CPA) to EtOH; severity of handling-induced convulsions after EtOH administration; EtOH-induced anxiolytic-like behavior in the elevated plus maze; duration of EtOH-induced loss of righting reflex (LORR); recovery from EtOH-induced motor impairment on the rotarod; and acute functional tolerance (AFT) to EtOH's ataxic effects. RESULTS Apremilast did not change the acquisition of EtOH-induced CPP, severity of acute withdrawal from EtOH, or EtOH's anxiolytic-like effect. Apremilast did not alter the extinction of EtOH- or LiCl-induced CTA, but may interfere with acquisition of CTA to EtOH. Apremilast increased the acquisition of CPA to EtOH, reduced locomotor responses to a novel situation, and prolonged the duration of LORR and the recovery from acute motor incoordination induced by EtOH. The longer recovery from the ataxic effect may be attributed to reduced development of AFT to EtOH. CONCLUSIONS Our results suggest that apremilast increases the duration of EtOH intoxication by reducing AFT. Apremilast also reduces some aspects of general reward and increases EtOH's aversive properties, which might also contribute to its ability to reduce EtOH drinking.
Collapse
Affiliation(s)
- Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research , The University of Texas at Austin, Austin, Texas, 78712
| | - Adriana J Da Costa
- Waggoner Center for Alcohol and Addiction Research , The University of Texas at Austin, Austin, Texas, 78712
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research , The University of Texas at Austin, Austin, Texas, 78712
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research , The University of Texas at Austin, Austin, Texas, 78712.,Department of Neurology , The University of Texas at Austin, Austin, Texas, 78712
| |
Collapse
|
5
|
Lindsay JH, Prosser RA. The Mammalian Circadian Clock Exhibits Chronic Ethanol Tolerance and Withdrawal-Induced Glutamate Hypersensitivity, Accompanied by Changes in Glutamate and TrkB Receptor Proteins. Alcohol Clin Exp Res 2017; 42:315-328. [PMID: 29139560 DOI: 10.1111/acer.13554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/07/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Alcohol tolerance and withdrawal-induced effects are criteria for alcohol use disorders listed by the DSM-V. Although tolerance and withdrawal have been studied over many decades, there is still uncertainty regarding mechanistic distinctions that characterize these different forms of ethanol (EtOH)-induced plasticity. Previously, we demonstrated that the suprachiasmatic nucleus (SCN) circadian clock develops both acute and rapid tolerance to EtOH inhibition of glutamate-induced circadian phase shifts. Here, we demonstrate that chronic EtOH tolerance and withdrawal-induced glutamate hypersensitivity occur in vitro and that rapid tolerance, chronic tolerance, and glutamate hypersensitivity have distinct cellular changes. METHODS We use single-unit extracellular electrophysiological recordings to determine whether chronic tolerance to EtOH inhibition of glutamatergic phase shifts and withdrawal-induced glutamate hypersensitivity develop in the SCN. We use Western blotting to compare phosphorylation state and total expression of N-methyl-D-aspartate (NMDA) receptor subunits and associated proteins in the SCN after mice were exposed to varying EtOH consumption paradigms. RESULTS Chronic tolerance developed after a minimum of 8 days of 4 h/d EtOH access, as indicated by a decreased sensitivity to EtOH inhibition of glutamate-induced phase shifts. We also observed an increased sensitivity to glutamate-induced phase shifts in SCN tissue following withdrawal. We demonstrated an increase in the ratio of NR2B:NR2A NMDA receptor subunit expression after 21 days, but not after 10 days of EtOH drinking. This increase persisted during EtOH withdrawal, along with an increase in NR2B Y1472 phosphorylation, mature brain-derived neurotrophic factor, and phosphorylated TrkB. CONCLUSIONS These results demonstrate that multiple tolerance forms and withdrawal-induced glutamate hypersensitivity occur in the SCN and that these different forms of EtOH-induced plasticity are accompanied by distinct changes in cellular physiology. Importantly, this study further demonstrates the power of using the SCN as a model system to investigate EtOH-induced plasticity.
