1
|
Bahi A. Hippocampal overexpression of tissue-type plasminogen activator "tPA" attenuates social defeat-induced depression and ethanol related behavior in mice. Alcohol 2025; 125:1-15. [PMID: 39938666 DOI: 10.1016/j.alcohol.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/01/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Depression and anxiety disorders are often exacerbated by social stress, necessitating the exploration of molecular mechanisms underlying stress resilience. Tissue plasminogen activator (tPA), a serine protease with pleiotropic effects in the brain, plays a critical role in modulating neuroplasticity and stress responses. This study investigates the behavioral and molecular effects of tPA gain-of-function in a social stress paradigm in male C57BL/6 mice using lentiviral vectors. Behaviorally, hippocampal tPA gain-of-function mitigated depression-like responses in the novelty-suppressed feeding, sucrose splash, tail suspension, and forced swim tests following exposure to chronic social stress. Additionally, in a two-bottle choice drinking paradigm, tPA overexpression reduced social stress-induced ethanol intake and preference, suggesting a role in dampening maladaptive coping behaviors. However, analysis of tastants' intake and preference revealed no significant effects of tPA overexpression, indicating that it does not influence hedonic responses under stress conditions. Molecularly, tPA overexpression preserved hippocampal tPA mRNA expression and maintained levels of mature brain-derived neurotrophic factor in the hippocampus despite chronic stress exposure. These findings highlight the potential neuroprotective effects of tPA in maintaining hippocampal plasticity and mitigating stress-induced dysregulation of critical neurotrophic pathways. Collectively, this study underscores the potential of tPA as a therapeutic target for stress-induced mood and substance use disorders by modulating behavioral and neurobiological responses to chronic social stress.
Collapse
Affiliation(s)
- Amine Bahi
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates; Center of Medical & Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; College of Medicine & Health Sciences, UAEU, Al Ain, United Arab Emirates.
| |
Collapse
|
2
|
Kusumo LE, Gilley-Connor KR, Johnson MG, Hall GM, Gillett AE, McCready RG, Vichaya EG. Hyperglycemia sensitizes female mice to stress-induced depressive-like behavior in an inflammation-independent manner. Psychoneuroendocrinology 2024; 169:107151. [PMID: 39098101 DOI: 10.1016/j.psyneuen.2024.107151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Depression is a multifaceted disorder that represents one of the most common causes of disability. The risk for developing depression is increased in women and among individuals with chronic diseases. For example, individuals in the United States with diabetes mellitus (DM) are at a twofold increased risk of developing depression compared to the general population and approximately one-quarter of women with diabetes have comorbid depression. The neurobiological mechanisms underlying this association between diabetes and depression is not fully understood and is particularly under-investigated in female models. We sought to explore the role of neuroinflammation in diabetes-induced depression in a female mouse model of hyperglycemia. METHODS To this end, we utilized female C57BL/6 J mice to (1) characterize the depressive-like symptoms in response to 75 mg/kg/day dose of streptozotocin (STZ) over 5 days, a dose reported to induce hyperglycemia in female mice (n=20), (2) determine if female hyperglycemic mice are sensitized to unpredictable chronic mild stress (UCMS)-induced depressive-like behavior and neuroinflammation (n=28), and (3) investigate if female hyperglycemic mice are primed to respond to a subthreshold dose of lipopolysaccharide (LPS), an acute inflammatory challenge (n=21). RESULTS Our results demonstrate that female mice exhibit robust hyperglycemia but limited evidence of depressive-like behavior in response to 75 mg/kg STZ. Additionally, we observe that healthy female mice have limited response to our stress protocol; however, hyperglycemic mice display increased stress-sensitivity as indicated by increased immobility in the forced swim test. While STZ mice show evidence of mild neuroinflammation, this effect was blunted by stress. Further, STZ mice failed to display a sensitization to inflammation-induced depressive-like behavior. CONCLUSION We interpret this data to indicate that while STZ-induced hyperglycemia does increase vulnerability to stress-induced depressive-like behavior, this effect is not a consequence of neuroinflammatory priming. Future studies will seek to better understand the mechanisms underlying this sensitization.
Collapse
Affiliation(s)
- Laura E Kusumo
- Department of Psychology & Neuroscience, Baylor University, Waco, TX 76798, United States
| | - Kayla R Gilley-Connor
- Department of Psychology & Neuroscience, Baylor University, Waco, TX 76798, United States
| | - Madilyn G Johnson
- Department of Psychology & Neuroscience, Baylor University, Waco, TX 76798, United States
| | - Grace M Hall
- Department of Psychology & Neuroscience, Baylor University, Waco, TX 76798, United States
| | - Avery E Gillett
- Department of Psychology & Neuroscience, Baylor University, Waco, TX 76798, United States
| | - Riley G McCready
- Department of Psychology & Neuroscience, Baylor University, Waco, TX 76798, United States
| | - Elisabeth G Vichaya
- Department of Psychology & Neuroscience, Baylor University, Waco, TX 76798, United States.
| |
Collapse
|
3
|
Costa RA, Amatnecks JA, de Oliveira Guaita G, Stern CAJ, Branco LGS, Zampronio AR. Sexual dimorphism of hypothalamic serotonin release during systemic inflammation: Role of endothelin-1. J Neuroimmunol 2024; 394:578427. [PMID: 39116522 DOI: 10.1016/j.jneuroim.2024.578427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
The hypothalamus receives serotonergic projections from the raphe nucleus in a sex-specific manner. During systemic inflammation, hypothalamic levels of serotonin (5-hydroxytryptamine [5-HT]) decrease in male rats. The present study evaluated the involvement of endothelin-1 (ET-1) in the febrile response, hypolocomotion, and changes in hypothalamic 5-HT levels during systemic inflammation in male and female rats. An intraperitoneal injection of lipopolysaccharide (LPS) induced a febrile response and hypolocomotion in both male and female rats. However, although LPS reduced hypothalamic levels of 5-HT and its metabolite 5-hydroxyindol acetic acid (5-HIAA) in male rats, it increased these levels in female rats. An intracerebroventricular injection of the endothelin-B receptor antagonist BQ788 significantly reduced LPS-induced fever and hypolocomotion and changes in hypothalamic 5-HT and 5-HIAA levels in both male and female rats. The i.c.v. administration of ET-1 induced a significant fever and hypolocomotion, but reduced the hypothalamic levels of 5-HT and 5-HIAA in both males and females. These results suggest an important sexual dimorphism during systemic inflammation regarding the release of 5-HT in the hypothalamus. Moreover, ET-1 arises as an important mediator involved in the changes in hypothalamic 5-HT levels in both male and female rats.
Collapse
Affiliation(s)
- Regina Azevedo Costa
- Department of Pharmacology, Biological Sciences Section, Federal University of Paraná, Brazil
| | | | | | | | | | | |
Collapse
|
4
|
Klocke B, Britzolaki A, Saurine J, Ott H, Krone K, Bahamonde K, Thelen C, Tzimas C, Sanoudou D, Kranias EG, Pitychoutis PM. A novel role for phospholamban in the thalamic reticular nucleus. Sci Rep 2024; 14:6376. [PMID: 38493225 PMCID: PMC10944534 DOI: 10.1038/s41598-024-56447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
The thalamic reticular nucleus (TRN) is a brain region that influences vital neurobehavioral processes, including executive functioning and the generation of sleep rhythms. TRN dysfunction underlies hyperactivity, attention deficits, and sleep disturbances observed across various neurodevelopmental disorders. A specialized sarco-endoplasmic reticulum calcium (Ca2+) ATPase 2 (SERCA2)-dependent Ca2+ signaling network operates in the dendrites of TRN neurons to regulate their bursting activity. Phospholamban (PLN) is a prominent regulator of SERCA2 with an established role in myocardial Ca2+-cycling. Our findings suggest that the role of PLN extends beyond the cardiovascular system to impact brain function. Specifically, we found PLN to be expressed in TRN neurons of the adult mouse brain, and utilized global constitutive and innovative conditional genetic knockout mouse models in concert with electroencephalography (EEG)-based somnography and the 5-choice serial reaction time task (5-CSRTT) to investigate the role of PLN in sleep and executive functioning, two complex behaviors that map onto thalamic reticular circuits. The results of the present study indicate that perturbed PLN function in the TRN results in aberrant TRN-dependent phenotypes in mice (i.e., hyperactivity, impulsivity and sleep deficits) and support a novel role for PLN as a critical regulator of SERCA2 in the TRN neurocircuitry.
