1
|
Clark DN, Brown SV, Xu L, Lee RL, Ragusa JV, Xu Z, Milner JD, Filiano AJ. Prolonged STAT1 signaling in neurons causes hyperactive behavior. Brain Behav Immun 2025; 124:1-8. [PMID: 39542073 PMCID: PMC11745914 DOI: 10.1016/j.bbi.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/29/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
The interferon (IFN)-induced STAT1 signaling pathway is a canonical immune pathway that has also been implicated in regulating neuronal activity. The pathway is enriched in brains of individuals with autism spectrum disorder (ASD) and schizophrenia (SZ). Over-activation of the STAT1 pathway causes pathological transcriptional responses, however it is unclear how these responses might translate into behavioral phenotypes. We hypothesized that prolonged STAT1 signaling in neurons would be sufficient to cause behavioral deficits associated with neurodevelopmental disorders. In this study, we developed a novel mouse model with the clinical STAT1 gain-of-function mutation, T385M, in neurons. These mice were hyperactive and displayed neural hypoactivity with less neuron counts in the caudate putamen. Driving the STAT1 gain-of-function mutation exclusively in dopaminergic neurons, which project to the caudate putamen of the dorsal striatum, mimicked some hyperactive behaviors without a reduction of neurons. Moreover, we demonstrated that this phenotype is neuron specific, as mice with prolonged STAT1 signaling in all excitatory or inhibitory neurons or in microglia were not hyperactive. Overall, these findings suggest that STAT1 signaling in neurons is a crucial player in regulating striatal neuron activity and aspects of motor behavior.
Collapse
Affiliation(s)
- Danielle N Clark
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA; Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Shelby V Brown
- Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Li Xu
- Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Rae-Ling Lee
- Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Joey V Ragusa
- Department of Pathology, Duke University, Durham, NC, USA
| | - Zhenghao Xu
- Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Joshua D Milner
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Anthony J Filiano
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA; Marcus Center for Cellular Cures, Duke University, Durham, NC, USA; Department of Pathology, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Heesbeen EJ, van Kampen T, Verdouw PM, van Lissa C, Bijlsma EY, Groenink L. The effect of SSRIs on unconditioned anxiety: a systematic review and meta-analysis of animal studies. Psychopharmacology (Berl) 2024; 241:1731-1755. [PMID: 38980348 PMCID: PMC11339141 DOI: 10.1007/s00213-024-06645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
RATIONALE Selective serotonin reuptake inhibitors (SSRIs) are the first choice of treatment for anxiety-like disorders. However, which aspects of anxiety are affected by SSRIs is not yet fully understood. OBJECTIVE We aimed to systematically review the effect of six clinically effective SSRIs on four aspects of unconditioned anxiety: approach-avoidance behaviour (elevated plus maze), repetitive behaviour (marble burying), distress behaviour (ultrasonic vocalization), and activation of the autonomous nervous system (stress-induced hyperthermia). METHODS We identified publications by searching Medline and Embase databases and assessed the risk of bias. A random effects meta-analysis was performed and moderator effects were analysed with Bayesian penalized meta-regression. RESULTS Our search yielded 105 elevated plus maze, 63 marble burying, 11 ultrasonic vocalization, and 7 stress-induced hyperthermia articles. Meta-analysis suggested that SSRIs reduce anxiety-like behaviour in the elevated plus maze, marble burying and ultrasonic vocalization test and that effects are moderated by pre-existing stress conditions (elevated plus maze) and dose dependency (marble burying) but not by duration of treatment or type of SSRI. The reporting quality was low, publication bias was likely, and heterogeneity was high. CONCLUSION SSRIs seem to reduce a broad range of unconditioned anxiety-associated behaviours. These results should be interpreted with caution due to a high risk of bias, likely occurrence of publication bias, substantial heterogeneity and limited moderator data availability. Our review demonstrates the importance of including bias assessments when interpreting meta-analysis results. We further recommend improving the reporting quality, the conduct of animal research, and the publication of all results regardless of significance.
