1
|
Chen Y, Du J, Lei M, Ji N, Zhang W, Li C, Zhang B. Early maternal separation potentiates the impact of later social isolation in inducing depressive-like behavior via oxidative stress in adult rats. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06811-0. [PMID: 40389583 DOI: 10.1007/s00213-025-06811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 05/02/2025] [Indexed: 05/21/2025]
Abstract
RATIONALE Individuals who have experienced early life stress (ELS) are more vulnerable to later life stress induced depression, which might attribute to ELS potentiated impact of later life stress. The presumption and neurobiological mechanisms involved require further validation and elucidation. OBJECTIVES To investigate impact of pre-weaning maternal separation (MS) on post-weaning social isolation (SI) in inducing depressive-like behavior, and involvement of central oxidative stress, glutamatergic and brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) signaling in the process. METHODS Male offspring were exposed to MS, SI or maternal separation and social isolation (MSSI) stress, respectively. Subjects were treated with saline, antioxidant diallyl disulfide (DADS) (30 mg/kg, i.g.) or antidepressant fluoxetine (10 mg/kg, i.p.), for two weeks before behavioral tests in adolescents or adults. Depressive-like behavior was assessed with sucrose preference, forced swim and tail suspension tests. Concentrations of 4-hydroxynonenal (4-HNE), glutathione and superoxide dismutase in hippocampus and serum, and hippocampal protein expressions of glutamate transporter 1 (GLT-1), BDNF and TrkB were assessed by western blotting analysis. RESULTS MSSI, rather than MS or SI, induced significant depressive-like behavior, in adults but not adolescents. Consistently, only MSSI significantly elevated 4-HNE, whereas inhibited GLT-1, BDNF and TrkB in adult hippocampus. MSSI induced behavioral and biochemical abnormalities in adults were reversed by DADS or fluoxetine treatment. CONCLUSIONS Early MS age-dependently potentiates later SI impact in inducing depressive-like behavior in male rats, through elevating oxidative stress and interrupting glutamatergic and BDNF/TrkB signaling in the brain. Results further suggest antioxidant treatment as a promising anti-depressant avenue.
Collapse
Affiliation(s)
- Yating Chen
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, #1 Zhiyuan Road, Lingui District, Guilin Guangxi, 541199, China
| | - Jingjing Du
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, #1 Zhiyuan Road, Lingui District, Guilin Guangxi, 541199, China
| | - Mengzhu Lei
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, #1 Zhiyuan Road, Lingui District, Guilin Guangxi, 541199, China
| | - Na Ji
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, #1 Zhiyuan Road, Lingui District, Guilin Guangxi, 541199, China
| | - Wei Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, #1 Zhiyuan Road, Lingui District, Guilin Guangxi, 541199, China
| | - Chuanyu Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, #1 Zhiyuan Road, Lingui District, Guilin Guangxi, 541199, China.
| | - Bo Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, #1 Zhiyuan Road, Lingui District, Guilin Guangxi, 541199, China.
- Guangxi Clinical Research Center for Neurological Diseases, Guilin Medical University, Guilin, 541199, Guangxi, China.