Collapse
Affiliation(s)
- Benjamin Klocke
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Aikaterini Britzolaki
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Joseph Saurine
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Hayden Ott
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Kylie Krone
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Kiara Bahamonde
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Connor Thelen
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Christos Tzimas
- Molecular Biology Department, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Despina Sanoudou
- Molecular Biology Department, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, "Attikon" Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Evangelia G Kranias
- Molecular Biology Department, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Pothitos M Pitychoutis
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA.
| |
Collapse
|
5
|
Zhang H, Wang M, Zhao X, Wang Y, Chen X, Su J. Role of stress in skin diseases: A neuroendocrine-immune interaction view. Brain Behav Immun 2024; 116:286-302. [PMID: 38128623 DOI: 10.1016/j.bbi.2023.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/16/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Psychological stress is a crucial factor in the development of many skin diseases, and the stigma caused by skin disorders may further increase the psychological burden, forming a vicious cycle of psychological stress leading to skin diseases. Therefore, understanding the relationship between stress and skin diseases is necessary. The skin, as the vital interface with the external environment, possesses its own complex immune system, and the neuroendocrine system plays a central role in the stress response of the body. Stress-induced alterations in the immune system can also disrupt the delicate balance of immune cells and inflammatory mediators in the skin, leading to immune dysregulation and increased susceptibility to various skin diseases. Stress can also affect the skin barrier function, impair wound healing, and promote the release of pro-inflammatory cytokines, thereby exacerbating existing skin diseases such as psoriasis, atopic dermatitis, acne, and urticaria. In the present review, we explored the intricate relationship between stress and skin diseases from a neuroendocrine-immune interaction perspective. We explored the occurrence and development of skin diseases in the context of stress, the stress models for skin diseases, the impact of stress on skin function and diseases, and relevant epidemiological studies and clinical trials. Understanding the relationship between stress and skin diseases from a neuroendocrine-immune interaction perspective provides a comprehensive framework for targeted interventions and new insights into the diagnosis and treatment of skin diseases.
Collapse
Affiliation(s)
- Hanyi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
| | - Mi Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Department of Mental Health Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xue Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
| | - Yujie Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
| |
Collapse
|
6
|
Klocke B, Britzolaki A, Saurine J, Ott H, Krone K, Bahamonde K, Thelen C, Tzimas C, Sanoudou D, Kranias EG, Pitychoutis PM. A Novel Role for Phospholamban in the Thalamic Reticular Nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568306. [PMID: 38045420 PMCID: PMC10690257 DOI: 10.1101/2023.11.22.568306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The thalamic reticular nucleus (TRN) is a critical brain region that greatly influences vital neurobehavioral processes, including executive functioning and the generation of sleep rhythms. Recently, TRN dysfunction was suggested to underlie hyperactivity, attention deficits, and sleep disturbances observed across various devastating neurodevelopmental disorders, including autism, schizophrenia and attention-deficit/hyperactivity disorder (ADHD). Notably, a highly specialized sarco- endoplasmic reticulum calcium (Ca 2+ ) ATPase 2 (SERCA2)-dependent Ca 2+ signaling network operates in the dendrites of TRN neurons to regulate their high-frequency bursting activity. Phospholamban (PLN) is a prominent regulator of the SERCA2 with an established role in maintaining Ca 2+ homeostasis in the heart; although the interaction of PLN with SERCA2 has been largely regarded as cardiac-specific, our findings challenge this view and suggest that the role of PLN extends beyond the cardiovascular system to impact brain function. Specifically, we found PLN to be expressed in the TRN neurons of the adult mouse brain and utilized global constitutive and innovative conditional genetic mouse models, in combination with 5-choice serial reaction time task (5-CSRTT) and electroencephalography (EEG)-based somnography to assess the role of PLN in regulating executive functioning and sleep, two complex behaviors that map onto thalamic reticular circuits. Overall, the results of the present study show that perturbed PLN function in the TRN results in aberrant thalamic reticular behavioral phenotypes in mice (i.e., hyperactivity, impulsivity and sleep deficits) and support a novel role for PLN as a critical regulator of the SERCA2 in the thalamic reticular neurocircuitry.
Collapse
|
7
|
Okhuarobo A, Angelo M, Bolton JL, Lopez C, Igbe I, Baram TZ, Contet C. Influence of early-life adversity on responses to acute and chronic ethanol in female mice. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:336-347. [PMID: 36462937 PMCID: PMC9992294 DOI: 10.1111/acer.14988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/11/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Stressful early-life experiences increase the risk of developing an alcohol use disorder. We previously found that male C57BL/6J mice reared under limited bedding and nesting (LBN) conditions, a model of early-life adversity, escalate their ethanol intake in limited-access two-bottle choice (2BC) sessions faster than control (CTL)-reared counterparts when exposed to chronic intermittent ethanol (CIE) vapor inhalation. However, the alcohol consumption of female littermates was not affected by LBN or CIE. In the present study, we sought to determine whether this phenotype reflected a general insensitivity of female mice to the influence of early-life stress on alcohol responses. METHODS In a first experiment, CTL and LBN females with a history of 2BC combined or not with CIE were tested in affective and nociceptive assays during withdrawal. In a second group of CTL and LBN females, we examined ethanol-induced antinociception, sedation, plasma clearance, and c-Fos induction. RESULTS In females withdrawn from chronic 2BC, CIE increased digging, reduced grooming, and increased immobility in the tail suspension test regardless of early-life history. In contrast, LBN rearing lowered mechanical nociceptive thresholds regardless of CIE exposure. In females acutely treated with ethanol, LBN rearing facilitated antinociception and delayed the onset of sedation without influencing ethanol clearance rate or c-Fos induction in the paraventricular nucleus of the hypothalamus, paraventricular nucleus of the thalamus, central nucleus of the amygdala, or auditory cortex. CONCLUSION CIE withdrawal produced multiple indices of negative affect in C57BL/6J females, suggesting that their motivation to consume alcohol may differ from air-exposed counterparts despite equivalent intake. Contrasted with our previous findings in males, LBN-induced mechanical hyperalgesia in chronic alcohol drinkers was specific to females. Lower nociceptive thresholds combined with increased sensitivity to the acute antinociceptive effect of ethanol may contribute to reinforcing ethanol consumption in LBN females but are not sufficient to increase their intake.
Collapse
Affiliation(s)
- Agbonlahor Okhuarobo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
- University of Benin, Faculty of Pharmacy, Department of Pharmacology & Toxicology, Benin City, Nigeria
| | - Maggie Angelo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| | - Jessica L. Bolton
- University of California - Irvine, Departments of Anatomy / Neurobiology and Pediatrics, Irvine, CA
- Georgia State University, Neuroscience Institute, Atlanta, GA
| | - Catherine Lopez
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| | - Ighodaro Igbe
- University of Benin, Faculty of Pharmacy, Department of Pharmacology & Toxicology, Benin City, Nigeria
| | - Tallie Z. Baram
- University of California - Irvine, Departments of Anatomy / Neurobiology and Pediatrics, Irvine, CA
| | - Candice Contet
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| |
Collapse
|
8
|
Abstract
Depression and anxiety disorders carry a tremendous worldwide burden and emerge as a significant cause of disability among western societies. Both disorders are known to disproportionally affect women, as they are twice more likely to be diagnosed and moreover, they are also prone to suffer from female-specific mood disorders. Importantly, the prevalence of these affective disorders has notably risen after the COVID pandemic, especially in women. In this chapter, we describe factors that are possibly contributing to the expression of such sex differences in depression and anxiety. For this, we overview the effect of transcriptomic and genetic factors, the immune system, neuroendocrine aspects, and cognition. Furthermore, we also provide evidence of sex differences in antidepressant response and their causes. Finally, we emphasize the importance to consider sex as a biological variable in preclinical and clinical research, which may facilitate the discovery and development of new and more efficacious antidepressant and anxiolytic pharmacotherapies for both women and men.
Collapse
Affiliation(s)
- Pavlina Pavlidi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
9
|
Downregulation of peripheral lipopolysaccharide binding protein impacts on perigonadal adipose tissue only in female mice. Biomed Pharmacother 2022; 151:113156. [PMID: 35643066 DOI: 10.1016/j.biopha.2022.113156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND AND AIMS The sexual dimorphism in fat-mass distribution and circulating leptin and insulin levels is well known, influencing the progression of obesity-associated metabolic disease. Here, we aimed to investigate the possible role of lipopolysaccharide-binding protein (LBP) in this sexual dimorphism. METHODS The relationship between plasma LBP and fat mass was evaluated in 145 subjects. The effects of Lbp downregulation, using lipid encapsulated unlocked nucleomonomer agent containing chemically modified-siRNA delivery system, were evaluated in mice. RESULTS Plasma LBP levels were associated with fat mass and leptin levels in women with obesity, but not in men with obesity. In mice, plasma LBP downregulation led to reduced weight, fat mass and leptin gain after a high-fat and high-sucrose diet (HFHS) in females, in parallel to increased expression of adipogenic and thermogenic genes in visceral adipose tissue. This was not observed in males. Plasma LBP downregulation avoided the increase in serum LPS levels in HFHS-fed male and female mice. Serum LPS levels were positively correlated with body weight and fat mass gain, and negatively with markers of adipose tissue function only in female mice. The sexually dimorphic effects were replicated in mice with established obesity. Of note, LBP downregulation led to recovery of estrogen receptor alpha (Esr1) mRNA levels in females but not in males. CONCLUSION LBP seems to exert a negative feedback on ERα-mediated estrogen action, impacting on genes involved in thermogenesis. The known decreased estrogen action and negative effects of metabolic endotoxemia may be targeted through LBP downregulation.