Collapse
Affiliation(s)
- Elise J Heesbeen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Tatum van Kampen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - P Monika Verdouw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Caspar van Lissa
- Department of Methodology, Tilburg University, Tilburg, The Netherlands
| | - Elisabeth Y Bijlsma
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Trujillo V, Camilo TA, Valentim-Lima E, Carbalan QSR, Dos-Santos RC, Felintro V, Reis LC, Lustrino D, Rorato R, Mecawi AS. Neonatal treatment with para-chlorophenylalanine (pCPA) induces adolescent hyperactivity associated with changes in the paraventricular nucleus Crh and Trh expressions. Behav Brain Res 2024; 462:114867. [PMID: 38246394 DOI: 10.1016/j.bbr.2024.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Disruption of the brain serotoninergic (5-HT) system during development induces long-lasting changes in molecular profile, cytoarchitecture, and function of neurons, impacting behavioral regulation throughout life. In male and female rats, we investigate the effect of neonatal tryptophan hydroxylase (TPH) inhibition by using para-chlorophenylalanine (pCPA) on the expression of 5-HTergic system components and neuropeptides related to adolescent social play behavior regulation. We observed sex-dependent 5-HT levels decrease after pCPA-treatment in the dorsal raphe nucleus (DRN) at 17 and 35 days. Neonatal pCPA-treatment increased playing, social and locomotory behaviors assessed in adolescent rats of both sexes. The pCPA-treated rats demonstrated decreased Crh (17 days) and increased Trh (35 days) expression in the hypothalamic paraventricular nucleus (PVN). There was sex dimorphism in Htr2c (17 days) and VGF (35 days) in the prefrontal cortex, with the females expressing higher levels of it than males. Our results indicate that neonatal pCPA-treatment results in a long-lasting and sex-dependent DRN 5-HT synthesis changes, decreased Crh, and increased Trh expression in the PVN, resulting in a hyperactivity-like phenotype during adolescence. The present work demonstrates that the impairment of TPH function leads to neurobehavioral disorders related to hyperactivity and impulsivity, such as attention deficit hyperactivity disorder (ADHD).
Collapse
Affiliation(s)
- Verónica Trujillo
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Department of Physiology, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Tays Araújo Camilo
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Evandro Valentim-Lima
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Quézia S R Carbalan
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Brazil
| | - Raoni C Dos-Santos
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Brazil
| | - Viviane Felintro
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Brazil
| | - Luís C Reis
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Brazil
| | - Danilo Lustrino
- Laboratory of Basic and Behavioral Neuroendocrinology, Department of Physiology, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe (UFS), São Cristóvão, Brazil
| | - Rodrigo Rorato
- Laboratory of Stress Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - André S Mecawi
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
4
|
Suzuki N, Hiraide S, Shikanai H, Isshiki T, Yamaguchi T, Izumi T, Iizuka K. Impaired monoamine neural system in the mPFC of SHRSP/Ezo as an animal model of attention-deficit/hyperactivity disorder. J Pharmacol Sci 2024; 154:61-71. [PMID: 38246729 DOI: 10.1016/j.jphs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is the most common childhood-onset psychiatric disorder. We investigated the effects of systemic administration of monoamine reuptake inhibitors on long-term potentiation (LTP) formation and monoamine release in the medial prefrontal cortex (mPFC) of the stroke-prone spontaneously hypertensive rat (SHRSP)/Ezo, an animal model of ADHD, and its genetic control, Wistar Kyoto (WKY)/Ezo, to elucidate the functional changes in the mPFC monoamine neural system. Methylphenidate (dopamine (DA) and noradrenaline (NA) reuptake inhibitor) and desipramine (NA reuptake inhibitor) improved LTP formation defects in the mPFC of SHRSP/Ezo, suggesting that NA or both DA and NA are required for improvement of impaired LTP. Methylphenidate increased mPFC DA in both WKY/Ezo and SHRSP/Ezo, but the increase was greater in the former. GBR-12909 (DA reuptake inhibitor) increased mPFC DA in WKY/Ezo but had no effect in SHRSP/Ezo. This may be because DA transporter in SHRSP/Ezo is functionally impaired and contributes less to DA reuptake, so its inhibition did not increase DA level. Meanwhile, basal DA levels in the mPFC of SHRSP/Ezo were paradoxically decreased. These results suggest that functional changes in the DA and NA neural system in the frontal lobe are involved in the pathology of ADHD.
Collapse
Affiliation(s)
- Naoya Suzuki
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Sachiko Hiraide
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Hiroki Shikanai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan.