Collapse
Affiliation(s)
- Jonathan H Lindsay
- Department of Biochemistry and Cellular and Molecular Biology (JHL, RAP), University of Tennessee Knoxville, NeuroNET Research Center, Knoxville, Tennessee
| | - Rebecca A Prosser
- Department of Biochemistry and Cellular and Molecular Biology (JHL, RAP), University of Tennessee Knoxville, NeuroNET Research Center, Knoxville, Tennessee
| |
Collapse
|
6
|
Atp1a2 contributes modestly to alcohol-related behaviors. Alcohol 2016; 56:29-37. [PMID: 27814792 DOI: 10.1016/j.alcohol.2016.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 01/02/2023]
Abstract
Atp1a2 has been previously studied for anxiety, learning and motor function disorders, and fear. Since Atp1a2 has been shown to be involved in anxiety and this behavior is a known risk factor for developing alcoholism, we have been investigating Atp1a2 for its potential role in responses to alcohol. This study utilized Atp1a2 knockout mice; Atp1a2 heterozygous mice, with half the amount of protein compared to wild-type mice, were used because Atp1a2 homozygous null mice die shortly after birth. The alcohol-related behavioral experiments performed were loss of righting reflex (LORR), acute alcohol withdrawal measured by handling-induced convulsions (HIC), drinking in the dark (DID), open-field activity (OFA), and elevated plus-maze (EPM). LORR was a 2-day test that measures acute alcohol sensitivity, and rapid and acute functional tolerance (AFT). HIC was a 3-day test to measure alcohol withdrawal, DID was a 4-day test which measures voluntary alcohol consumption, and OFA and EPM measured anxiety with alcohol exposure. The effect of genotype on alcohol metabolism was also examined. There was a genotype effect on rate of alcohol metabolism, but only in males. There was no effect on alcohol withdrawal severity. The Atp1a2 heterozygous mice consumed more alcohol than wild-type mice in the DID test, although only in males. In addition, only males were observed to show rapid tolerance in the LORR test while only female heterozygous mice showed a pretreatment effect on AFT. Alcohol exposure had a greater anxiolytic effect in the heterozygous mice compared to wild-type mice, although, again, there were sex effects with only males showing the effect in OFA and only females in the EPM. Although the behavioral results were mixed, there does appear to be a connection between anxiety and alcohol. Overall, the results suggest that Atp1a2 does contribute to alcohol-related behaviors, although the effect is modest with a clear dependence on sex.
Collapse
|
7
|
Dowell R, Odell A, Richmond P, Malmer D, Halper-Stromberg E, Bennett B, Larson C, Leach S, Radcliffe RA. Genome characterization of the selected long- and short-sleep mouse lines. Mamm Genome 2016; 27:574-586. [PMID: 27651241 PMCID: PMC5110614 DOI: 10.1007/s00335-016-9663-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/22/2016] [Indexed: 01/29/2023]
Abstract
The Inbred Long- and Short-Sleep (ILS, ISS) mouse lines were selected for differences in acute ethanol sensitivity using the loss of righting response (LORR) as the selection trait. The lines show an over tenfold difference in LORR and, along with a recombinant inbred panel derived from them (the LXS), have been widely used to dissect the genetic underpinnings of acute ethanol sensitivity. Here we have sequenced the genomes of the ILS and ISS to investigate the DNA variants that contribute to their sensitivity difference. We identified ~2.7 million high-confidence SNPs and small indels and ~7000 structural variants between the lines; variants were found to occur in 6382 annotated genes. Using a hidden Markov model, we were able to reconstruct the genome-wide ancestry patterns of the eight inbred progenitor strains from which the ILS and ISS were derived, and found that quantitative trait loci that have been mapped for LORR were slightly enriched for DNA variants. Finally, by mapping and quantifying RNA-seq reads from the ILS and ISS to their strain-specific genomes rather than to the reference genome, we found a substantial improvement in a differential expression analysis between the lines. This work will help in identifying and characterizing the DNA sequence variants that contribute to the difference in ethanol sensitivity between the ILS and ISS and will also aid in accurate quantification of RNA-seq data generated from the LXS RIs.