Collapse
|
10
|
Fronza MG, Baldinotti R, Fetter J, Rosa SG, Sacramento M, Nogueira CW, Alves D, Praticò D, Savegnago L. Beneficial effects of QTC-4-MeOBnE in an LPS-induced mouse model of depression and cognitive impairments: The role of blood-brain barrier permeability, NF-κB signaling, and microglial activation. Brain Behav Immun 2022; 99:177-191. [PMID: 34624485 DOI: 10.1016/j.bbi.2021.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
Clinical and preclinical investigations have suggested a possible biological link betweenmajor depressive disorder (MDD) and Alzheimer's disease (AD). Therefore, a pharmacologic approach to treating MDD could be envisioned as a preventative therapy for some AD cases. In line with this, 1-(7-chloroquinolin-4-yl)-N-(4-methoxybenzyl)-5-methyl-1H-1,2,3-triazole-4 carboxamide (QTC-4-MeOBnE) is characterized as an inhibitor of β-secretase, glycogen synthase kinase 3β, and acetylcholinesterase and has also shown secondary effects underlying the modulation of neurogenesis and synaptic plasticity pathways. Therefore, we investigated the effects of QTC-4-MeOBnE treatment (0.1 or 1 mg/kg) on depressive-like behavior and cognitive impairments elicited by repeated injections of lipopolysaccharide (LPS; 250 μg/kg) in mice. Injections of LPS for seven days led to memory impairments and depressive-like behavior, as evidenced in the Y-maze/object recognition test and forced swimming/splash tests, respectively. However, these impairments were prevented in mice that, after the last LPS injection, were also treated with QTC-4-MeOBnE (1 mg/kg). This effect was associated with restoring blood-brain barrier permeability, reducing oxidative/nitrosative biomarkers, and decreasing neuroinflammation mediated NF-κB signaling in the hippocampus and cortex of the mice. To further investigate the involvement with NF-κB signaling, we evaluated the effects of QTC-4-MeOBnE on microglial cell activation through canonical and non-canonical pathways and the modulation of the involved components. Together, our findings highlight the pharmacological benefits of QTC-4-MeOBnE in a mouse model of sickness behavior and memory impairments, supporting the novel concept that since this molecule produces anti-depressant activity, it could also be beneficial for preventing AD onset and related dementias in subjects suffering from MDD through inflammatory pathway modulation.
Collapse
Affiliation(s)
- Mariana G Fronza
- Neurobiotechnology Research Group (GPN) - Centre for Technology Development CDTec, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Rodolfo Baldinotti
- Neurobiotechnology Research Group (GPN) - Centre for Technology Development CDTec, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Jenifer Fetter
- Neurobiotechnology Research Group (GPN) - Centre for Technology Development CDTec, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Suzan Gonçalves Rosa
- Laboratory of Synthesis, Reactivity and Pharmacological and Toxicological Evaluation of Organocalcogens, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, Brazil
| | - Manoela Sacramento
- Laboratory of Clean Organic Synthesis (LASOL), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), UFPel, RS, Brazil
| | - Cristina Wayne Nogueira
- Laboratory of Synthesis, Reactivity and Pharmacological and Toxicological Evaluation of Organocalcogens, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, Brazil
| | - Diego Alves
- Laboratory of Clean Organic Synthesis (LASOL), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), UFPel, RS, Brazil
| | - Domenico Praticò
- Alzheimer's Center at Temple - ACT, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Lucielli Savegnago
- Neurobiotechnology Research Group (GPN) - Centre for Technology Development CDTec, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil.
| |
Collapse
|
11
|
Bao M, Hofsink N, Plösch T. LPS vs. Poly I:C Model: Comparison of Long-Term Effects of Bacterial and Viral Maternal Immune Activation (MIA) on the Offspring. Am J Physiol Regul Integr Comp Physiol 2021; 322:R99-R111. [PMID: 34874190 PMCID: PMC8782664 DOI: 10.1152/ajpregu.00087.2021] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A prominent health issue nowadays is the COVID-19 pandemic, which poses acute risks to human health. However, the long-term health consequences are largely unknown and cannot be neglected. An especially vulnerable period for infection is pregnancy, when infections could have long-term health effect on the child. Evidence suggests that maternal immune activation (MIA) induced by either bacteria or viruses presents various effects on the offspring, leading to adverse phenotypes in many organ systems. This review compares the mechanisms of bacterial and viral MIA and the possible long-term outcomes for the offspring by summarizing the outcome in animal LPS and Poly I:C models. Both models are activated immune responses mediated by Toll-like receptors. The outcomes for MIA offspring include neurodevelopment, immune response, circulation, metabolism, and reproduction. Some of these changes continue to exist until later life. Besides different doses and batches of LPS and Poly I:C, the injection day, administration route, and also different animal species influence the outcomes. Here, we specifically aim to support colleagues when choosing their animal models for future studies.
Collapse
Affiliation(s)
- Mian Bao
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Naomi Hofsink
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
12
|
Whylings J, Rigney N, de Vries GJ, Petrulis A. Reduction in vasopressin cells in the suprachiasmatic nucleus in mice increases anxiety and alters fluid intake. Horm Behav 2021; 133:104997. [PMID: 34062279 PMCID: PMC8529700 DOI: 10.1016/j.yhbeh.2021.104997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/21/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022]
Abstract
Central vasopressin (AVP) has been implicated in the control of multiple behaviors, including social behavior, anxiety-like behavior, and sickness behavior. The extent to which the different AVP-producing cell groups contribute to regulating these behaviors has not been extensively investigated. Here we test the role of AVP cells in the suprachiasmatic nucleus (SCN) in these behaviors by ablating these cells using viral-mediated, Cre-dependent caspase in male and female AVP-Cre + mice and Cre-controls. We compared anxiety and social behaviors, as well as sickness behaviors (lethargy, anhedonia (indexed by sucrose consumption), and changes in anxiety-like- and social behavior) induced via injection of bacterial lipopolysaccharide (LPS). We found that SCN AVP cell ablation increased anxiety-like behavior and sucrose consumption in both sexes, as well as increased urine marking by males in a non-social context, but did not alter behavioral responses to sickness. Our data suggest that SCN AVP does not strongly affect LPS-induced behavioral changes, but may contribute to anxiety-like behavior, and may play a role in ingestive reward/motivation and fluid intake.
Collapse
Affiliation(s)
- Jack Whylings
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Nicole Rigney
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Geert J de Vries
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA; Department of Biology, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Aras Petrulis
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| |
Collapse
|
13
|
Butelman ER, Baynard C, McElroy BD, Prisinzano TE, Kreek MJ. Profile of a short-acting κ-antagonist, LY2795050, on self-grooming behaviors, forced swim test and locomotor activity: sex comparison in mice. J Psychopharmacol 2021; 35:579-590. [PMID: 33769112 DOI: 10.1177/0269881121996883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Novel short-acting κ(kappa)-opioid receptor selective antagonists are translational tools to examine the impact of the κ-receptor/dynorphin system in assays related to central nervous system dysfunction (e.g., substance use disorders, anhedonia and depression). The effects of such compounds have been compared in males and females under very limited conditions. AIMS The goal of this study was to examine potential sex differences in the effects of a κ-agonist and a short-acting κ-antagonist in an ethologically relevant test of anhedonia, the "splash test" of self-grooming, and also in the forced swim test and in locomotor activity. METHODS We examined the dose-dependence of grooming deficits caused by the κ-agonist U50,488 (0.1-3.2 mg/kg intraperitoneal (i.p.)) in gonadally intact adult male and female C57BL/6J mice. We then compared the effects of the short-acting κ-antagonist LY2795050 ((3-chloro-4-(4-(((2S)-2-pyridin-3-ylpyrrolidin-1-yl)methyl) phenoxy)benzamide)); 0.032-0.1 mg/kg i.p.) in blocking grooming deficits caused by U50,488 (3.2 mg/kg). The effects of LY2795050 were also studied in the forced swim test (FST). The effects of LY2795050 in blocking the locomotor depressant effects of U50,488 (10 mg/kg) were also studied. RESULTS U50,488 produced dose-dependent grooming deficits in male and female mice, and LY2795050 prevented these effects. In contrast, LY2795050 decreased immobility in the FST in males at a dose of 0.1 mg/kg, but not in females, up to a dose of 0.32 mg/kg. Also, LY2795050 (0.32 mg/kg) prevented and also reversed the locomotor-depressant effects of U50,488 (10 mg/kg), in males and females. CONCLUSIONS This study further implicates the κ-receptor system in ethologically relevant aspects of anhedonia, and confirms sexual dimorphism in some behavioral effects of novel κ-antagonists.