| | - Takeru Isshiki
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Taku Yamaguchi
- Department of Pharmacotherapeutics and Neuropsychopharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, 2825-7 Huis Ten Bosch Sasebo, Nagasaki, 859-3298, Japan
| | - Takeshi Izumi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Kenji Iizuka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| |
Collapse
|
5
|
Bagchi S, Nozohouri E, Ahn Y, Patel D, Bickel U, Karamyan VT. Systemic and Brain Pharmacokinetics of Milnacipran in Mice: Comparison of Intraperitoneal and Intravenous Administration. Pharmaceutics 2023; 16:53. [PMID: 38258064 PMCID: PMC10819729 DOI: 10.3390/pharmaceutics16010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Milnacipran is a dual serotonin and norepinephrine reuptake inhibitor, clinically used for the treatment of major depression or fibromyalgia. Currently, there are no studies reporting the pharmacokinetics (PK) of milnacipran after intraperitoneal (IP) injection, despite this being the primary administration route in numerous experimental studies using the drug. Therefore, the present study was designed to investigate the PK profile of IP-administered milnacipran in mice and compare it to the intravenous (IV) route. First a liquid chromatography-mass spectrometry (LC-MS/MS) method was developed and validated to accurately quantify milnacipran in biological samples. The method was used to quantify milnacipran in blood and brain samples collected at various time-points post-administration. Non-compartmental and PK analyses were employed to determine key PK parameters. The maximum concentration (Cmax) of the drug in plasma was at 5 min after IP administration, whereas in the brain, it was at 60 min for both routes of administration. Curiously, the majority of PK parameters were similar irrespective of the administration route, and the bioavailability was 92.5% after the IP injection. These findings provide insight into milnacipran's absorption, distribution, and elimination characteristics in mice after IP administration for the first time and should be valuable for future pharmacological studies.
Collapse
Affiliation(s)
- Sounak Bagchi
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.B.); (E.N.); (Y.A.)
| | - Ehsan Nozohouri
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.B.); (E.N.); (Y.A.)
| | - Yeseul Ahn
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.B.); (E.N.); (Y.A.)
| | - Dhavalkumar Patel
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.B.); (E.N.); (Y.A.)
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.B.); (E.N.); (Y.A.)
| | - Vardan T. Karamyan
- Department of Foundational Medical Studies, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
6
|
Shindo T, Shikanai H, Watarai A, Hiraide S, Iizuka K, Izumi T. D-serine metabolism in the medial prefrontal cortex, but not the hippocampus, is involved in AD/HD-like behaviors in SHRSP/Ezo. Eur J Pharmacol 2022; 923:174930. [PMID: 35364072 DOI: 10.1016/j.ejphar.2022.174930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/03/2022] [Accepted: 03/25/2022] [Indexed: 12/26/2022]
Abstract
Attention-deficit/hyperactivity disorder (AD/HD) is a mild neurodevelopmental disorder with inattention, hyperactivity, and impulsivity as its core symptoms. We previously revealed that an AD/HD animal model, juvenile stroke-prone spontaneously hypertensive rats (SHRSP/Ezo) exhibited functional abnormalities in N-methyl-D-aspartate (NMDA) receptors in the prefrontal cortex. D-serine is an endogenous co-ligand that acts on the glycine-binding site of NMDA receptors, which is essential for the physiological activation of NMDA receptors. We herein performed neurochemical and pharmacological behavioral experiments to elucidate dysfunctions in D-serine metabolism (namely, biosynthesis and catabolism) associated to AD/HD. The serine enantiomers ratio (D-serine/D-serine + L-serine, DL ratio) in the medial prefrontal cortex (mPFC) and hippocampus (HIP) was lower in SHRSP/Ezo than in its genetic control. The level of D-amino acid oxidase (DAAO, D-serine degrading enzyme) was higher in the mPFC, and the level of serine racemase (SR, D-serine biosynthetic enzyme), was lower in the HIP in SHRSP/Ezo. Thus, changes in these enzymes may contribute to the lower DL ratio of SHRSP/Ezo. Moreover, a microinjection of a DAAO inhibitor into the mPFC in SHRSP/Ezo increased DL ratio and attenuated AD/HD-like behaviors, such as inattention and hyperactivity, in the Y-maze test. Injection into the HIP also increased the DL ratio, but had no effect on behaviors. These results suggest that AD/HD-like behaviors in SHRSP/Ezo are associated with an abnormal D-serine metabolism underlying NMDA receptor dysfunction in the mPFC. These results will contribute to elucidating the pathogenesis of AD/HD and the development of new treatment strategies for AD/HD.
Collapse
Affiliation(s)
- Tsugumi Shindo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Science University of Hokkaido, Japan
| | - Hiroki Shikanai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Science University of Hokkaido, Japan; Advanced Research Promotion Center, Health Science University of Hokkaido, Japan.
