1
|
Zilli GAL, Sant'Ana BH, Bastiani CDS, Izolan LDR, Pulcinelli RR, Marques D, Leal MB, Gomez R. Differential effects of chronic and intermittent administration of taurine on alcohol binge drinking in male rats. Behav Brain Res 2024; 477:115316. [PMID: 39461369 DOI: 10.1016/j.bbr.2024.115316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Episodic consumption of high doses of alcohol in a short period (binge drinking - BD) among adolescents is known to be harmful to their brain development. Chronic use of taurine increases voluntary alcohol consumption and shows an anxiolytic-like effect in rats. In this study, we evaluated the differential effects of chronic and intermittent taurine administration on alcohol consumption and behavioral changes in adolescent and young adult rats subjected to the BD model. Male Wistar rats (35 days old) were divided into 4 groups for daily intraperitoneal administration of saline (SAL); taurine, 100mg/kg (TAU); taurine on BD days and saline on intervals (TAU/SAL); and saline on BD days and taurine on intervals (SAL/TAU). They were exposed to 4 cycles of BD, with free access to alcoholic solution (20% w/v), for 2h, 3 days per week. At the end of the 3rd cycle, anxiety-like behaviors were assessed using the light-dark task. After euthanasia, plasma and prefrontal cortex samples were collected to measure corticosterone and BDNF levels, respectively. Chronic taurine treatment did not alter alcohol consumption in rats, whereas intermittent administration increased alcohol intake after 4 BD exposures (TAU/SAL: +19.4% and SAL/TAU: +21.6%). No anxiolytic-like effects were found by taurine administration, nor were there changes in serum corticosterone or BDNF levels in the frontal cortex of young adult rats. Intermittent taurine, but not chronic treatment, increased alcohol intake among rats after the second week of exposure. The translation of these results to humans is concerning since the combination of alcohol and drinks containing taurine is common among adolescent and young adult individuals.
Collapse
Affiliation(s)
- Gabriela Adriany Lisboa Zilli
- Programa de Pós-graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Bruna Haendchen Sant'Ana
- Programa de Pós-graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Caroline da Silveira Bastiani
- Programa de Pós-graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Rianne Remus Pulcinelli
- Programa de Pós-graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Douglas Marques
- Programa de Pós-graduação em Neurociências, UFRGS, Porto Alegre, Brazil
| | - Mirna Bainy Leal
- Programa de Pós-graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-graduação em Neurociências, UFRGS, Porto Alegre, Brazil
| | - Rosane Gomez
- Programa de Pós-graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-graduação em Neurociências, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
2
|
Vázquez-Ágredos A, Valero M, Aparicio-Mescua T, García-Rodríguez R, Gámiz F, Gallo M. Adolescent alcohol exposure modifies adult anxiety-like behavior and amygdala sensitivity to alcohol in rats: Increased c-Fos activity and sex-dependent microRNA-182 expression. Pharmacol Biochem Behav 2024; 238:173741. [PMID: 38437922 DOI: 10.1016/j.pbb.2024.173741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Adolescent binge alcohol drinking is a serious health concern contributing to adult alcohol abuse often associated with anxiety disorders. We have used adolescent intermittent ethanol (AIE) administration as a model of binge drinking in rats in order to explore its long-term effect on the basolateral amygdala (BLA) responsiveness to alcohol and anxiety-like behavior. AIE increased the number of BLA c-Fos positive cells in adult Wistar rats and anxiety-like behavior assessed by the open field test (OFT). Additionally, in adult female rats receiving AIE BLA over expression of miR-182 was found. Therefore, our results indicate that alcohol consumption during adolescence can lead to enduring changes in anxiety-like behavior and BLA susceptibility to alcohol that may be mediated by sex-dependent epigenetic changes. These results contribute to understanding the mechanisms involved in the development of alcohol use disorders (AUD) and anxiety-related disorders.