Collapse
Affiliation(s)
- Robin Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80309, USA. .,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA. .,Department of Computer Science, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - Aaron Odell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Phillip Richmond
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80309, USA.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Daniel Malmer
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Eitan Halper-Stromberg
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Beth Bennett
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA
| | - Colin Larson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA
| | - Sonia Leach
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Richard A Radcliffe
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA.
| |
Collapse
|
8
|
Bennett B, Larson C, Richmond PA, Odell AT, Saba LM, Tabakoff B, Dowell R, Radcliffe RA. Quantitative trait locus mapping of acute functional tolerance in the LXS recombinant inbred strains. Alcohol Clin Exp Res 2016; 39:611-20. [PMID: 25833023 DOI: 10.1111/acer.12678] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/09/2015] [Indexed: 01/23/2023]
Abstract
BACKGROUND We previously reported that acute functional tolerance (AFT) to the hypnotic effects of alcohol was significantly correlated with drinking in the dark (DID) in the LXS recombinant inbred panel, but only in mice that had been pretreated with alcohol. Here, we have conducted quantitative trait locus (QTL) mapping for AFT. DNA sequencing of the progenitor ILS and ISS strains and microarray analyses were also conducted to identify candidate genes and functional correlates. METHODS LXS mice were given either saline or alcohol (5 g/kg) on day 1 and then tested for loss of righting reflex AFT on day 2. QTLs were mapped using standard procedures. Two microarray analyses from brain were conducted: (i) naïve LXS mice and (ii) an alcohol treatment time course in the ILS and ISS. The full genomes of the ILS and ISS were sequenced to a depth of approximately 30×. RESULTS A significant QTL for AFT in the alcohol pretreatment group was mapped to distal chromosome 4; numerous suggestive QTLs were also mapped. Preference drinking and DID have previously been mapped to the chromosome 4 locus. The credible interval of the significant chromosome 4 QTL spanned 23 Mb and included 716 annotated genes of which 150 had at least 1 nonsynonymous single nucleotide polymorphism or small indel that differed between the ILS and ISS; expression of 48 of the genes was cis-regulated. Enrichment analysis indicated broad functional categories underlying AFT, including proteolysis, transcription regulation, chromatin modification, protein kinase activity, and apoptosis. CONCLUSIONS The chromosome 4 QTL is a key region containing possibly pleiotropic genes for AFT and drinking behavior. Given that the region contains many viable candidates and a large number of the genes in the interval fall into 1 or more of the enriched functional categories, we postulate that many genes of varying effect size contribute to the observed QTL effect.
Collapse
Affiliation(s)
- Beth Bennett
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Prosser RA, Glass JD. Assessing ethanol's actions in the suprachiasmatic circadian clock using in vivo and in vitro approaches. Alcohol 2015; 49:321-339. [PMID: 25457753 DOI: 10.1016/j.alcohol.2014.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 12/18/2022]
Abstract
Research over the past decade has demonstrated substantial interactions between the circadian system and the processes through which alcohol affects behavior and physiology. Here we summarize the results of our collaborative efforts focused on this intersection. Using a combination of in vivo and in vitro approaches, we have shown that ethanol affects many aspects of the mammalian circadian system, both acutely as well as after chronic administration. Conversely, we have shown circadian influences on ethanol consumption. Importantly, we are beginning to delve into the cellular mechanisms associated with these effects. We are also starting to form a picture of the neuroanatomical bases for many of these actions. Finally, we put our current findings into perspective by suggesting new avenues of inquiry for our future efforts.