| | - Akane Watarai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Science University of Hokkaido, Japan
| | - Sachiko Hiraide
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Science University of Hokkaido, Japan
| | - Kenji Iizuka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Science University of Hokkaido, Japan
| | - Takeshi Izumi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Science University of Hokkaido, Japan; Advanced Research Promotion Center, Health Science University of Hokkaido, Japan
| |
Collapse
|
7
|
Yaoita F, Namura K, Shibata K, Sugawara S, Tsuchiya M, Tadano T, Tan-No K. Involvement of the Hippocampal Alpha2A-Adrenoceptors in Anxiety-Related Behaviors Elicited by Intermittent REM Sleep Deprivation-Induced Stress in Mice. Biol Pharm Bull 2020; 43:1226-1234. [PMID: 32741943 DOI: 10.1248/bpb.b20-00255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Attention deficit/hyperactivity disorder (AD/HD) is a neurodevelopmental disorder characterized by inattention, hyperactivity, and impulsivity. In patients with AD/HD, a decrease in the total and rapid eye movement (REM) sleep times has been observed. We have previously reported that mice with REM sleep deprivation-induced stress (REMSD) may show the hyperactivity- and inattention-like symptoms of AD/HD. However, in this model, impulsivity has not yet been investigated. Impulsivity and anxiety-related behaviors are evaluated by the elevated plus maze test (EPM). In this study, we investigated whether REMSD causes changes in the EPM and expression of alpha2A-adrenoceptors in the hippocampus and frontal cortex in a mouse model. Mice were deprived of REM sleep intermittently using the small-platform method (20 h/d) for 3 d. The time spent in the open arm and the expression levels of alpha2A-adrenoceptor in the hippocampus were significantly increased and decreased, respectively, by the REMSD. The time spent in the open arm was significantly limited by oxymetazoline (an alpha2A-adrenoceptor agonist), methylphenidate, and atomoxetine, which are clinically used to treat AD/HD. Moreover, the positive effects of oxymetazoline were attenuated by yohimbine and BRL44408, which are selective alpha2- and alpha2A-adrenoceptor antagonists, respectively. These results suggest that the increase in the time spent in the open arm induced by REMSD may serve as a model of impulsivity in AD/HD. Furthermore, the REMSD eliciting impulsivity-like behavior and the low-levels of anxiety may be linked to alpha2A-adrenoceptor signaling, as indicated by a decrease in alpha2A-adrenoceptor signaling, particularly in the mouse hippocampus.
Collapse
Affiliation(s)
- Fukie Yaoita
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Kouta Namura
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Kaede Shibata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Sayaka Sugawara
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | | | - Takeshi Tadano
- Complementary and Alternative Medicine Clinical Research and Development, Graduate School of Medicine Sciences, Kanazawa University
| | - Koichi Tan-No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
8
|
Azechi H, Hakamada K, Yamamoto T. A new inbred strain of Fawn-Hooded rats demonstrates mania-like behavioural and monoaminergic abnormalities. IBRO Rep 2019; 7:98-106. [PMID: 31763490 PMCID: PMC6861655 DOI: 10.1016/j.ibror.2019.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/02/2019] [Indexed: 01/06/2023] Open
Abstract
The Fawn-Hooded (FH) rat carries a gene mutation that results in a dysfunctional serotoninergic system. However, previous studies have reported differing features between the FH/Wjd and FH/Har strains. We aimed to compare the behavioural and neurobiological features of FH/HamSlc rats with those of Fischer 344 rats. We performed the open field, elevated minus-maze, Y-maze spontaneous alternation, and forced swim tests to investigate behavioural alterations. We also assessed neurobiological characteristics by quantifying monoamines and their related compounds in the prefrontal cortex, hippocampus, and striatum using high-performance liquid chromatography with an electrochemical detection system. FH/HamSlc rats showed hyperactivity and a high impulsivity tendency in the open field and the elevated minus maze test, but no cognitive dysfunction. In addition, the hyperactivity was suppressed immediately after the forced swim test. FH/HamSlc rats showed low dopamine levels, but high dopamine turnover in the striatum. Serotonin and noradrenaline levels were low in the prefrontal cortex and the hippocampus of FH/HamSlc rats, but high serotonin turnover was observed in the prefrontal cortex, hippocampus, and striatum. FH/HamSlc rats show (1) mania-like behavioural characteristics that are different from those of other strains of FH rats; (2) stimulus dependent suppression of hyperactivity similar to the clinical findings that exercise alleviates the symptoms of bipolar disorder; and (3) monoaminergic dysregulation such as monoamine imbalance and hyperturnover that may be associated with mania-related behavioural characteristics. Thus, the FH/HamSlc rat is a new animal model for mania including bipolar disorder.