| |
Collapse
|
2
|
Dos Santos Júnior JP, Dos Santos Júnior OH, Silva-Araujo ER, Cavalcanti Bezerra Gouveia HJ, Lacerda DC, Visco DB, Pontes Silva PB, Cadena-Burbano EV, Amaral de Souza Gonzaga Paz IA, de Souza SL, de Castro RM. Phenotypic plasticity: historical context, theories and DOHaD. Brain Res 2025; 1860:149673. [PMID: 40345363 DOI: 10.1016/j.brainres.2025.149673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/04/2025] [Accepted: 05/01/2025] [Indexed: 05/11/2025]
Abstract
The Developmental Origins of Health and Disease (DOHaD) concept has emerged as an interdisciplinary framework that explores how early-life events shape long-term health and disease risk. Rooted in the Thrifty Phenotype hypothesis proposed by Barker and Hales, DOHaD builds upon centuries of philosophical and scientific thought. Central to DOHaD is the concept of phenotypic plasticity, which explains how organisms adapt their biological characteristics in response to environmental stimuli, particularly during critical developmental periods. In this context, this review aims to analyze the historical evolution of phenotypic plasticity, its theoretical foundations, and its role in health and disease. After reviewing the literature on scope, we summarize key contributions from evolutionary biology, genetics, and epigenetics, examining theories from Lamarck, Darwin, Mendel, and Waddington to contemporary perspectives in DOHaD. Understanding that early-life events can lead to adaptations which may have short-term benefits but potentially increase the likelihood of diseases in adulthood highlights the importance of targeted preventive interventions. Additionally, individual variations in response to environmental stimuli reinforce the complexity of adaptive mechanisms. Thus, understanding the intricate relationship between phenotypic plasticity, early-life exposures, and disease risk is essential for developing preventive interventions and public health strategies. The challenge remains in translating these findings into effective healthcare policies and clinical applications, ensuring improved quality of life and disease prevention across generations.
Collapse
Affiliation(s)
- Joaci Pereira Dos Santos Júnior
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil
| | - Osmar Henrique Dos Santos Júnior
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil; Nursing Unit, Vitória Academic Center, Federal University of Pernambuco, Vitória de Santo Antão, Pernambuco 55608-680, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-901, Brazil.
| | - Eulália Rebeca Silva-Araujo
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Henrique José Cavalcanti Bezerra Gouveia
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil
| | - Diego Cabral Lacerda
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Diego Bulcão Visco
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil; Graduate Program of Health Sciences, Laboratory of Neurofunctional, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil
| | - Paula Brielle Pontes Silva
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Erika Vanessa Cadena-Burbano
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Isla Ariadny Amaral de Souza Gonzaga Paz
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Sandra Lopes de Souza
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Raul Manhães de Castro
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-901, Brazil
| |
Collapse
|
3
|
McClafferty SR, Paniagua-Ugarte C, Hannabass ZM, Jackson PA, Hayes DM. Comparing the effects of infant maternal and sibling separation on adolescent behavior in rats (Rattus norvegicus). PLoS One 2024; 19:e0308958. [PMID: 39150925 PMCID: PMC11329123 DOI: 10.1371/journal.pone.0308958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/01/2024] [Indexed: 08/18/2024] Open
Abstract
Maternal separation in early life has been observed to have lasting, detrimental effects that impair personal and social development and can persist into adulthood. Maternal separation during infancy can be most detrimental during adolescence, leading to long-term adverse effects on development and social behavior. This research study compared the effects of sibling and maternal separation in infancy on anxiety, sociability, or memory later in adolescence (postnatal day, PND, 50-58) in male and female Long-Evans Rats (Rattus norvegicus). Rat pups were semi-randomly assigned into eight conditions for daily isolation (PND 1-14). The groups were separated by the duration of isolation between 15 minutes (control group) or 180 minutes (experimental group) and the sex of the rat. They were also separated by comfort conditions with the dam present in an adjoining cage versus not present and siblings present or not present during isolation. The result was a 2 (15-min vs. 180-min) x 2 (dam vs. no dam) x 2 (single vs. grouped) x 2 (male vs. female) design. Once pups had reached adolescence (PND 50), researchers tested for differences in anxiety, activity, and social behavior using elevated plus-maze, open field habituation, a three-chamber social interaction, and a social discrimination task. Results indicate that longer isolation was more stressful and caused lower body weight. The female rats showed more anxious behavior in the open field but only if they were in the shorter isolation group. Social interaction showed that the rats isolated with the dam had different effects of isolation. In males, shorter isolation with the dam increased sociability but decreased sociability in females. These complicated findings may be due to the effects of inoculation, which describes how moderate stress combined with comfort may produce adaptation or immunity to stress and affect males and females differently.