Collapse
Affiliation(s)
- Ana Vázquez-Ágredos
- Department of Psychobiology, Institute of Neurosciences (CIBM), University of Granada, Granada, Spain.
| | - Marta Valero
- Department of Psychology, University of Jaén, Jaén, Spain
| | - Teresa Aparicio-Mescua
- Department of Psychobiology and Centre of Investigation of Mind, Brain, and Behavior (CIMCYC), Faculty of Psychology, University of Granada, Granada, Spain
| | - Raquel García-Rodríguez
- Department of Psychobiology, Institute of Neurosciences (CIBM), University of Granada, Granada, Spain
| | - Fernando Gámiz
- Department of Psychobiology, Institute of Neurosciences (CIBM), University of Granada, Granada, Spain
| | - Milagros Gallo
- Department of Psychobiology, Institute of Neurosciences (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria (IBS), University of Granada, Granada, Spain
| |
Collapse
|
3
|
Healey K, Waters RC, Knight SG, Wandling GM, Hall NI, Jones BN, Shobande MJ, Melton JG, Pandey SC, Scott Swartzwelder H, Maldonado-Devincci AM. Adolescent intermittent ethanol exposure alters adult exploratory and affective behaviors, and cerebellar Grin2b expression in C57BL/6J mice. Drug Alcohol Depend 2023; 253:111026. [PMID: 38006668 PMCID: PMC10990063 DOI: 10.1016/j.drugalcdep.2023.111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 09/17/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
Binge drinking is one of the most common patterns (more than 90%) of alcohol consumption by young people. During adolescence, the brain undergoes maturational changes that influence behavioral control and affective behaviors, such as cerebellar brain volume and function in adulthood. We investigated long-term impacts of adolescent binge ethanol exposure on affective and exploratory behaviors and cerebellar gene expression in adult male and female mice. Further, the cerebellum is increasingly recognized as a brain region integrating a multitude of behaviors that span from the traditional primary sensory-motor to affective functions, such as anxiety and stress reactivity. Therefore, we investigated the persistent effects of adolescent intermittent ethanol (AIE) on exploratory and affective behaviors and began to elucidate the role of the cerebellum in these behaviors through excitatory signaling gene expression. We exposed C57BL/6J mice to AIE or air (control) vapor inhalation from postnatal day 28-42. After prolonged abstinence (>34 days), in young adulthood (PND 77+) we assessed behavior in the open field, light/dark, tail suspension, and forced swim stress tests to determine changes in affective behaviors including anxiety-like, depressive-like, and stress reactivity behavior. Excitatory signaling gene mRNA levels of fragile X messenger ribonucleoprotein (FMR1), glutamate receptors (Grin2a, Grin2b and Grm5) and excitatory synaptic markers (PSD-95 and Eaat1) were measured in the cerebellum of adult control and AIE-exposed mice. AIE-exposed mice showed decreased exploratory behaviors in the open field test (OFT) where both sexes show reduced ambulation, however only females exhibited a reduction in rearing. Additionally, in the OFT, AIE-exposed females also exhibited increased anxiety-like behavior (entries to center zone). In the forced swim stress test, AIE-exposed male mice, but not females, spent less time immobile compared to their same-sex controls, indicative of sex-specific changes in stress reactivity. Male and female AIE-exposed mice showed increased Grin2b (Glutamate Ionotropic Receptor NMDA Type Subunit 2B) mRNA levels in the cerebellum compared to their same-sex controls. Together, these data show that adolescent binge-like ethanol exposure altered both exploratory and affective behaviors in a sex-specific manner and modified cerebellar Grin2b expression in adult mice. This indicates the cerebellum may serve as an important brain region that is susceptible to long-term molecular changes after AIE.
Collapse
Affiliation(s)
- Kati Healey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 323 Foster St., Durham, NC 27701, United States
| | - Renee C Waters
- Department of Psychology, Hairston College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States; Department of Psychology, Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, United States
| | - Sherilynn G Knight
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| | - Gabriela M Wandling
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois, Chicago, IL, United States
| | - Nzia I Hall
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States; University of North Carolina at Chapel Hill School of Medicine, NC 27516, United States
| | - Brooke N Jones
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| | - Mariah J Shobande
- Department of Chemical, Biological and Bioengineering, College of Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| | - Jaela G Melton
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois, Chicago, IL, United States; Jesse Brown VA Medical Center, Chicago, IL, United States
| | - H Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 323 Foster St., Durham, NC 27701, United States
| | - Antoniette M Maldonado-Devincci
- Department of Psychology, Hairston College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States.