Collapse
Key Words
- 5-HIAA, 5-hydroxyindoleacetic acid
- 5-HT, serotonin
- ADHD, attention-deficit hyperactivity disorder
- Bipolar mania model
- DA, dopamine
- DOPAC, 3,4-dihydroxyphenylacetic acid
- FH, Fawn-Hooded
- Fawn-Hooded rat
- HPLC, high-performance liquid chromatography
- HVA, homovanillic acid
- Hyperactivity
- Impulsivity
- MAO-A, monoamine oxidase A
- MHPG, 3-methoxy-4-hydroxyphenylglycol
- Monoaminergic dysregulation
- NA, noradrenaline
- PCA, perchloric acid
- SEM, standard error of the mean
- Stimulus responsivity
- TPH2, tryptophan hydroxylase 2
Collapse
Affiliation(s)
- Hirotsugu Azechi
- Department of Psychology, Tezukayama University, Nara 631-8585, Japan
| | - Kōsuke Hakamada
- Department of Neurophysiology and Cognitive Neuroscience, Graduate School of Psychological Sciences, Tezukayama University, Nara 631-8585, Japan
| | - Takanobu Yamamoto
- Department of Psychology, Tezukayama University, Nara 631-8585, Japan.,Department of Neurophysiology and Cognitive Neuroscience, Graduate School of Psychological Sciences, Tezukayama University, Nara 631-8585, Japan
| |
Collapse
|
9
|
Leffa DT, Panzenhagen AC, Salvi AA, Bau CHD, Pires GN, Torres ILS, Rohde LA, Rovaris DL, Grevet EH. Systematic review and meta-analysis of the behavioral effects of methylphenidate in the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. Neurosci Biobehav Rev 2019; 100:166-179. [PMID: 30826386 DOI: 10.1016/j.neubiorev.2019.02.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 12/19/2022]
Abstract
The spontaneously hypertensive rats (SHR) are the most widely used model for ADHD. While face and construct validity are consolidated, questions remain about the predictive validity of the SHR model. We aim at summarizing the evidence for the predictive validity of SHR by evaluating its ability to respond to methylphenidate (MPH), the most well documented treatment for ADHD. A systematic review was carried out to identify studies evaluating MPH effects on SHR behavior. Studies (n=36) were grouped into locomotion, attention, impulsivity or memory, and a meta-analysis was performed. Meta-regression, sensitivity, heterogeneity, and publication bias analyses were also conducted. MPH increased attentional and mnemonic performances in the SHR model and decreased impulsivity in a dose-dependent manner. However, MPH did not reduce hyperactivity in low and medium doses, while increased locomotor activity in high doses. Thus, since the paradoxical effect of stimulant in reducing hyperactivity was not observed in the SHR model, our study does not fully support the predictive validity of SHR, questioning their validity as an animal model for ADHD.
Collapse
Affiliation(s)
- Douglas T Leffa
- Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Pre-clinical studies - Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alana C Panzenhagen
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil
| | - Artur A Salvi
- Laboratory of Pain Pharmacology and Neuromodulation: Pre-clinical studies - Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton H D Bau
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil; Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriel N Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Iraci L S Torres
- Laboratory of Pain Pharmacology and Neuromodulation: Pre-clinical studies - Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit - GPPG - Hospital de Clínicas de Porto Alegre - Porto, Alegre, Brazil
| | - Luis A Rohde
- ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil; Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents, Brazil
| | - Diego L Rovaris
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil; Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Eugenio H Grevet
- ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Brazil; Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
10
|
Kawamura H, Mitsubayashi H, Ikeda K, Kawakami K, Nabika T. Chronobiological characteristics of locomotor activity in congenic rats (SHRSPwch1.0) and their effects on arterial pressure. Clin Exp Hypertens 2019; 42:43-51. [PMID: 30724620 DOI: 10.1080/10641963.2019.1571598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hiroshi Kawamura
- MJG Cardiovascular Institute, Blood Pressure Center, Saitama-shi, Japan
| | | | - Katsumi Ikeda
- Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya-shi, Japan
| | - Kohei Kawakami
- Department of Experimental Animals Interdisciplinary Center for Science Research, Shimane University, Izumo, Japan
| | - Toru Nabika
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
11
|
Yaoita F, Tsuchiya M, Arai Y, Tadano T, Tan-No K. Involvement of catecholaminergic and GABAAergic mediations in the anxiety-related behavior in long-term powdered diet-fed mice. Neurochem Int 2018; 124:1-9. [PMID: 30529642 DOI: 10.1016/j.neuint.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 11/26/2022]
Abstract
Dietary habits are important factors which affect metabolic homeostasis and the development of emotion. We have previously shown that long-term powdered diet feeding in mice increases spontaneous locomotor activity and social interaction (SI) time. Moreover, that diet causes changes in the dopaminergic system, especially increased dopamine turnover and decreased dopamine D4 receptor signals in the frontal cortex. Although the increased SI time indicates low anxiety, the elevated plus maze (EPM) test shows anxiety-related behavior and impulsive behavior. In this study, we investigated whether the powdered diet feeding causes changes in anxiety-related behavior. Mice fed a powdered diet for 17 weeks from weaning were compared with mice fed a standard diet (control). The percentage (%) of open arm time and total number of arm entries were increased in powdered diet-fed mice in the EPM test. We also examined the effects of diazepam, benzodiazepine anti-anxiety drug, bicuculline, GABA-A receptor antagonist, methylphenidate, dopamine transporter (DAT) and noradrenaline transporter (NAT) inhibitor, atomoxetine, selective NAT inhibitor, GBR12909, selective DAT inhibitor, and PD168077, selective dopamine D4 receptor agonist, on the changes of the EPM in powdered diet-fed mice. Methylphenidate and atomoxetine are clinically used to treat attention deficit/hyperactivity disorder (ADHD) symptoms. The % of open arm time in powdered diet-fed mice was decreased by treatments of atomoxetine, methylphenidate and PD168077. Diazepam increased the % of open arm time in control diet-fed mice, but not in powdered diet-fed mice. The powdered diet feeding induced a decrease in GABA transaminase, GABA metabolic enzymes, in the frontal cortex. Moreover, the powdered diet feeding induced an increase in NAT expression, but not DAT expression, in the frontal cortex. These results suggest that the long-term powdered diet feeding may cause low anxiety or impulsivity, possibly via noradrenergic and/or dopaminergic, and GABAAergic mediations and increase the risk for onset of ADHD-like behaviors.