Collapse
Affiliation(s)
- Eduardo R Butelman
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, USA
| | - Caroline Baynard
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, USA
| | - Bryan D McElroy
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, USA
| | | | - Mary Jeanne Kreek
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, USA
| |
Collapse
|
14
|
Britzolaki A, Cronin CC, Flaherty PR, Rufo RL, Pitychoutis PM. Chronic but not acute pharmacological activation of SERCA induces behavioral and neurochemical effects in male and female mice. Behav Brain Res 2020; 399:112984. [PMID: 33137400 DOI: 10.1016/j.bbr.2020.112984] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/30/2022]
Abstract
Intracellular calcium (Ca2+) homeostasis is a vital process to nerve cell survival and function with an intricate regulatory network. It is well established that the endoplasmic reticulum (ER) is a major intraneuronal Ca2+ storage and that the sarco/endoplasmic reticulum (SR/ER) calcium (Ca2+)-ATPase (SERCA) pump is a key regulator of cytosolic Ca2+ levels. SERCA pumps play a critical role in brain pathophysiology, thus SERCA comprises an emerging pharmacological target for the treatment of brain diseases. Interestingly, preclinical studies in rodents suggest that chronic pharmacological activation of SERCA2 by the quinoline derivative CDN1163 comprises a potential pharmacotherapeutic target in Alzheimer's and Parkinson's diseases. As little is known about the behavioral and neurochemical consequences of CDN1163 administration, in the current study we investigated the potential effects of acute (i.e., at 1 h) and chronic (i.e., 17 days) CDN1163 administration (i.e., 10 mg/kg and 20 mg/kg; intraperitoneally) on locomotor activity and relevant affective behaviors, as well as on monoaminergic neurotransmission in naïve C57BL/6J mice of both sexes. Interestingly, chronic, but not acute, CDN1163 administration induced anxiogenic and depressive-like behavioral effects in mice, as assessed in the open field (OF) test and the forced swim test (FST), respectively. In addition, chronic CDN1163 administration induced sustained sex- and brain region-dependent noradrenergic and serotonergic neurochemical effects ex vivo. Taken together, present findings support the critical role of SERCA-dependent Ca2+ handling in regulating behavior and neurochemical activity, and further highlight the need to consider sex in the development of SERCA-targeting pharmacotherapies for the treatment of debilitating brain disorders.
Collapse
Affiliation(s)
| | - Claire C Cronin
- Department of Biology, University of Dayton, Dayton, OH, USA
| | | | - Riely L Rufo
- Department of Biology, University of Dayton, Dayton, OH, USA
| | - Pothitos M Pitychoutis
- Department of Biology, University of Dayton, Dayton, OH, USA; Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA; Integrative Science and Engineering (ISE) Center, University of Dayton, Dayton, OH, USA.
| |
Collapse
|
15
|
Li W, Luo S, Wan C. Characterization of fever and sickness behavior regulated by cytokines during infection. BEHAVIOUR 2020. [DOI: 10.1163/1568539x-bja10028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
In response to invasion of pathogens, hosts present fever and a series of behavioural changes including reduced grooming, reduction of foraging, decreased locomotion, withdrawing from social activities and reproductive process, which are collectively termed sickness behaviour. Fever as well as sickness behaviour are adaptive and benefit the host to reduce pathology caused by infections and opportunity costs for time away from foraging, reproduction and predator avoidance. Antipathogenic fever and sickness behaviour are mediated proximately by cytokines including pro- and anti-inflammatory cytokines. Pro-inflammation cytokines trigger these sickness responses, while anti-inflammatory cytokines constrain these responses and prevent damage to host from exaggerated responses. The present study reviews the characterization of fever and sickness behaviour regulated by cytokines during infection.
Collapse
Affiliation(s)
- Weiran Li
- aDepartment of Pediatrics, West China Second University Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, Chengdu 610041, P.R. China
- bKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, P.R. China
| | - Shuanghong Luo
- aDepartment of Pediatrics, West China Second University Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, Chengdu 610041, P.R. China
- bKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, P.R. China
| | - Chaomin Wan
- aDepartment of Pediatrics, West China Second University Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, Chengdu 610041, P.R. China
- bKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, P.R. China
| |
Collapse
|
16
|
Fritz M, Klawonn AM, Zhao Q, Sullivan EV, Zahr NM, Pfefferbaum A. Structural and biochemical imaging reveals systemic LPS-induced changes in the rat brain. J Neuroimmunol 2020; 348:577367. [PMID: 32866714 DOI: 10.1016/j.jneuroim.2020.577367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Despite mounting evidence for the role of inflammation in Major Depressive Disorder (MDD), in vivo preclinical investigations of inflammation-induced negative affect using whole brain imaging modalities are scarce, precluding a valid model within which to evaluate pharmacological interventions. Here we used an E. coli lipopolysaccharide (LPS)-based model of inflammation-induced depressive signs in rats to explore brain changes using multimodal neuroimaging methods. During the acute phase of the LPS response (2 h post injection), prior to the emergence of a task-quantifiable depressive phenotype, striatal glutamine levels and splenial, retrosplenial, and peri-callosal hippocampal cortex volumes were greater than at baseline. LPS-induced depressive behaviors observed at 24 h, however, occurred concurrently with lower than control levels of striatal glutamine and a reversibility of volume expansion (i.e., shrinkage of splenial, retrosplenial, and peri-callosal hippocampal cortex to baseline volumes). In both striatum and hippocampus at 24 h, mRNA expression in LPS relative to control animals demonstrated alterations in enzymes and transporters regulating glutamine homeostasis. Collectively, the observed behavioral, in vivo structural and metabolic, and mRNA expression alterations suggest a critical role for astrocytic regulation of inflammation-induced depressive behaviors.
Collapse
Affiliation(s)
- Michael Fritz
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America
| | - Anna M Klawonn
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America
| | - Qingyu Zhao
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America
| | - Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America; Neuroscience Program, SRI International, Menlo Park, CA 94025, United States of America
| | - Natalie M Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America; Neuroscience Program, SRI International, Menlo Park, CA 94025, United States of America.
| | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America; Neuroscience Program, SRI International, Menlo Park, CA 94025, United States of America
| |
Collapse
|
17
|
Luduvico KP, Spohr L, Soares MSP, Teixeira FC, de Farias AS, Bona NP, Pedra NS, de Oliveira Campello Felix A, Spanevello RM, Stefanello FM. Antidepressant Effect and Modulation of the Redox System Mediated by Tannic Acid on Lipopolysaccharide-Induced Depressive and Inflammatory Changes in Mice. Neurochem Res 2020; 45:2032-2043. [PMID: 32500408 DOI: 10.1007/s11064-020-03064-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022]
Abstract
Depression is an emotional disorder that causes mental and physical changes, and has limited pharmacotherapy. Tannic acid (TA) is a polyphenol with previously described antioxidant and neuroprotective properties. The aim of this study was to evaluate the effects of TA on lipopolysaccharide (LPS)-induced depressive-like behavior, as well as oxidative stress parameters and TNF-α levels in the brains of mice. Animals were pretreated once daily, with TA (30 or 60 mg/kg), fluoxetine (20 mg/kg) or vehicle for 7 days. On the 7th day, the animals received a single injection of LPS (830 μg/kg). After 24 h, open field, forced swimming, tail suspension, and splash tests were conducted. The endotoxin induced depressive-like behavior in these mice and this was attenuated by TA. In the cerebral cortex, hippocampus, and striatum, LPS increased lipid peroxidation and reactive oxygen species production, and this was also prevented by TA administration. TA treatment also prevented a decrease in catalase activity within the striatum. Further, LPS administration caused increased levels of TNF-α in all brain structures, and this was prevented in the cortex by TA treatment. In conclusion, TA shows many neuroprotective properties, with demonstrated antioxidant, anti-inflammatory and antidepressant effects in this animal model of acute depressive-like behavior. Therefore, this compound could provide an alternative therapeutic approach for the treatment of depression.