Collapse
|
10
|
Lindsay JH, Glass JD, Amicarelli M, Prosser RA. The mammalian circadian clock in the suprachiasmatic nucleus exhibits rapid tolerance to ethanol in vivo and in vitro. Alcohol Clin Exp Res 2014; 38:760-9. [PMID: 24512529 DOI: 10.1111/acer.12303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/16/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ethanol (EtOH) triggers cellular adaptations that induce tolerance in many brain areas, including the suprachiasmatic nucleus (SCN), the site of the master circadian clock. EtOH inhibits light-induced phase shifts in the SCN in vivo and glutamate-induced phase shifts in vitro. The in vitro phase shifts develop acute tolerance to EtOH, occurring within minutes of initial exposure, while the in vivo phase shifts exhibit no evidence of chronic tolerance. An intermediate form, rapid tolerance, is not well studied but may predict subsequent chronic tolerance. Here, we investigated rapid tolerance in the SCN clock. METHODS Adult C57BL/6 mice were provided 15% EtOH or water for one 12-hour lights-off period. For in vitro experiments, SCN-containing brain slices were prepared in the morning and treated for 10 minutes with glutamate +/- EtOH the following night. Single-cell neuronal firing rates were recorded extracellularly during the subsequent day to determine SCN clock phase. For in vivo experiments, mice receiving EtOH 24 hours previously were exposed to a 30-minute light pulse immediately preceded by intraperitoneal saline or 2 g/kg EtOH injection. Mice were then placed in constant darkness and their phase-shifting responses measured. RESULTS In vitro, the SCN clock from EtOH-exposed mice exhibited rapid tolerance, with a 10-fold increase in EtOH needed to inhibit glutamate-induced phase shifts. Co-application of brain-derived neurotrophic factor prevented EtOH inhibition, consistent with experiments using EtOH-naïve mice. Rapid tolerance lasts 48 to 96 hours, depending on whether assessing in vitro phase advances or phase delays. Similarly, in vivo, prior EtOH consumption prevented EtOH's acute blockade of photic phase delays. Finally, immunoblot experiments showed no changes in SCN glutamate receptor subunit (NR2B) expression or phosphorylation in response to rapid tolerance induction. CONCLUSIONS The SCN circadian clock develops rapid tolerance to EtOH as assessed both in vivo and in vitro, and the tolerance lasts for several days. These data demonstrate the utility of the circadian system as a model for investigating cellular mechanisms through which EtOH acts in the brain.
Collapse
Affiliation(s)
- Jonathan H Lindsay
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | | | | | | |
Collapse
|
11
|
Abstract
Alcoholism (alcohol dependence and alcohol use disorder, AUD) is quintessentially behavioral in nature. AUD is behaviorally and genetically complex. This review discusses behavioral assessment of alcohol sensitivity, tolerance, dependence, withdrawal, and reinforcement. The focus is on using laboratory animal models to explore genetic contributions to individual differences in alcohol responses. Rodent genetic animal models based on selective breeding for high vs low alcohol response, and those based on the use of inbred strains, are reviewed. Genetic strategies have revealed the complexity of alcohol responses where genetic influences on multiple alcohol-related behaviors are mostly discrete. They have also identified areas where genetic influences are consistent across behavioral assays and have been used to model genetic differences among humans at different risk for AUD.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
12
|
Radcliffe RA, Larson C, Bennett B. Genetic studies of acute tolerance, rapid tolerance, and drinking in the dark in the LXS recombinant inbred strains. Alcohol Clin Exp Res 2013; 37:2019-28. [PMID: 23889059 DOI: 10.1111/acer.12188] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/30/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND We hypothesized that rapid tolerance (1-day tolerance) for the duration of the loss of righting reflex ("sleep time" [ST]) was mediated by an increase in acute functional tolerance (AFT). We also hypothesized that increased AFT would correspond to increased drinking. These questions were addressed using the LXS recombinant inbred mouse strain panel. METHODS Mice were given a pretreatment dose of either saline or 5 g/kg alcohol on day 1. On day 2, mice were tested for ST (4.1 g/kg) using a method with which it is possible to accurately assess AFT. Genetic correlation analysis was conducted among the ST-related variables and also with "drinking in the dark" (DID) which was previously measured by Saba and colleagues (2011). RESULTS Saline-pretreated mice showed a continuous distribution of ST ranging from ~40 minutes to over 3 hours. Of the 43 strains tested, 9 showed significantly decreased ST after alcohol pretreatment, while in 3 strains, ST was significantly increased. AFT scores ranged from 0 to over 200 mg% in the saline group, and in the alcohol group, 8 strains showed a significant increase in AFT and 2 strains showed significant decrease in AFT. In the saline group, AFT was significantly correlated with ST (r = -0.47), but not in the alcohol group (r = -0.22). DID was significantly correlated with only AFT in the alcohol pretreated group (r = 0.64). CONCLUSIONS The results suggest that AFT is an important component of the overall ST response, but that the alcohol pretreatment-induced change in AFT does not contribute to rapid ST tolerance. The significant correlation between DID and AFT in the alcohol group suggests that AFT may be a more relevant predictor of drinking behavior than the static measurement of ST. Moreover, preexposure to alcohol seems to change AFT in a way that makes it an even stronger predictor of drinking behavior.