Collapse
Affiliation(s)
- Fukie Yaoita
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan.
| | - Masahiro Tsuchiya
- Department of Nursing, Tohoku Fukushi University, 1-8-1 Kunimi, Aoba-ku, Sendai, 981-8522, Japan
| | - Yuichiro Arai
- Tokyo Ariake University of Medical and Health Science, 2-9-1 Ariake, Koto-Ku, Tokyo, 135-0063, Japan
| | - Takeshi Tadano
- Complementary and Alternative Medicine Clinical Research and Development, Graduate School of Medicine Sciences, Kanazawa University, Kakumamachi, Kanazawa, 920-1192, Japan
| | - Koichi Tan-No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| |
Collapse
|
12
|
Shikanai H, Oshima N, Kawashima H, Kimura SI, Hiraide S, Togashi H, Iizuka K, Ohkura K, Izumi T. N-methyl-d-aspartate receptor dysfunction in the prefrontal cortex of stroke-prone spontaneously hypertensive rat/Ezo as a rat model of attention deficit/hyperactivity disorder. Neuropsychopharmacol Rep 2018; 38:61-66. [PMID: 30106260 PMCID: PMC7292284 DOI: 10.1002/npr2.12007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 11/07/2022] Open
Abstract
AIM We previously reported that stroke-prone spontaneously hypertensive rat/Ezo (SHRSP/Ezo) has high validity as an attention deficit/hyperactivity disorder (AD/HD) animal model, based on its behavioral phenotypes, such as inattention, hyperactivity, and impulsivity. Fronto-cortical dysfunction is implicated in the pathogenesis of AD/HD. In this study, we investigated prefrontal cortex (PFC) function in SHRSP/Ezo rats by electrophysiological methods and radioreceptor assay. METHODS We recorded excitatory postsynaptic potential in layer V pyramidal neurons in the PFC by intracellular recording method to assess synaptic plasticity in the form of long-term potentiation (LTP). We also performed N-methyl-d-aspartate acid (NMDA) receptor binding assay in the PFC and hippocampus using radiolabeled NMDA receptor antagonist [3 H]MK-801. RESULTS Theta-burst stimulation induced LTP in the PFC of genetic control, WKY/Ezo, whereas failed to induce LTP in that of SHRSP/Ezo. The Kd value of [3 H]MK-801 binding for NMDA receptors in the PFC of SHRSP/Ezo was higher than in the WKY/Ezo. Neither the Bmax nor Kd of [3 H]MK-801 binding in the SHRSP/Ezo hippocampus was significantly different to WKY/Ezo. CONCLUSION These results suggest that the AD/HD animal model SHRSP/Ezo has NMDA receptor dysfunction in the PFC.