Collapse
Affiliation(s)
- Karina Pereira Luduvico
- Programa de Pós-Graduação Em Bioquímica E Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil.
| | - Luiza Spohr
- Programa de Pós-Graduação Em Bioquímica E Bioprospecção - Laboratório de Neuroquímica, Inflamação E Câncer, Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação Em Bioquímica E Bioprospecção - Laboratório de Neuroquímica, Inflamação E Câncer, Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Fernanda Cardoso Teixeira
- Programa de Pós-Graduação Em Bioquímica E Bioprospecção - Laboratório de Neuroquímica, Inflamação E Câncer, Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Alana Seixas de Farias
- Programa de Pós-Graduação Em Bioquímica E Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação Em Bioquímica E Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação Em Bioquímica E Bioprospecção - Laboratório de Neuroquímica, Inflamação E Câncer, Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | | | - Roselia Maria Spanevello
- Programa de Pós-Graduação Em Bioquímica E Bioprospecção - Laboratório de Neuroquímica, Inflamação E Câncer, Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação Em Bioquímica E Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil.
| |
Collapse
|
18
|
Whylings J, Rigney N, Peters NV, de Vries GJ, Petrulis A. Sexually dimorphic role of BNST vasopressin cells in sickness and social behavior in male and female mice. Brain Behav Immun 2020; 83:68-77. [PMID: 31550501 PMCID: PMC6906230 DOI: 10.1016/j.bbi.2019.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/29/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023] Open
Abstract
Circumstantial evidence supports the hypothesis that the sexually dimorphic vasopressin (AVP) innervation of the brain tempers sickness behavior in males. Here we test this hypothesis directly, by comparing sickness behavior in animals with or without ablations of BNST AVP cells, a major source of sexually dimorphic AVP in the brain. We treated male and female AVP-iCre+ and AVP-iCre- mice that had been injected with viral Cre-dependent caspase-3 executioner construct into the BNST with lipopolysaccharide (LPS) or sterile saline, followed by behavioral analysis. In all groups, LPS treatment reliably reduced motor behavior, increased anxiety-related behavior, and reduced sucrose preference and consumption. Male mice, whose BNST AVP cells had been ablated (AVP-iCre+), displayed only minor reductions in LPS-induced sickness behavior, whereas their female counterparts displayed, if anything, an increase in sickness behaviors. All saline-treated mice with BNST AVP cell ablations consumed more sucrose than did control mice, and males, but not females, with BNST AVP cell ablations showed reduced preference for novel conspecifics compared to control mice. These data confirm that BNST AVP cells control social behavior in a sexually dimorphic way, but do not play a critical role in altering sickness behavior.
Collapse
Affiliation(s)
- Jack Whylings
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Nicole Rigney
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Nicole V Peters
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Geert J de Vries
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA; Department of Biology, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Aras Petrulis
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| |
Collapse
|
19
|
Agostini A, Yuchun D, Li B, Kendall DA, Pardon MC. Sex-specific hippocampal metabolic signatures at the onset of systemic inflammation with lipopolysaccharide in the APPswe/PS1dE9 mouse model of Alzheimer's disease. Brain Behav Immun 2020; 83:87-111. [PMID: 31560941 PMCID: PMC6928588 DOI: 10.1016/j.bbi.2019.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/27/2022] Open
Abstract
Systemic inflammation enhances the risk and progression of Alzheimer's disease (AD). Lipopolysaccharide (LPS), a potent pro-inflammatory endotoxin produced by the gut, is found in excess levels in AD where it associates with neurological hallmarks of pathology. Sex differences in susceptibility to inflammation and AD progression have been reported, but how this impacts on LPS responses remains under investigated. We previously reported in an APP/PS1 model of AD that systemic LPS administration rapidly altered hippocampal metabolism in males. Here, we used untargeted metabolomics to comprehensively identify hippocampal metabolic processes occurring at onset of systemic inflammation with LPS (100 µg/kg, i.v.) in APP/PS1 mice, at an early pathological stage, and investigated the sexual dimorphism in this response. Four hours after LPS administration, pathways regulating energy metabolism, immune and oxidative stress responses were simultaneously recruited in the hippocampi of 4.5-month-old mice with a more protective response in females despite their pro-inflammatory and pro-oxidant metabolic signature in the absence of immune stimulation. LPS induced comparable behavioural sickness responses in male and female wild-type and APP/PS1 mice and comparable activation of both the serotonin and nicotinamide pathways of tryptophan metabolism in their hippocampi. Elevations in N-methyl-2-pyridone-5-carboxamide, a major toxic metabolite of nicotinamide, correlated with behavioural sickness regardless of sex, as well as with the LPS-induced hypothermia seen in males. Males also exhibited a pro-inflammatory-like downregulation of pyruvate metabolism, exacerbated in APP/PS1 males, and methionine metabolism whereas females showed a greater cytokine response and anti-inflammatory-like downregulation of hippocampal methylglyoxal and methionine metabolism. Metabolic changes were not associated with morphological markers of immune cell activation suggesting that they constitute an early event in the development of LPS-induced neuroinflammation and AD exacerbation. These data suggest that the female hippocampus is more tolerant to acute systemic inflammation.
Collapse
Affiliation(s)
- Alessandra Agostini
- School of Life Sciences, Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, Medical School, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Ding Yuchun
- School of Computer Sciences, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK; School of Computing Science, Urban Sciences Building, Newcastle University, 1 Science Square, Science Central, Newcastle upon Tyne NE4 5TG, UK(1)
| | - Bai Li
- School of Computing Science, Urban Sciences Building, Newcastle University, 1 Science Square, Science Central, Newcastle upon Tyne NE4 5TG, UK(1)
| | - David A Kendall
- School of Life Sciences, Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, Medical School, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Marie-Christine Pardon
- School of Life Sciences, Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, Medical School, Queens Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
20
|
Planchez B, Surget A, Belzung C. Animal models of major depression: drawbacks and challenges. J Neural Transm (Vienna) 2019; 126:1383-1408. [PMID: 31584111 PMCID: PMC6815270 DOI: 10.1007/s00702-019-02084-y] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Major depression is a leading contributor to the global burden of disease. This situation is mainly related to the chronicity and/or recurrence of the disorder, and to poor response to antidepressant therapy. Progress in this area requires valid animal models. Current models are based either on manipulating the environment to which rodents are exposed (during the developmental period or adulthood) or biological underpinnings (i.e. gene deletion or overexpression of candidate genes, targeted lesions of brain areas, optogenetic control of specific neuronal populations, etc.). These manipulations can alter specific behavioural and biological outcomes that can be related to different symptomatic and pathophysiological dimensions of major depression. However, animal models of major depression display substantial shortcomings that contribute to the lack of innovative pharmacological approaches in recent decades and which hamper our capabilities to investigate treatment-resistant depression. Here, we discuss the validity of these models, review putative models of treatment-resistant depression, major depression subtypes and recurrent depression. Furthermore, we identify future challenges regarding new paradigms such as those proposing dimensional rather than categorical approaches to depression.
Collapse
Affiliation(s)
| | | | - Catherine Belzung
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
- UMR 1253, iBrain, UFR Sciences et Techniques, Parc Grandmont, 37200, Tours, France.
| |
Collapse
|
21
|
Zenz G, Farzi A, Fröhlich EE, Reichmann F, Holzer P. Intranasal Neuropeptide Y Blunts Lipopolysaccharide-Evoked Sickness Behavior but Not the Immune Response in Mice. Neurotherapeutics 2019; 16:1335-1349. [PMID: 31338703 PMCID: PMC6985076 DOI: 10.1007/s13311-019-00758-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neuropeptide Y (NPY) has been demonstrated to exert stress buffering effects and promote resilience. Non-invasive intranasal (IN) application of NPY to rodents is able to mitigate traumatic stress-induced behavioral changes as well as dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis. However, it is unknown whether IN NPY could prevent the behavioral, pro-inflammatory and neurochemical responses to peripheral immune activation by the Toll-like receptor 4 (TLR4) stimulant lipopolysaccharide (LPS). Therefore, we analyzed the effects of IN NPY (100 μg) on the behavioral sickness response (reduced locomotion and exploration) and the underlying molecular mechanisms, 3 h and 21 h after intraperitoneal injections of LPS (0.03 mg/kg) in male C57BL/6N mice. The acute behavioral sickness response was significantly dampened by pretreatment with IN NPY 3 h after LPS injection. This effect was accompanied by diminished weight loss and lowered plasma corticosterone (CORT) levels 21 h after LPS injection. In contrast, acute circulating cytokine levels and hypothalamic cytokine mRNA expression remained unaltered by IN NPY, which indicates that the peripheral and cerebral immune response to LPS was left undisturbed. Our findings are in agreement with the reported activity of NPY to dampen the response of the HPA axis to stress. We propose that IN NPY ablates sickness behavior at a site beyond the peripheral and cerebral cytokine response, an action that is associated with reduced activity of the HPA axis as determined by decreased plasma CORT.These results indicate that IN NPY administration may be relevant to the management of neuropsychiatric disorders arising from immune-induced neuroendocrine dysfunction.
Collapse
Affiliation(s)
- Geraldine Zenz
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, A-8010, Graz, Austria.