Collapse
Affiliation(s)
- Shane R McClafferty
- Radford University, Radford, VA, United States of America
- Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America
| | | | | | | | - Dayna M Hayes
- Radford University, Radford, VA, United States of America
| |
Collapse
|
4
|
Whitney AJ, Lindeque Z, Kruger R, Steyn SF. Genetically predisposed and resilient animal models of depression reveal divergent responses to early-life adversity. Acta Neuropsychiatr 2023:1-13. [PMID: 37592838 DOI: 10.1017/neu.2023.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Early-life adversity (ELA) is one of the strongest predictors of childhood depression that may be exacerbated by a genetic predisposition to develop depression. We therefore investigated the bio-behavioural effects of an early-life stressor in an accepted rodent model of depression. METHODS The Flinders sensitive line (FSL) and resistant line (FRL) rats were subjected to an early-life stressor, whereafter their bio-behavioural response during pubertal onset was evaluated. Male and female pups were maternally separated for 3 h per day from postnatal day 02 (PND02) to 17, when they were also weaned. Control animals were left undisturbed, until weaning on PND21. Depressive-like behaviour was analysed on PND21 and reassessed on PND36. Hippocampal monoamine levels, markers of oxidative stress and metabolic markers implicating mitochondrial function were also measured. RESULTS On PND21, the non-maternal separation and early weaning (non-MSEW) FSL rats spent 10% more time mobile than their FRL controls in the tail suspension test (TST) yet displayed increased depressive-like behaviour in the forced swim test (FST) on PND36. This depressive-like behaviour coincided with increased hippocampal norepinephrine levels, serotonin turnover and a dysfunctional redox state. Maternal separation and early weaning (MSEW) appeared to initially reduce early-life (PND21) depressive-like behaviour in the TST but then induced depressive-like behaviour on PND36 and increased norepinephrine levels more profoundly in the FRL rats. CONCLUSION These findings highlight the need to further investigate the stress response pathway in these animals and that the absence or presence of genetic susceptibility may influence the presentation of ELA effects.
Collapse
Affiliation(s)
- Ashleigh J Whitney
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Zander Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Ruan Kruger
- Hypertension in African Research Team (HART), North-West University, Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Stephan F Steyn
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
5
|
Mavrenkova PV, Khlebnikova NN, Alchinova IB, Demorzhi MS, Shoibonov BB, Karganov MY. Effects of Maternal Separation and Subsequent Stress on Behaviors and Brain Monoamines in Rats. Brain Sci 2023; 13:956. [PMID: 37371434 DOI: 10.3390/brainsci13060956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Childhood adversity can induce maladaptive behaviors and increase risk for affective disorders, post-traumatic stress disorder, personality disorders, and vulnerability to stress in adulthood. Deprivation of maternal care interrupts brain development through the disturbance of various neurotransmitters, however, the details remain unclear. The features of the symptoms of disorders are largely determined by early stress protocol, genetic characteristics (line), and the sex of the animals. The purpose of current study was (1) to assess behavioral changes in adult Wistar rats of both sexes after early life stress; (2) to determine the levels of monoamines in brain structures involved in the motor, emotional, and social reactions in rats aged 1 and 2 months; and (3) to determine the level of monoamines after physical or emotional stress in adult rats. The rat pups were separated from their dams and isolated from siblings in tight boxes at a temperature of 22-23 °C for 6 h during postnatal days 2-18. The data were processed predominantly using two-way analysis of variance and the Newman-Keys test as the post hoc analysis. The adult rats demonstrated an increase in motor activity and aggressiveness and a decrease in levels of anxiety and sociability. Behavioral disturbances were accompanied by region-, sex-, and age-dependent changes in the levels of monoamines and their metabolites. The dopaminergic and noradrenergic systems were found to be sensitive to psycho-emotional stress.