Collapse
Affiliation(s)
- Hiroki Shikanai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Nobuhiro Oshima
- Department of Biophysical Sciences, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Hidekazu Kawashima
- Department of Biophysical Sciences, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Shin-Ichi Kimura
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Sachiko Hiraide
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Hiroko Togashi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Kenji Iizuka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Kazue Ohkura
- Department of Biophysical Sciences, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Takeshi Izumi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| |
Collapse
|
13
|
Girotti M, Adler SM, Bulin SE, Fucich EA, Paredes D, Morilak DA. Prefrontal cortex executive processes affected by stress in health and disease. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:161-179. [PMID: 28690203 PMCID: PMC5756532 DOI: 10.1016/j.pnpbp.2017.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 11/23/2022]
Abstract
Prefrontal cortical executive functions comprise a number of cognitive capabilities necessary for goal directed behavior and adaptation to a changing environment. Executive dysfunction that leads to maladaptive behavior and is a symptom of psychiatric pathology can be instigated or exacerbated by stress. In this review we survey research addressing the impact of stress on executive function, with specific focus on working memory, attention, response inhibition, and cognitive flexibility. We then consider the neurochemical pathways underlying these cognitive capabilities and, where known, how stress alters them. Finally, we review work exploring potential pharmacological and non-pharmacological approaches that can ameliorate deficits in executive function. Both preclinical and clinical literature indicates that chronic stress negatively affects executive function. Although some of the circuitry and neurochemical processes underlying executive function have been characterized, a great deal is still unknown regarding how stress affects these processes. Additional work focusing on this question is needed in order to make progress on developing interventions that ameliorate executive dysfunction.
Collapse
Affiliation(s)
- Milena Girotti
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA.
| | - Samantha M Adler
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Sarah E Bulin
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Elizabeth A Fucich
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Denisse Paredes
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - David A Morilak
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| |
Collapse
|
14
|
Adult Brain Serotonin Deficiency Causes Hyperactivity, Circadian Disruption, and Elimination of Siestas. J Neurosci 2017; 36:9828-42. [PMID: 27656022 DOI: 10.1523/jneurosci.1469-16.2016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/03/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Serotonin (5-HT) is a crucial neuromodulator linked to many psychiatric disorders. However, after more than 60 years of study, its role in behavior remains poorly understood, in part because of a lack of methods to target 5-HT synthesis specifically in the adult brain. Here, we have developed a genetic approach that reproducibly achieves near-complete elimination of 5-HT synthesis from the adult ascending 5-HT system by stereotaxic injection of an adeno-associated virus expressing Cre recombinase (AAV-Cre) into the midbrain/pons of mice carrying a loxP-conditional tryptophan hydroxylase 2 (Tph2) allele. We investigated the behavioral effects of deficient brain 5-HT synthesis and discovered a unique composite phenotype. Surprisingly, adult 5-HT deficiency did not affect anxiety-like behavior, but resulted in a robust hyperactivity phenotype in novel and home cage environments. Moreover, loss of 5-HT led to an altered pattern of circadian behavior characterized by an advance in the onset and a delay in the offset of daily activity, thus revealing a requirement for adult 5-HT in the control of daily activity patterns. Notably, after normalizing for hyperactivity, we found that the normal prolonged break in nocturnal activity (siesta), a period of rapid eye movement (REM) and non-REM sleep, was absent in all animals in which 5-HT deficiency was verified. Our findings identify adult 5-HT as a requirement for siestas, implicate adult 5-HT in sleep-wake homeostasis, and highlight the importance of our adult-specific 5-HT-synthesis-targeting approach in understanding 5-HT's role in controlling behavior. SIGNIFICANCE STATEMENT Serotonin (5-HT) is a crucial neuromodulator, yet its role in behavior remains poorly understood, in part because of a lack of methods to target specifically adult brain 5-HT synthesis. We developed an approach that reproducibly achieves near-complete elimination of 5-HT synthesis from the adult ascending 5-HT system. Using this technique, we discovered that adult 5-HT deficiency led to a novel compound phenotype consisting of hyperactivity, disrupted circadian behavior patterns, and elimination of siestas, a period of increased sleep during the active phase. These findings highlight the importance of our approach in understanding 5-HT's role in behavior, especially in controlling activity levels, circadian behavior, and sleep-wake homeostasis, behaviors that are disrupted in many psychiatric disorders such as attention deficit hyperactivity disorder.