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, A-8010, Graz, Austria
| | - Esther E Fröhlich
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, A-8010, Graz, Austria
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, A-8010, Graz, Austria
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, A-8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12, A-8010, Graz, Austria
| |
Collapse
|
22
|
Butelman ER, McElroy BD, Prisinzano TE, Kreek MJ. Impact of Pharmacological Manipulation of the κ-Opioid Receptor System on Self-grooming and Anhedonic-like Behaviors in Male Mice. J Pharmacol Exp Ther 2019; 370:1-8. [PMID: 30975792 PMCID: PMC6538891 DOI: 10.1124/jpet.119.256354] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
The kappa (κ) opioid receptor/dynorphin system modulates depression-like states and anhedonia, as well adaptations to stress and exposure to drugs of abuse. Several relatively short-acting small molecule κ-receptor antagonists have been synthesized, and their behavioral profile has been examined under some conditions. The hypothesis of this study is that pharmacological manipulations of the κ-receptor system will result in changes in ethologically relevant anhedonic-like behaviors in mice. Adult male C57BL/6j mice (n = 6-8) were examined for self-grooming behavior in the splash test (in which robust self-grooming is elicited by spraying the dorsum of the mouse with a sucrose solution). The κ-agonist salvinorin A (0.56-1.8 mg/kg) produced dose-dependent decreases in self-grooming, a marker of anhedonia. The selectivity, potency, and duration of action of two relatively short-acting κ-antagonists, LY2444296 [(S)-3-fluoro-4-(4-((2-(3-fluorophenyl) pyrrolidin-1-yl)methyl)phenoxy)benzamide] and LY2795050 [3-chloro-4-(4-(((2S)-2-pyridin-3-ylpyrrolidin-1-yl)methyl) phenoxy)benzamide], were studied for their effectiveness in preventing grooming deficits caused by salvinorin A (1.8 mg/kg). κ-selective doses of both LY2444296 (0.032-1 mg/kg) and LY2795050 (0.032-0.32 mg/kg) dose- and time-dependently prevented the grooming deficits caused by salvinorin A (1.8 m/kg). We also found that a κ-selective dose of each of these antagonists decreased immobility in the forced swim test, a common test of anti-anhedonia effects. This study shows that the κ-receptor system is involved in an ethologically relevant measure of anhedonia, and that κ-selective doses of these antagonists can produce effects consistent with rapid anti-anhedonia. SIGNIFICANCE STATEMENT: Activation of the κ-opioid receptor system results in grooming deficits in mice, an ethologically relevant marker of anhedonia. Shorter acting κ-antagonists are able to cause effects consistent with rapid antianhedonia.
Collapse
Affiliation(s)
- Eduardo R Butelman
- Laboratory on the Biology of Addictive Diseases, the Rockefeller University, New York, New York (E.R.B., B.D.M., M.J.K.), and Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas (T.E.P.)
| | - Bryan D McElroy
- Laboratory on the Biology of Addictive Diseases, the Rockefeller University, New York, New York (E.R.B., B.D.M., M.J.K.), and Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas (T.E.P.)
| | - Thomas E Prisinzano
- Laboratory on the Biology of Addictive Diseases, the Rockefeller University, New York, New York (E.R.B., B.D.M., M.J.K.), and Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas (T.E.P.)
| | - Mary Jeanne Kreek
- Laboratory on the Biology of Addictive Diseases, the Rockefeller University, New York, New York (E.R.B., B.D.M., M.J.K.), and Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas (T.E.P.)
| |
Collapse
|
23
|
Moieni M, Tan KM, Inagaki TK, Muscatell KA, Dutcher JM, Jevtic I, Breen EC, Irwin MR, Eisenberger NI. Sex Differences in the Relationship Between Inflammation and Reward Sensitivity: A Randomized Controlled Trial of Endotoxin. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:619-626. [PMID: 31103547 PMCID: PMC6612452 DOI: 10.1016/j.bpsc.2019.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND There are robust sex differences in the prevalence of depression. Inflammation and anhedonia may play a role in understanding these sex differences. Indeed, sex differences in inflammation-induced neural responses to reward may provide insight into the sex gaps in depression, but no study has examined this question. METHODS As such, the current study examined whether there were sex differences in reward-related neural activity (i.e., ventral striatum [VS] activity) in response to an experimental inflammatory challenge. Human participants (N = 115; 69 female) were randomly assigned to receive either placebo or low-dose endotoxin, which increases inflammation in a safe, time-limited manner. Two hours after receiving placebo or endotoxin (the height of the inflammatory response to endotoxin), participants completed a task in which they anticipated monetary reward in a functional magnetic resonance imaging scanner. RESULTS Results demonstrated that endotoxin (vs. placebo) led to reduced VS activity in anticipation of reward and that there were sex differences in this effect. Specifically, in female participants, endotoxin (vs. placebo) led to decreased VS activity in anticipation of reward, but this effect was not present in male participants. In addition, within the endotoxin condition, decreases in VS activity in anticipation of reward were related to increases in inflammation for female but not male participants. CONCLUSIONS These findings may have implications for understanding how inflammation may contribute to sex differences in rates of depression.
Collapse
Affiliation(s)
- Mona Moieni
- Department of Psychology, Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, Los Angeles; California; Semel Institute for Neuroscience and Human Behavior, Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, Los Angeles; California
| | - Kevin M Tan
- Department of Psychology, Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, Los Angeles; California
| | - Tristen K Inagaki
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Keely A Muscatell
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Janine M Dutcher
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Ivana Jevtic
- Department of Psychology, Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, Los Angeles; California
| | - Elizabeth C Breen
- Semel Institute for Neuroscience and Human Behavior, Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, Los Angeles; California
| | - Michael R Irwin
- Semel Institute for Neuroscience and Human Behavior, Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, Los Angeles; California
| | - Naomi I Eisenberger
- Department of Psychology, Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, Los Angeles; California.
| |
Collapse
|
24
|
Lipopolysaccharide-induced depressive-like, anxiogenic-like and hyperalgesic behavior is attenuated by acute administration of α-(phenylselanyl) acetophenone in mice. Neuropharmacology 2019; 146:128-137. [DOI: 10.1016/j.neuropharm.2018.11.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/25/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022]
|
25
|
Eid RS, Gobinath AR, Galea LAM. Sex differences in depression: Insights from clinical and preclinical studies. Prog Neurobiol 2019; 176:86-102. [PMID: 30721749 DOI: 10.1016/j.pneurobio.2019.01.006] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
Depression represents a global mental health concern, and disproportionally affects women as they are twice more likely to be diagnosed than men. In this review, we provide a summary of evidence to support the notion that differences in depression between men and women span multiple facets of the disease, including epidemiology, symptomology, treatment, and pathophysiology. Through a lens of biological sex, we overview depression-related transcriptional patterns, changes in neuroanatomy and neuroplasticity, and immune signatures. We acknowledge the unique physiological and behavioral demands of pregnancy and motherhood by devoting special attention to depression occurring in the peripartum period. Specifically, we discuss issues surrounding the presentation, time course, treatment, and neurobiology of peripartum depression. We write this review with the intention of highlighting the encouraging advancements in our understanding of sex differences in depression, while underscoring the gaps that remain. A more systematic consideration of biological sex as a variable in depression research will be critical in the discovery and development of pharmacotherapies that are efficacious for both men and women.
Collapse
Affiliation(s)
- Rand S Eid
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Aarthi R Gobinath
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
26
|
Thelen C, Flaherty E, Saurine J, Sens J, Mohamed S, Pitychoutis PM. Sex Differences in the Temporal Neuromolecular and Synaptogenic Effects of the Rapid-acting Antidepressant Drug Ketamine in the Mouse Brain. Neuroscience 2018; 398:182-192. [PMID: 30537521 DOI: 10.1016/j.neuroscience.2018.11.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 12/24/2022]
Abstract
Preclinical evidence suggests that ketamine's rapid and sustained antidepressant actions are due to the induction of synaptogenesis in the medial prefrontal cortex (mPFC) and the hippocampus (HIPP), two brain regions implicated in the pathophysiology of major depression. However, research on the neurobiological effects of ketamine has focused almost exclusively on males. Findings from our group and others indicate that female rodents are more reactive to ketamine's antidepressant effects, since they respond to lower doses in antidepressant-predictive behavioral models. The sex-dependent mechanisms that mediate the antidepressant effects of ketamine in the female brain are elusive. Herein, we assessed the neurobiological effects of a single ketamine dose (10 mg/kg; previously shown to induce rapid and sustained antidepressant-like effects in mice of both sexes), on glutamate release in the mPFC, as well as on the expression of synaptic plasticity markers, and spine density in the mPFC and the HIPP of C57BL/6J mice. Our data revealed that ketamine induced a sex-specific "glutamate burst" in the male mPFC. Ketamine activated the mammalian target of rapamycin complex 1 (mTORC1) pathway in prefrontocortical synaptoneurosomes, and enhanced spine formation in the male mPFC and HIPP. In females, ketamine induced a sustained increase in hippocampal spine density. Overall, these data exposed a sharp sex difference in the synaptogenic response to ketamine in stress-naïve mice, and further suggest that the mPFC may play a more important role in mediating the antidepressant effects of the drug in males, while the HIPP may be more important for females.