Collapse
Affiliation(s)
- Polina V Mavrenkova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Nadezhda N Khlebnikova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Irina B Alchinova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Marina S Demorzhi
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Batozhab B Shoibonov
- P. K. Anokhin Institute of Normal Physiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Mikhail Yu Karganov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| |
Collapse
|
6
|
López-Taboada I, Sal-Sarria S, Vallejo G, Coto-Montes A, Conejo NM, González-Pardo H. Sexual dimorphism in spatial learning and brain metabolism after exposure to a western diet and early life stress in rats. Physiol Behav 2022; 257:113969. [PMID: 36181786 DOI: 10.1016/j.physbeh.2022.113969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 01/06/2023]
Abstract
Prolonged daily intake of Western-type diet rich in saturated fats and sugars, and exposure to early life stress have been independently linked to impaired neurodevelopment and behaviour in animal models. However, sex-specific effects of both environmental factors combined on spatial learning and memory, behavioural flexibility, and brain oxidative capacity have still not been addressed. The current study aimed to evaluate the impact of maternal and postnatal exposure to a high-fat and high-sugar diet (HFS), and exposure to early life stress by maternal separation in adult male and female Wistar rats. For this purpose, spatial learning and memory and behavioural flexibility were evaluated in the Morris water maze, and regional brain oxidative capacity and oxidative stress levels were measured in the hippocampus and medial prefrontal cortex. Spatial memory, regional brain oxidative metabolism, and levels of oxidative stress differed between females and males, suggesting sexual dimorphism in the effects of a HFS diet and early life stress. Males fed the HFS diet performed better than all other experimental groups independently of early life stress exposure. However, behavioural flexibility evaluated in the spatial reversal leaning task was impaired in males fed the HFS diet. In addition, exposure to maternal separation or the HFS diet increased the metabolic capacity of the prefrontal cortex and dorsal hippocampus in males and females. Levels of oxidative stress measured in the latter brain regions were also increased in groups fed the HFS diet, but maternal separation seemed to dampen regional brain oxidative stress levels. Therefore, these results suggest a compensatory effect resulting from the interaction between prolonged exposure to a HFS diet and early life stress.
Collapse
Affiliation(s)
- Isabel López-Taboada
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Saúl Sal-Sarria
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain
| | - Guillermo Vallejo
- Methodology area, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003 Oviedo, Spain
| | - Ana Coto-Montes
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain; Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain
| | - Nélida M Conejo
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain.
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| |
Collapse
|
7
|
Amaro A, Baptista FI, Matafome P. Programming of future generations during breastfeeding: The intricate relation between metabolic and neurodevelopment disorders. Life Sci 2022; 298:120526. [DOI: 10.1016/j.lfs.2022.120526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/27/2022]
|
8
|
Leal PEDPT, da Silva AA, Rocha-Gomes A, Riul TR, Cunha RA, Reichetzeder C, Villela DC. High-Salt Diet in the Pre- and Postweaning Periods Leads to Amygdala Oxidative Stress and Changes in Locomotion and Anxiety-Like Behaviors of Male Wistar Rats. Front Behav Neurosci 2022; 15:779080. [PMID: 35058757 PMCID: PMC8763963 DOI: 10.3389/fnbeh.2021.779080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
High-salt (HS) diets have recently been linked to oxidative stress in the brain, a fact that may be a precursor to behavioral changes, such as those involving anxiety-like behavior. However, to the best of our knowledge, no study has evaluated the amygdala redox status after consuming a HS diet in the pre- or postweaning periods. This study aimed to evaluate the amygdala redox status and anxiety-like behaviors in adulthood, after inclusion of HS diet in two periods: preconception, gestation, and lactation (preweaning); and only after weaning (postweaning). Initially, 18 females and 9 male Wistar rats received a standard (n = 9 females and 4 males) or a HS diet (n = 9 females and 5 males) for 120 days. After mating, females continued to receive the aforementioned