Collapse
|
15
|
Effects of methylphenidate on the impairment of spontaneous alternation behavior in mice intermittently deprived of REM sleep. Neurochem Int 2016; 100:128-137. [DOI: 10.1016/j.neuint.2016.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 01/16/2023]
|
16
|
Sigurdardottir HL, Kranz GS, Rami-Mark C, James GM, Vanicek T, Gryglewski G, Kautzky A, Hienert M, Traub-Weidinger T, Mitterhauser M, Wadsak W, Hacker M, Rujescu D, Kasper S, Lanzenberger R. Effects of norepinephrine transporter gene variants on NET binding in ADHD and healthy controls investigated by PET. Hum Brain Mapp 2015; 37:884-95. [PMID: 26678348 PMCID: PMC4949568 DOI: 10.1002/hbm.23071] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 01/08/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a heterogeneous disorder with a strong genetic component. The norepinephrine transporter (NET) is a key target for ADHD treatment and the NET gene has been of high interest as a possible modulator of ADHD pathophysiology. Therefore, we conducted an imaging genetics study to examine possible effects of single nucleotide polymorphisms (SNPs) within the NET gene on NET nondisplaceable binding potential (BPND ) in patients with ADHD and healthy controls (HCs). Twenty adult patients with ADHD and 20 HCs underwent (S,S)-[18F]FMeNER-D2 positron emission tomography (PET) and were genotyped on a MassARRAY MALDI-TOF platform using the Sequenom iPLEX assay. Linear mixed models analyses revealed a genotype-dependent difference in NET BPND between groups in the thalamus and cerebellum. In the thalamus, a functional promoter SNP (-3081 A/T) and a 5'-untranslated region (5'UTR) SNP (-182 T/C), showed higher binding in ADHD patients compared to HCs depending on the major allele. Furthermore, we detected an effect of genotype in HCs, with major allele carriers having lower binding. In contrast, for two 3'UTR SNPs (*269 T/C, *417 A/T), ADHD subjects had lower binding in the cerebellum compared to HCs depending on the major allele. Additionally, symptoms of hyperactivity and impulsivity correlated with NET BPND in the cerebellum depending on genotype. Symptoms correlated positively with cerebellar NET BPND for the major allele, while symptoms correlated negatively to NET BPND in minor allele carriers. Our findings support the role of genetic influence of the NE system on NET binding to be pertubated in ADHD.
Collapse
Affiliation(s)
- Helen L Sigurdardottir
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Christina Rami-Mark
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Gregory M James
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Alexander Kautzky
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Marius Hienert
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Tatjana Traub-Weidinger
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Dan Rujescu
- Department of Psychiatry, University of Halle, Halle, Germany
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Does serotonin deficit mediate susceptibility to ADHD? Neurochem Int 2015; 82:52-68. [DOI: 10.1016/j.neuint.2015.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/18/2015] [Accepted: 02/07/2015] [Indexed: 11/21/2022]
|
18
|
Kishikawa Y, Kawahara Y, Yamada M, Kaneko F, Kawahara H, Nishi A. The spontaneously hypertensive rat/Izm (SHR/Izm) shows attention deficit/hyperactivity disorder-like behaviors but without impulsive behavior: therapeutic implications of low-dose methylphenidate. Behav Brain Res 2014; 274:235-42. [PMID: 25151620 DOI: 10.1016/j.bbr.2014.08.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 01/20/2023]
Abstract
The spontaneously hypertensive rat (SHR) has been used as a genetic animal model of attention deficit/hyperactivity disorder (ADHD). SHR/Izm is derived from stroke-resistant SHR as SHR/NIH and SHR/NCrl but from 22nd to 23rd generation descendants of the SHR/NIH ancestor and therefore may show different behavioral phenotypes compared to other SHR sub-strains. In this study, ADHD-like behaviors in SHR/Izm were evaluated compared to Wistar rats. SHR/Izm showed high locomotor activity in the habituation phase in a novel environment, although locomotor activity in the initial exploratory phase was low. In a behavioral test for attention, spontaneous alternation behavior in the Y-maze test was impaired in SHR/Izm. However, impulsive behavior in the elevated-plus maze test, which is designed to detect anxiety-related behavior but also reflects impulsivity for novelty seeking, was comparable to Wistar rats. Hyperactivity and inattention, detected as ADHD-like behaviors in SHR/Izm, were ameliorated with methylphenidate at a low dose (0.05mg/kg, i.p.). Therefore, SHR/Izm represents a unique animal model of ADHD without anxiety-related impulsive behavior.
Collapse
Affiliation(s)
- Yuki Kishikawa
- Department of Pharmacology, Kurume University School of Medicine, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan.
| | - Yukie Kawahara
- Department of Pharmacology, Kurume University School of Medicine, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan.
| | - Makiko Yamada
- Department of Pharmacology, Kurume University School of Medicine, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan; Department of Psychiatry, Tokyo Women's Medical University, Kawada-Cho 8-1, Shinjuku-ku, Tokyo 168-8666, Japan.
| | - Fumi Kaneko
- Department of Pharmacology, Kurume University School of Medicine, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan.
| | - Hiroshi Kawahara
- Department of Dental Anesthesiology, School of Dentistry, Tsurumi University, Tsurumi 2-1-3, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan.
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan.
| |
Collapse
|
19
|
Yabuki Y, Shioda N, Maeda T, Hiraide S, Togashi H, Fukunaga K. Aberrant CaMKII activity in the medial prefrontal cortex is associated with cognitive dysfunction in ADHD model rats. Brain Res 2014; 1557:90-100. [DOI: 10.1016/j.brainres.2014.02.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/21/2014] [Accepted: 02/12/2014] [Indexed: 01/11/2023]
|