Collapse
Affiliation(s)
- Richard A Radcliffe
- Department of Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus, Aurora, Colorado; Institute for Behavioral Genetics , University of Colorado, Boulder, Colorado
| | | | | |
Collapse
|
13
|
Crabbe JC, Colville AM, Kruse LC, Cameron AJ, Spence SE, Schlumbohm JP, Huang LC, Metten P. Ethanol tolerance and withdrawal severity in high drinking in the dark selectively bred mice. Alcohol Clin Exp Res 2012; 36:1152-61. [PMID: 22309139 PMCID: PMC3349804 DOI: 10.1111/j.1530-0277.2011.01715.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/08/2011] [Indexed: 01/29/2023]
Abstract
BACKGROUND Mouse lines are being selectively bred in replicate for high blood ethanol concentrations (BECs) achieved after limited access of ethanol (EtOH) drinking early in the circadian dark phase. High Drinking in the Dark-1 (HDID-1) mice are in selected generation S21, and the replicate HDID-2 line in generation S14. Tolerance and withdrawal symptoms are 2 of the 7 diagnostic criteria for alcohol dependence. Withdrawal severity has been found in mouse studies to be negatively genetically correlated with EtOH preference drinking. METHODS To determine other traits genetically correlated with high DID, we compared naïve animals from both lines with the unselected, segregating progenitor stock, HS/Npt. Differences between HDID-1 and HS would imply commonality of genetic influences on DID and these traits. RESULTS Female HDID-1 and HDID-2 mice tended to develop less tolerance than HS to EtOH hypothermia after their third daily injection. A trend toward greater tolerance was seen in the HDID males. HDID-1, HDID-2, and control HS lines did not differ in the severity of acute or chronic withdrawal from EtOH as indexed by the handling-induced convulsion (HIC). Both HDID-1 and HDID-2 mice tended to have greater HIC scores than HS regardless of drug treatment. CONCLUSIONS These results show that tolerance to EtOH's hypothermic effects may share some common genetic control with reaching high BECs after DID, a finding consistent with other data regarding genetic contributions to EtOH responses. Withdrawal severity was not negatively genetically correlated with DID, unlike its correlation with preference drinking, underscoring the genetic differences between preference drinking and DID. HDID lines showed greater basal HIC scores than HS, suggestive of greater central nervous system excitability.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lockridge A, Romero G, Harrington J, Newland B, Gong Z, Cameron A, Yuan LL. Timing-dependent reduction in ethanol sedation and drinking preference by NMDA receptor co-agonist d-serine. Alcohol 2012; 46:389-400. [PMID: 22445805 DOI: 10.1016/j.alcohol.2011.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/31/2011] [Accepted: 11/09/2011] [Indexed: 01/06/2023]
Abstract
NMDA receptors become a major contributor to acute ethanol intoxication effects at high concentrations as ethanol binds to a unique site on the receptor and inhibits glutamatergic activity in multiple brain areas. Although a convincing body of literature exists on the ability of NMDA receptor antagonists to mimic and worsen cellular and behavioral ethanol effects, receptor agonists have been less well-studied. In addition to a primary agonist site for glutamate, the NMDA receptor contains a separate co-agonist site that responds to endogenous amino acids glycine and d-serine. d-serine is both selective for this co-agonist site and potent in boosting NMDA dependent activity even after systemic administration. In this study, we hypothesized that exogenous d-serine might ameliorate some acute ethanol behaviors by opposing NMDA receptor inhibition. We injected adult male C57 mice with a high concentration of d-serine at various time windows relative to ethanol administration and monitored sedation, motor coordination and voluntary ethanol drinking. d-serine (2.7 g/kg, ip) prolonged latency to a loss of righting reflex (LoRR) and shortened LoRR duration when given 15 min before ethanol (3 g/kg) but not when it was injected with or shortly after ethanol. Blood samples taken at sedative recovery and at fixed time intervals revealed no effect of d-serine on ethanol concentration but an ethanol-induced decrease in l-serine and glycine content was prevented by acute d-serine pre-administration. d-serine had no effect on ethanol-induced (2 g/kg) rotarod deficits in young adult animals but independently and interactively degraded motor performance in a subset of older mice. Finally, a week-long series of daily ip injections resulted in a 50% decrease in free choice ethanol preference for d-serine treated animals compared to saline-injected controls in a two-bottle choice experiment.