diets during gestation and lactation. Weaning occurred at 21-day-old Wistar rats and the male offspring were subdivided: control-control (C-C)—offspring of standard diet fed dams who received a standard diet after weaning (n = 9–11), control-HS (C-HS)—offspring of standard diet fed dams who received a HS diet after weaning (n = 9–11), HS-C—offspring of HS diet fed dams who received a standard diet after weaning (n = 9–11), and HS-HS—offspring of HS diet fed dams who received a HS diet after weaning (n = 9–11). At adulthood, the male offspring performed the elevated plus maze and open field tests. At 152-day-old Wistar rats, the offspring were euthanized and the amygdala was removed for redox state analysis. The HS-HS group showed higher locomotion and rearing frequency in the open field test. These results indicate that this group developed hyperactivity. The C-HS group had a higher ratio of entries and time spent in the open arms of the elevated plus maze test in addition to a higher head-dipping frequency. These results suggest less anxiety-like behaviors. In the analysis of the redox state, less activity of antioxidant enzymes and higher levels of the thiobarbituric acid reactive substances (TBARS) in the amygdala were shown in the amygdala of animals that received a high-salt diet regardless of the period (pre- or postweaning). In conclusion, the high-salt diet promoted hyperactivity when administered in the pre- and postweaning periods. In animals that received only in the postweaning period, the addition of salt induced a reduction in anxiety-like behaviors. Also, regardless of the period, salt provided amygdala oxidative stress, which may be linked to the observed behaviors.
Collapse
Affiliation(s)
- Pedro Ernesto de Pinho Tavares Leal
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- Laboratório de Nutrição Experimental – LabNutrex, Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Alexandre Alves da Silva
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- Laboratório de Nutrição Experimental – LabNutrex, Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Arthur Rocha-Gomes
- Laboratório de Nutrição Experimental – LabNutrex, Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental – LabNutrex, Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Rennan Augusto Cunha
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Christoph Reichetzeder
- Department of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- Christoph Reichetzeder,
| | - Daniel Campos Villela
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
- *Correspondence: Daniel Campos Villela,
| |
Collapse
|
9
|
de Andrade Silva SC, da Silva AI, Braz GRF, da Silva Pedroza AA, de Lemos MDT, Sellitti DF, Lagranha C. Overfeeding during development induces temporally-dependent changes in areas controlling food intake in the brains of male Wistar rats. Life Sci 2021; 285:119951. [PMID: 34516994 DOI: 10.1016/j.lfs.2021.119951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
AIMS We sought to evaluate the effects of overfeeding during lactation on the feeding behavior and expression of specific regulatory genes in brain areas associated with food intake in 22- and 60-day old male rats. METHODS We evaluated body weight, food intake of standard and palatable diet, and mRNA expression of dopamine receptor D1 (DDR1), dopamine receptor (DDR2), melanocortin 4 receptor (MC4R), the μ-opioid receptor (MOR), neuropeptide Y (NPY), agouti-related protein (AGRP), proopiomelanocortin (POMC), cocaine-and amphetamine-regulated transcript (CART), serotonin (5-hydroxytryptamine; 5-HT) transporter (SERT), 5-hydroxytryptamine receptor 1B (5-HT1B), 5-hydroxytryptamine receptor 2C receptor (5-HT2C), Clock (CLOK), cryptochrome protein 1 (Cry1) and period circadian protein homolog 2 (Per2) in the striatum, hypothalamus and brainstem of male rats at post-natal days (PND) 22 and 60. KEY FINDINGS Overfeeding resulted in significantly increased body weight through PND60, and a 2-fold increase in palatable food intake at PND22, but not at PND60. We observed significant increases in DDR1, DDR2, and MC4R gene expression in the striatum and brainstem and POMC/CART in the hypothalamus of the OF group at PND22 that were reversed by PND60. Hypothalamic levels of 5-HT1B, 5-HT2C and NPY/AGRP on the other hand were decreased at PND22 and increased at PND60 in OF animals. Clock genes were unaffected by OF at PND22, but were significantly elevated at PND60. SIGNIFICANCE Overfeeding during early development of the rat brain results in obesity and altered feeding behavior in early adulthood. The altered behavior might be the consequence of the changes in food intake and reward gene expression.