Collapse
Affiliation(s)
- Connor Thelen
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Emily Flaherty
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Joseph Saurine
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Jonathon Sens
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Sara Mohamed
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Pothitos M Pitychoutis
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA.
| |
Collapse
|
27
|
Rigillo G, Vilella A, Benatti C, Schaeffer L, Brunello N, Blom JMC, Zoli M, Tascedda F. LPS-induced histone H3 phospho(Ser10)-acetylation(Lys14) regulates neuronal and microglial neuroinflammatory response. Brain Behav Immun 2018; 74:277-290. [PMID: 30244035 DOI: 10.1016/j.bbi.2018.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 01/23/2023] Open
Abstract
Epigenetic modifications of DNA and histone proteins are emerging as fundamental mechanisms by which neural cells adapt their transcriptional response to environmental cues, such as, immune stimuli or stress. In particular, histone H3 phospho(Ser10)-acetylation(Lys14) (H3S10phK14ac) has been linked to activation of specific gene expression. The purpose of this study was to investigate the role of H3S10phK14ac in a neuroinflammatory condition. Adult male rats received a intraperitoneal injection of lipopolysaccharide (LPS) (830 μg/Kg/i.p., n = 6) or vehicle (saline 1 mL/kg/i.p., n = 6) and were sacrificed 2 or 6 h later. We showed marked region- and time-specific increases in H3S10phK14ac in the hypothalamus and hippocampus, two principal target regions of LPS. These changes were accompanied by a marked transcriptional activation of interleukin (IL) 1β, IL-6, Tumour Necrosis Factor (TNF) α, the inducible nitric oxide synthase (iNOS) and the immediate early gene c-Fos. By means of chromatin immunoprecipitation, we demonstrated an increased region- and time-specific association of H3S10phK14ac with the promoters of IL-6, c-Fos and iNOS genes, suggesting that part of the LPS-induced transcriptional activation of these genes is regulated by H3S10phK14ac. Finally, by means of multiple immunofluorescence approach, we showed that increased H3S10phK14ac is cell type-specific, being neurons and reactive microglia, the principal histological types involved in this response. Present data point to H3S10phK14ac as a principal epigenetic regulator of neural cell response to systemic LPS and underline the importance of distinct time-, region- and cell-specific epigenetic mechanisms that regulate gene transcription to understand the mechanistic complexity of neuroinflammatory response to immune challenges.
Collapse
Affiliation(s)
- Giovanna Rigillo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Laurent Schaeffer
- Institut NeuroMyoGene, CNRS UMR5310, INSERM U1217, Université Lyon1, 46 Allée d'Italie, 69007 Lyon, France
| | - Nicoletta Brunello
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Johanna M C Blom
- Department of Education and Human Sciences, University of Modena and Reggio Emilia, viale Antonio Allegri 9, 42121 Reggio Emilia, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
28
|
Hypothalamic CCL2/CCR2 Chemokine System: Role in Sexually Dimorphic Effects of Maternal Ethanol Exposure on Melanin-Concentrating Hormone and Behavior in Adolescent Offspring. J Neurosci 2018; 38:9072-9090. [PMID: 30201767 DOI: 10.1523/jneurosci.0637-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/21/2018] [Accepted: 08/20/2018] [Indexed: 01/08/2023] Open
Abstract
Clinical and animal studies show that ethanol exposure and inflammation during pregnancy cause similar behavioral disturbances in the offspring. While ethanol is shown to stimulate both neuroimmune and neurochemical systems in adults, little is known about their anatomical relationship in response to ethanol in utero and whether neuroimmune factors mediate ethanol's effects on neuronal development and behavior in offspring. Here we examined in female and male adolescent rats a specific population of neurons concentrated in lateral hypothalamus, which coexpress the inflammatory chemokine C-C motif ligand 2 (CCL2) or its receptor CCR2 with the orexigenic neuropeptide, melanin-concentrating hormone (MCH), that promotes ethanol drinking behavior. We demonstrate that maternal administration of ethanol (2 g/kg/d) from embryonic day 10 (E10) to E15, while having little impact on glia, stimulates expression of neuronal CCL2 and CCR2, increases density of both large CCL2 neurons colocalizing MCH and small CCL2 neurons surrounding MCH neurons, and stimulates ethanol drinking and anxiety in adolescent offspring. We show that these neuronal and behavioral changes are similarly produced by maternal administration of CCL2 (4 or 8 μg/kg/d, E10-E15) and blocked by maternal administration of a CCR2 antagonist INCB3344 (1 mg/kg/d, E10-E15), and these effects of ethanol and CCL2 are sexually dimorphic, consistently stronger in females. These results suggest that this neuronal CCL2/CCR2 system closely linked to MCH neurons has a role in mediating the effects of maternal ethanol exposure on adolescent offspring and contributes to the higher levels of adolescent risk factors for alcohol use disorders described in women.SIGNIFICANCE STATEMENT Ethanol consumption and inflammatory agents during pregnancy similarly increase alcohol intake and anxiety in adolescent offspring. To investigate how neurochemical and neuroimmune systems interact to mediate these disturbances, we examined a specific population of hypothalamic neurons coexpressing the inflammatory chemokine CCL2 and its receptor CCR2 with the neuropeptide, melanin-concentrating hormone. We demonstrate in adolescent offspring that maternal administration of CCL2, like ethanol, stimulates these neurons and increases ethanol drinking and anxiety, and these effects of ethanol are blocked by maternal CCR2 antagonist and consistently stronger in females. This suggests that neuronal chemokine signaling linked to neuropeptides mediates effects of maternal ethanol exposure on adolescent offspring and contributes to higher levels of adolescent risk factors for alcohol use disorders in women.
Collapse
|
29
|
Mello BSF, Chaves Filho AJM, Custódio CS, Cordeiro RC, Miyajima F, de Sousa FCF, Vasconcelos SMM, de Lucena DF, Macedo D. Sex influences in behavior and brain inflammatory and oxidative alterations in mice submitted to lipopolysaccharide-induced inflammatory model of depression. J Neuroimmunol 2018; 320:133-142. [DOI: 10.1016/j.jneuroim.2018.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022]
|
30
|
de Gomes MG, Souza LC, Goes AR, Del Fabbro L, Filho CB, Donato F, Prigol M, Luchese C, Roman SS, Puntel RL, Boeira SP, Jesse CR. Fish oil ameliorates sickness behavior induced by lipopolysaccharide in aged mice through the modulation of kynurenine pathway. J Nutr Biochem 2018; 58:37-48. [PMID: 29870875 DOI: 10.1016/j.jnutbio.2018.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/15/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Sickness behavior is an expression of a central motivational state triggered by activation of the immune system, being considered a strategy of the organism to fight infection. Sickness behavior is induced by peripheral administration of lipopolysaccharide (LPS). LPS can increase the levels of proinflammatory cytokines, which induce the activation of the kynurenine pathway (KP) and behavioral alterations. Previous studies have shown that omega-3 (n-3) polyunsaturated fatty acid (PUFA) has anti-inflammatory properties. Because of this, the purpose of the present study was to evaluate the protective effect of fish oil (FO) supplementation against LPS-induced sickness behavior in aged mice with respect to anhedonia, locomotor activity and body weight. Moreover, we evaluated the ability of FO treatment on the regulation of neuroinflammation (levels of interleukin-1β, interleukin-6, tumor factor necrosis-α and interferon-γ), KP biomarkers (levels of tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine and quinolinic acid and activities of indoleamine-2,3-dioxygenase, kynurenine monooxygenase and kynurenine aminotransferase) and serotonergic system (levels of serotonin and 5-hydroxyindoleactic acid) in the hippocampus, striatum and prefrontal cortex of LPS-treated mice. We found that FO prevented the LPS-mediated body weight loss, anhedonic behavior, reduction of locomotor activity, up-regulation of the proinflammatory cytokines and serotoninergic alterations. We also found that FO was effective in modulating the KP biomarkers, inhibiting or attenuating KP dysregulation induced by LPS. Together, our results indicated that FO may have beneficial effects on LPS induced sickness-behavior in aged mice either by modulating central inflammation, KP and serotonergic signaling (indirectly effect) or by fatty acids incorporation into neuronal membranes (direct effect).