Collapse
Affiliation(s)
- Amber Lockridge
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Radcliffe RA, Erwin VG, Bludeau P, Deng X, Fay T, Floyd KL, Deitrich RA. A major QTL for acute ethanol sensitivity in the alcohol tolerant and non-tolerant selected rat lines. GENES, BRAIN, AND BEHAVIOR 2009; 8:611-25. [PMID: 19500156 PMCID: PMC2880637 DOI: 10.1111/j.1601-183x.2009.00496.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Alcohol Tolerant and Alcohol Non-Tolerant rats (AT, ANT) were selectively bred for ethanol-induced ataxia as measured on the inclined plane. Here we report on a quantitative trait locus (QTL) study in an F(2) intercross population derived from inbred AT and ANT (IAT, IANT) and a follow-up study of congenics that were bred to examine one of the mapped QTLs. Over 1200 F(2) offspring were tested for inclined plane sensitivity, acute tolerance on the inclined plane, duration of the loss of righting reflex (LORR) and blood ethanol at regain of the righting reflex (BECRR). F(2) rats that were in the upper and lower 20% for inclined plane sensitivity were genotyped with 78 SSLP markers. Significant QTLs for inclined plane sensitivity were mapped on chromosomes 8 and 20; suggestive QTLs were mapped on chromosomes 1, 2 and 3. Highly significant QTLs for LORR duration (LOD = 12.4) and BECRR (LOD = 5.7) were mapped to the same locus on chromosome 1. Breeding and testing of reciprocal congenic lines confirmed the chromosome 1 LORR/BECRR QTL. A series of recombinant congenic sub-lines were bred to fine-map this QTL. Current results have narrowed the QTL to an interval of between 5 and 20 Mb. We expect to be able to narrow the interval to less than 5 Mb with additional genotyping and continued breeding of recombinant sub-congenic lines.
Collapse
Affiliation(s)
- R A Radcliffe
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Ginsburg BC, Martinez G, Friesenhahn G, Javors M, Lamb RJ. Acute tolerance to rate-decreasing effects of single doses of ethanol. Physiol Behav 2008; 94:374-83. [PMID: 18328511 PMCID: PMC3085823 DOI: 10.1016/j.physbeh.2008.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 01/04/2008] [Accepted: 01/31/2008] [Indexed: 11/17/2022]
Abstract
Acute tolerance occurs when behavioral impairment is greater at a given blood ethanol concentration (BAC) on the ascending versus descending limb of the BAC-time curve following administration of a single dose of ethanol, however studies utilizing learned behaviors have not been widely reported. We assessed acute tolerance to single doses of ethanol in five Lewis rats responding under a fixed-ratio (FR8) schedule of food presentation. Response rates for food during 1-min components (ending 2, 4, 11, 18, 33, and 57 min after ethanol administration) were determined, and BAC was measured immediately after each component using a rat breathalyzer. Ethanol (0.4, 0.6, 0.8, and 1.2 g/kg, i.p.) produced dose-related decreases in responding for food that tended to recover over time for all but the highest dose tested. Similarly, dose-related increases in BAC were also observed. Using either an analysis that expressed impairment per unit BAC on the ascending limb versus the descending limb (by assessing the area under the curve (AUC) for behavior and BAC on each limb), the slope of the function that relates the behavioral effect to BAC (each expressed as percent maximum effect), or a variant of the Mellanby method (hysteresis), acute tolerance was observed following a dose of 0.4 g/kg ethanol. Though behavior appeared to recover on the descending limb following higher doses (especially 0.6 and 0.8 g/kg), acute tolerance to these doses was not present.
Collapse
Affiliation(s)
- Brett C Ginsburg
- Department of Psychiatry, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA.
| | | | | | | | | |
Collapse
|
17
|
Crabbe JC, Cameron AJ, Munn E, Bunning M, Wahlsten D. Overview of mouse assays of ethanol intoxication. ACTA ACUST UNITED AC 2008; Chapter 9:Unit 9.26. [PMID: 18428672 DOI: 10.1002/0471142301.ns0926s42] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There are many behavioral assays to assess sensitivity to ethanol intoxication in mice. Most are simple to implement, and are sensitive to a particular dose range of ethanol. Most reflect genetic influences, and each test appears to reflect the contribution of a relatively distinct collection of genes. This genetic heterogeneity implies that no single test can claim to capture the construct "ethanol intoxication" completely. Depending on the test, and when measurements are made, acute functional tolerance to even a single dose of ethanol must be considered as a contributing factor. Whether or not a test is conducted in naïve mice or as part of a test battery can influence sensitivity, and do so in a strain-dependent manner. This unit reviews existing tests and recommends several.