Collapse
Affiliation(s)
| | - Aline Isabel da Silva
- Neuropsychiatry and Behavior Science Graduate Program, Universidade Federal de Pernambuco -UFPE-Recife, PE, Brazil
| | - Glauber Rudá Feitoza Braz
- Neuropsychiatry and Behavior Science Graduate Program, Universidade Federal de Pernambuco -UFPE-Recife, PE, Brazil
| | | | | | - Donald F Sellitti
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Claudia Lagranha
- Neuropsychiatry and Behavior Science Graduate Program, Universidade Federal de Pernambuco -UFPE-Recife, PE, Brazil; Laboratory of Biochemistry and Exercise Biochemistry, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil.
| |
Collapse
|
10
|
MicroRNA Regulates Early-Life Stress–Induced Depressive Behavior via Serotonin Signaling in a Sex-Dependent Manner in the Prefrontal Cortex of Rats. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:180-189. [PMID: 36325302 PMCID: PMC9616342 DOI: 10.1016/j.bpsgos.2021.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/06/2021] [Accepted: 05/23/2021] [Indexed: 01/01/2023] Open
Abstract
Background The underlying neurobiology of early-life stress (ELS)-induced major depressive disorder is not clearly understood. Methods In this study, we used maternal separation (MS) as a rodent model of ELS and tested whether microRNAs (miRNAs) target serotonin genes to regulate ELS-induced depression-like behavior and whether this effect is sex dependent. We also examined whether environmental enrichment prevents susceptibility to depression- and anxiety-like behavior following MS and whether enrichment effects are mediated through serotonin genes and their corresponding miRNAs. Results MS decreased sucrose preference, which was reversed by enrichment. Males also exhibited greater changes in forced swim climbing and escape latency tests only following enrichment. Slc6a4 and Htr1a were upregulated in the frontal cortex following MS. In male MS rats, enrichment slightly reversed Htr1a expression to levels similar to control rats. miR-200a-3p and miR-322-5p, which target SLC6A4, were decreased by MS, but not significantly. An HTR1A-targeting miRNA, miR-320-5p, was also downregulated by MS and showed slight reversal by enrichment in male animals. miR-320-5p targeting of Htr1a was validated in vitro using SHSY neuroblastoma cell lines. Conclusions Altogether, this study implicates miRNA interaction with the serotonin pathway in ELS-induced susceptibility to depression-related reward deficits. Furthermore, because of its recovery by enrichment in males, miR-320 may represent a viable sex-specific target for reward-related deficits in major depressive disorder.