Collapse
Affiliation(s)
- Marcelo Gomes de Gomes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas-LaftamBio Pampa-Universidade Federal do Pampa, Itaqui, RS, Brazil; Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil.
| | - Leandro Cattelan Souza
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas-LaftamBio Pampa-Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - André Rossito Goes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas-LaftamBio Pampa-Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Lucian Del Fabbro
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas-LaftamBio Pampa-Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Carlos Borges Filho
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas-LaftamBio Pampa-Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Franciele Donato
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas-LaftamBio Pampa-Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas-LaftamBio Pampa-Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Cristiane Luchese
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário, s/n, 96160-000, Capão do Leão, RS, Brazil
| | | | - Robson Luiz Puntel
- Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Silvana Peterini Boeira
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas-LaftamBio Pampa-Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Cristiano Ricardo Jesse
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas-LaftamBio Pampa-Universidade Federal do Pampa, Itaqui, RS, Brazil
| |
Collapse
|
31
|
Taniguti EH, Ferreira YS, Stupp IJV, Fraga-Junior EB, Mendonça CB, Rossi FL, Ynoue HN, Doneda DL, Lopes L, Lima E, Buss ZS, Vandresen-Filho S. Neuroprotective effect of melatonin against lipopolysaccharide-induced depressive-like behavior in mice. Physiol Behav 2018; 188:270-275. [PMID: 29458118 DOI: 10.1016/j.physbeh.2018.02.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 12/18/2022]
Abstract
Accumulating evidence indicates an interaction between inflammation and depression since increased levels of pro-inflammatory cytokines are associated with depression-related symptoms. Melatonin is a hormone synthesized and secreted by the pineal gland with antioxidant, anti-inflammatory and antidepressant-like effects. In this way, it would be interesting to evaluate the putative antidepressant-like effect of melatonin treatment in an acute inflammation mice model of depression. The present study aimed to investigate the effect of melatonin treatment on lipopolysaccharide (LPS) induced depressive-like behavior, neuroinflammation, oxidative stress and alteration on brain-derived neurotrophic fator (BDNF) levels. Mice were treated with melatonin (10 mg/kg, i.p.) 30 min before LPS (0.5 mg/kg, i.p.) injection. Twenty-four hours after LPS infusion, mice were submitted to the behavioral tests and, thereafter, biochemical determinations were performed. Melatonin treatment prevented LPS-induced depressive-like behavior in the forced swim and tail suspension tests with no alterations in locomotor activity evaluated in the open field test. Melatonin attenuated LPS-induced increase in tumor necrosis factor-α (TNF-α) and reduction of BDNF levels in the hippocampus. Treatment with melatonin also prevented LPS-induced increase in lipid peroxidation and the reduction of glutathione levels in the hippocampus. In conclusion, the present study suggests that melatonin treatment exerted neuroprotective effects against LPS-induced depressive-like behavior which may be related to reduction of TNF-α release, oxidative stress and modulation of BDNF expression.
Collapse
Affiliation(s)
- E H Taniguti
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - Y S Ferreira
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - I J V Stupp
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil; Laboratório de Imunologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - E B Fraga-Junior
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - C B Mendonça
- Laboratório de Imunologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - F L Rossi
- Laboratório de Imunologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - H N Ynoue
- Laboratório de Imunologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - D L Doneda
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - L Lopes
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - E Lima
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - Z S Buss
- Laboratório de Imunologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - S Vandresen-Filho
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil.
| |
Collapse
|
32
|
Mota CMD, Rodrigues-Santos C, Fernández RAR, Carolino ROG, Antunes-Rodrigues J, Anselmo-Franci JA, Branco LGS. Central serotonin attenuates LPS-induced systemic inflammation. Brain Behav Immun 2017; 66:372-381. [PMID: 28723348 DOI: 10.1016/j.bbi.2017.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/06/2017] [Accepted: 07/15/2017] [Indexed: 12/21/2022] Open
Abstract
Serotonin (5-HT) is a neuromodulator involved in several central-mediated mechanisms, such as endocrine processes, behavior, and sleep. Dysfunction of the serotonergic system is mainly linked to psychiatric disorders, but emerging evidence suggests that immune system activation may also alter brain 5-HT signaling. However, whether central 5-HT modulates systemic inflammation (SI) remains unknown. For this purpose, male Wistar rats (280-350g, 8-9weeks) were submitted to the experimental protocols beginning between 9 and 10AM with the performance of injections. The animals were housed at controlled conditions [temperature (25±1°C), light (06:00-18:00) and humidity (60-65%)]. Thus, we measured 5-HT and its metabolite 5-hydroxyindole-3-acetic acid (5-HIAA) in the anteroventral preoptic region [(AVPO) - the hierarchically most important region for body temperature (Tb) control] during lipopolysaccharide (LPS)-induced SI. We also combined LPS (100μg/kg) treatment with intracerebroventricular (icv) injection of 5-HT (5, 10 and 40μg/μL) and measured Tb ("hallmark" of SI), AVPO prostaglandin E2 [(PGE2) - an essential mediator of fever] and prostaglandin D2 [(PGD2) - a cryogenic mediator], plasma corticosterone [(CORT) - a stress marker with an endogenous anti-inflammatory effect] and interleukin-6 [(IL-6) - an immune mediator] levels. Detection limits of PGE2, PGD2, CORT and IL-6 assays were 39.1-2500pg/mL, 19.5-2500pg/mL, 0.12-2000μg/dL, and 0.125-8ng/mL, respectively. We also assessed tail skin temperature [used to calculate heat loss index (HLI)] to assess a key thermoeffector mechanism. As expected we observed LPS-induced increases in Tb, AVPO PGE2 (whereas PGD2 remained unchanged), plasma CORT and IL-6 levels, as well as a decrease in HLI. These changes were accompanied by reduced levels of AVPO 5-HT and 5-HIAA. Furthermore, we also observed a negative correlation between 5-HT and plasma CORT levels. Moreover, icv 5-HT (5, 10 and 40μg/μL) microinjection caused a U-shaped dose-response curve in LPS fever, in which the intermediate dose reduced the febrile response. Icv 5-HT (10μg/μL) microinjection prevented the LPS-induced increases in AVPO PGE2 (whereas not altering PGD2), plasma CORT and IL-6 levels, as well as preventing reduced HLI. Our data are consistent with the notion that AVPO 5-HT synthesis is down-regulated during SI, favoring AVPO PGE2 synthesis and consequently potentiating the immune response. These results reveal a novel effect of central 5-HT as an anti-inflammatory neuromodulator that may take place during psychiatric disorder treatment with 5-HT reuptake inhibitors as well as suggesting that 5-HT modulation per se is a potential therapeutic approach for inflammatory diseases.
Collapse
Affiliation(s)
- Clarissa M D Mota
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Caroline Rodrigues-Santos
- Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rodrigo A R Fernández
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ruither O G Carolino
- Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José Antunes-Rodrigues
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Janete A Anselmo-Franci
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G S Branco
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
33
|
Hsueh PT, Wang HH, Liu CL, Ni WF, Chen YL, Liu JK. Expression of cerebral serotonin related to anxiety-like behaviors in C57BL/6 offspring induced by repeated subcutaneous prenatal exposure to low-dose lipopolysaccharide. PLoS One 2017. [PMID: 28650979 PMCID: PMC5484498 DOI: 10.1371/journal.pone.0179970] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Prenatal exposure to lipopolysaccharide (LPS), which likely occurs due to infection or contact with environmental allergens during pregnancy, is a proposed risk factor that induces anxiety- and autism spectrum disorder-like behaviors in offspring. However, the molecular and behavioral changes in offspring after maternal immune activation have not been completely identified. We hypothesized that a subcutaneous injection of LPS in a pregnant mouse would induce changes in cerebral serotonin (5-HT) in parallel to the appearance of anxiety-like behaviors in the dam’s offspring. After LPS injections (total, 100 μg/Kg), the time spent in the central region during the open field test and the number of times that the mice moved between the light and dark boxes and between the open and closed arms on the elevated plus maze test revealed anxiety-like behaviors in offspring at 5, 6 and 9 weeks of age. The mRNA expression levels of tph2 (5-HT synthesizing enzyme) and slc6a4 (5-HT transporter) were down-regulated in both adolescent (5 weeks of age) and adult (8 weeks of age) brains. Immunohistochemistry revealed that the numbers and sizes of tph2-expressing cells were notably decreased in the raphe nuclei of the midbrain of adults. Moreover, compared with controls (phosphate-buffered saline-treated offspring), the cerebral 5-HT concentration at adolescence and adulthood in LPS-induced offspring was significantly decreased. We concluded that maternal immune activation induced by exposure to a low dose of LPS decreased cerebral 5-HT levels in parallel to the down-regulation of the tph2 and slc6a4 genes and in conjunction with anxiety-like behaviors in offspring.
Collapse
Affiliation(s)
- Pei-Tan Hsueh
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsuan-Han Wang
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Chiu-Lin Liu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Wei-Fen Ni
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Ya-Lei Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
- * E-mail: (LJK); (CYL)
| | - Jong-Kang Liu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- * E-mail: (LJK); (CYL)
| |
Collapse
|