Collapse
|
18
|
Berger KH, Kong EC, Dubnau J, Tully T, Moore MS, Heberlein U. Ethanol sensitivity and tolerance in long-term memory mutants of Drosophila melanogaster. Alcohol Clin Exp Res 2008; 32:895-908. [PMID: 18435628 PMCID: PMC3044939 DOI: 10.1111/j.1530-0277.2008.00659.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND It has become increasingly clear that molecular and neural mechanisms underlying learning and memory and drug addiction are largely shared. To confirm and extend these findings, we analyzed ethanol-responsive behaviors of a collection of Drosophila long-term memory mutants. METHODS For each mutant, sensitivity to the acute uncoordinating effects of ethanol was quantified using the inebriometer. Additionally, 2 distinct forms of ethanol tolerance were measured: rapid tolerance, which develops in response to a single brief exposure to a high concentration of ethanol vapor; and chronic tolerance, which develops following a sustained low-level exposure. RESULTS Several mutants were identified with altered sensitivity, rapid or chronic tolerance, while a number of mutants exhibited multiple defects. CONCLUSIONS The corresponding genes in these mutants represent areas of potential overlap between learning and memory and behavioral responses to alcohol. These genes also define components shared between different ethanol behavioral responses.
Collapse
Affiliation(s)
- Karen H Berger
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Radcliffe RA, Bludeau P, Deng XS, Erwin VG, Deitrich RA. Short-term selection for acute ethanol tolerance and sensitization from an F2 population derived from the high and low alcohol-sensitive selectively bred rat lines. Alcohol 2007; 41:557-66. [PMID: 18047909 PMCID: PMC2185819 DOI: 10.1016/j.alcohol.2007.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 09/18/2007] [Accepted: 10/01/2007] [Indexed: 11/30/2022]
Abstract
Previous studies have identified quantitative trait loci (QTL) in the inbred high and low alcohol-sensitive rat (IHAS1 and ILAS1) strains. The original development of the strains involved selection for ethanol sensitivity based on duration of the loss of the righting reflex (LORR) after a standard dose of ethanol. This paper confirms some of these QTL using a short-term selection procedure based on the difference between the blood ethanol level at LORR and regain of the righting response. An F(2) population of rats was developed by a reciprocal cross of IHAS1 and ILAS1 rats. Selection for five generations was carried out using delta-blood ethanol concentration (dBEC) as the selection trait, where dBEC=BECLR (BEC at loss of righting reflex)-BECRR (BEC at regain of righting reflex). The lines were labeled tolerant (TOL) or sensitive (SENS). Approximately one-third of the offspring for each generation in each line were genotyped using DNA markers that had been previously found to be linked to QTL on chromosomes 1, 2, 5, 12, and 13. By the fifth generation of selection, the lines showed a very large difference in dBEC, BECRR, and duration of LORR; BECLR showed little segregation during the selection, and latency to lose the righting reflex showed none. IHAS allele frequency increased in the SENS line for markers on chromosomes 1, 5, 12, and 13 while ILAS allele frequency increased in the TOL line. These results were in good agreement with the two previous QTL studies. On chromosome 2, the selection resulted in an accumulation of ILAS alleles in both lines. This study provides independent confirmation of the location of QTL on chromosomes 1, 5, 12, and 13 for ethanol sensitivity. It also suggests that genetic differences in duration of LORR are mediated primarily by the dBEC phenotype.