Collapse
|
11
|
Rocha-Gomes A, Teixeira AE, de Oliveira DG, Santiago CMO, da Silva AA, Riul TR, Lacerda ACR, Mendonça VA, Rocha-Vieira E, Leite HR. LPS tolerance prevents anxiety-like behavior and amygdala inflammation of high-fat-fed dams' adolescent offspring. Behav Brain Res 2021; 411:113371. [PMID: 34019914 DOI: 10.1016/j.bbr.2021.113371] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/15/2021] [Accepted: 05/15/2021] [Indexed: 02/04/2023]
Abstract
Maternal high-fat diets (HFD) can generate inflammation in the offspring's amygdala, which can lead to anxiety-like behaviors. Conversely, lipopolysaccharide (LPS) tolerance can reduce neuroinflammation in the offspring caused by maternal high-fat diets. This study evaluated the combination of LPS tolerance and high-fat maternal diet on amygdala's inflammatory parameters and the anxiety-like behavior in adolescent offspring. Female pregnant Wistar rats received randomly a standard diet or a high-fat diet during gestation and lactation. On gestation days 8, 10, and 12, half of the females in each group were intraperitonially injected with LPS (0.1 mg.kg-1). After weaning, the male offspring (n = 96) were placed in individual boxes in standard conditions, and when 6 weeks-old, the animals underwent: Open-Field, Light/Dark Box, Elevated Plus-Maze, and Rotarod tests. When 50 days-old the offspring were euthanized and the amygdala removed for cytokine and redox status analysis. The offspring in the HFD group showed lower amygdala IL-10 levels, high IL-6/IL-10 ratio, and anxiety-like behaviors. These effects were attenuated in the HFD offspring submitted to LPS tolerance, which showed an anti-inflammatory compensatory response in the amygdala. Also, this group showed a higher activity of the enzyme catalase in the amygdala. In addition, receiving the combination of LPS tolerance and maternal HFD did not lead to anxiety-like behavior in the offspring. The results suggest that LPS tolerance attenuated amygdala inflammation through an anti-inflammatory compensatory response besides preventing anxiety-like behavior caused by the high-fat maternal diet.
Collapse
Affiliation(s)
- Arthur Rocha-Gomes
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Amanda Escobar Teixeira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Dalila Gomes de Oliveira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Camilla Mainy Oliveira Santiago
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Alexandre Alves da Silva
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Ana Cristina Rodrigues Lacerda
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Vanessa Amaral Mendonça
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Etel Rocha-Vieira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Faculdade de Medicina do Campus JK, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Hércules Ribeiro Leite
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Programa de Pós Graduação em Ciências da Reabilitação, Universidade Federal de Minas Gerais, Diamantina, MG, Brazil.
| |
Collapse
|
12
|
Tavares GA, Torres A, de Souza JA. Early Life Stress and the Onset of Obesity: Proof of MicroRNAs' Involvement Through Modulation of Serotonin and Dopamine Systems' Homeostasis. Front Physiol 2020; 11:925. [PMID: 32848865 PMCID: PMC7399177 DOI: 10.3389/fphys.2020.00925] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/09/2020] [Indexed: 01/12/2023] Open
Abstract
Healthy persons hold a very complex system for controlling energy homeostasis. The system functions on the interconnected way between the nutritional, endocrine, neural, and epigenetic regulation, which includes the microRNAs (miRNAs). Currently, it is well accepted that experiences of early life stress (ELS) carry modification of the central control of feeding behavior, one of the factors controlling energy homeostasis. Recently, studies give us a clue on the modulation of eating behavior, which is one of the main factors associated with the development of obesity. This clue connected the neural control through the serotonin (5HT) and dopamine (DA) systems with the fine regulation of miRNAs. The first pieces of evidence highlight the presence of the miR-16 in the regulation of the serotonin transporter (SERT) as well as the receptors 1a (5HT1A) and 2a (5HT2A). On the other hand, miR-504 is related to the dopamine receptor D2 (DRD2). As our knowledge advance, we expected to discover other important pathways for the regulation of the energy homeostasis. As both neurotransmission systems and miRNAs seem to be sensible to ELS, the aim of this review is to bring new insight about the involvement of miRNAs with a central role in the control of eating behavior focusing on the influences of ELS and regulation of neurotransmission systems.
Collapse
Affiliation(s)
- Gabriel Araujo Tavares
- Nantes Université, INRAE, UMR 1280, PhAN, Nantes, France.,Laboratory of Neuroplasticity and Behavior, Graduate Program of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Amada Torres
- Nantes Université, INRAE, UMR 1280, PhAN, Nantes, France.,Developmental Genetics and Molecular Physiology, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico - Campus Morelos, Cuernavaca, Mexico
| | - Julliet Araujo de Souza
- Laboratory of Neuroplasticity and Behavior, Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|