Collapse
Affiliation(s)
- Richard A Radcliffe
- Department of Pharmaceutical Sciences, University of Colorado at Denver and Health Sciences Center, Campus Box C238, 4200 East Ninth Avenue, Denver, CO 80262, USA.
| | | | | | | | | |
Collapse
|
20
|
Acquaah-Mensah GK, Misra V, Biswal S. Ethanol sensitivity: a central role for CREB transcription regulation in the cerebellum. BMC Genomics 2006; 7:308. [PMID: 17147806 PMCID: PMC1698922 DOI: 10.1186/1471-2164-7-308] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 12/05/2006] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Lowered sensitivity to the effects of ethanol increases the risk of developing alcoholism. Inbred mouse strains have been useful for the study of the genetic basis of various drug addiction-related phenotypes. Inbred Long-Sleep (ILS) and Inbred Short-Sleep (ISS) mice differentially express a number of genes thought to be implicated in sensitivity to the effects of ethanol. Concomitantly, there is evidence for a mediating role of cAMP/PKA/CREB signalling in aspects of alcoholism modelled in animals. In this report, the extent to which CREB signalling impacts the differential expression of genes in ILS and ISS mouse cerebella is examined. RESULTS A training dataset for Machine Learning (ML) and Exploratory Data Analyses (EDA) was generated from promoter region sequences of a set of genes known to be targets of CREB transcription regulation and a set of genes whose transcription regulations are potentially CREB-independent. For each promoter sequence, a vector of size 132, with elements characterizing nucleotide composition features was generated. Genes whose expressions have been previously determined to be increased in ILS or ISS cerebella were identified, and their CREB regulation status predicted using the ML scheme C4.5. The C4.5 learning scheme was used because, of four ML schemes evaluated, it had the lowest predicted error rate. On an independent evaluation set of 21 genes of known CREB regulation status, C4.5 correctly classified 81% of instances with F-measures of 0.87 and 0.67 respectively for the CREB-regulated and CREB-independent classes. Additionally, six out of eight genes previously determined by two independent microarray platforms to be up-regulated in the ILS or ISS cerebellum were predicted by C4.5 to be transcriptionally regulated by CREB. Furthermore, 64% and 52% of a cross-section of other up-regulated cerebellar genes in ILS and ISS mice, respectively, were deemed to be CREB-regulated. CONCLUSION These observations collectively suggest that ethanol sensitivity, as it relates to the cerebellum, may be associated with CREB transcription activity.
Collapse
Affiliation(s)
- George K Acquaah-Mensah
- Department of Pharmaceutical Sciences, School of Pharmacy-Worcester, Massachusetts College of Pharmacy and Health Sciences, 19 Foster Street, Worcester MA 01608-1715, USA
| | - Vikas Misra
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe St., Baltimore MD 21205, USA
| | - Shyam Biswal
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe St., Baltimore MD 21205, USA
| |
Collapse
|
21
|
Cunningham CL, Gremel CM. Proximal ethanol pretreatment interferes with acquisition of ethanol-induced conditioned place preference. Pharmacol Biochem Behav 2006; 85:612-9. [PMID: 17141849 PMCID: PMC1797418 DOI: 10.1016/j.pbb.2006.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 10/21/2006] [Accepted: 10/25/2006] [Indexed: 10/23/2022]
Abstract
Neurobiological mechanisms underlying rewarding and aversive effects of drugs are often studied by examining effects of various pretreatments on acquisition of conditioned place preference (CPP) or conditioned place aversion (CPA). However, few studies have looked at effects of pretreatment with the same drug used during conditioning. Such studies might offer insight into agonist actions on conditioning while also mimicking real world contingencies experienced by drug users. Previous work from our laboratory, which showed that same drug pre-exposure interfered with acquisition of ethanol CPA but not CPP, was limited by the use of only one pre-treatment time interval (65 min). Thus, the present studies were designed to study other intervals (-5, -15, -30). Pretreatment of DBA/2J mice with ethanol (2 g/kg) reduced the activity response normally evoked by the conditioning dose (2 g/kg) at all pretreatment times, but acquisition of CPP was disrupted only by pretreatment at -5 min. The overall pattern of findings suggests that ethanol's early pharmacological effects interfered with learning the association between the conditioned stimulus (CS) and ethanol 5 min later. Thus, one would expect ethanol agonists, when administered in close proximity to CS-ethanol pairings, to interfere with control of ethanol seeking by that CS.
Collapse
Affiliation(s)
- Christopher L Cunningham
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR 97239-3098, USA.
| | | |
Collapse
|