| |
Collapse
|
4
|
Park I, Kim J, Kim M, Lim DW, Jung J, Kim MJ, Song J, Cho S, Um MY. Sargassum horneri Extract Attenuates Depressive-like Behaviors in Mice Treated with Stress Hormone. Antioxidants (Basel) 2023; 12:1841. [PMID: 37891920 PMCID: PMC10604295 DOI: 10.3390/antiox12101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Sargassum horneri, a brown seaweed, is known for its various health benefits; however, there are no reports on its effects on depression. This study aimed to investigate the antidepressant effects of S. horneri ethanol extract (SHE) in mice injected with corticosterone (CORT) and to elucidate the underlying molecular mechanisms. Behavioral tests were conducted, and corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and CORT levels were measured. A fluorometric monoamine oxidase (MAO) enzyme inhibition assay was performed. Neurotransmitters like serotonin, dopamine, and norepinephrine levels were determined. Moreover, the ERK-CREB-BDNF signaling pathway in the prefrontal cortex and hippocampus was evaluated. Behavioral tests revealed that SHE has antidepressant effects by reducing immobility time and increasing time spent in open arms. Serum CRH, ACTH, and CORT levels decreased in the mice treated with SHE, as did the glucocorticoid-receptor expression in their brain tissues. SHE inhibited MAO-A and MAO-B activities. In addition, SHE increased levels of neurotransmitters. Furthermore, SHE activated the ERK-CREB-BDNF pathway in the prefrontal cortex and hippocampus. These findings suggest that SHE has antidepressant effects in CORT-injected mice, via the regulation of the hypothalamic-pituitary-adrenal axis and monoaminergic pathway, and through activation of the ERK-CREB-BDNF signaling pathway. Thus, our study suggests that SHE may act as a natural antidepressant.
Collapse
Affiliation(s)
- Inhye Park
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Division of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Jiwoo Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Minji Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Division of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Dong Wook Lim
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jonghoon Jung
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Min Jung Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Junho Song
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Suengmok Cho
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Min Young Um
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Division of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
5
|
Healey K, Waters RC, Knight SG, Wandling GM, Hall NI, Jones BN, Shobande MJ, Melton JG, Pandey SC, Scott Swartzwelder H, Maldonado-Devincci AM. Adolescent Intermittent Ethanol Exposure Alters Adult Exploratory and Affective Behaviors, and Cerebellar Grin2B Expression in C57BL/6J Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528396. [PMID: 36824954 PMCID: PMC9949091 DOI: 10.1101/2023.02.13.528396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Binge drinking is one of the most common patterns (more than 90%) of alcohol consumption by young people. During adolescence, the brain undergoes maturational changes that influence behavioral control and affective behaviors, such as cerebellar brain volume and function in adulthood. We investigated long-term impacts of adolescent binge ethanol exposure on affective and exploratory behaviors and cerebellar gene expression in adult male and female mice. Further, the cerebellum is increasingly recognized as a brain region integrating a multitude of behaviors that span from the traditional primary sensory-motor to affective functions, such as anxiety and stress reactivity. Therefore, we investigated the persistent effects of adolescent intermittent ethanol (AIE) on exploratory and affective behaviors and began to elucidate the role of the cerebellum in these behaviors through excitatory signaling gene expression. We exposed C57BL/6J mice to AIE or air (control) vapor inhalation from postnatal day 28-42. After prolonged abstinence (>34 days), in young adulthood (PND 77+) we assessed behavior in the open field, light/dark, tail suspension, and forced swim stress tests to determine changes in affective behaviors including anxiety-like, depressive-like, and stress reactivity behavior. Excitatory signaling gene mRNA levels of fragile X messenger ribonucleoprotein ( FMR1) , glutamate receptors ( Grin2a , Grin2B and Grm5 ) and excitatory synaptic markers (PSD-95 and Eaat1) were measured in the cerebellum of adult control and AIE-exposed mice. AIE-exposed mice showed decreased exploratory behaviors in the open field test (OFT) where both sexes show reduced ambulation, however only females exhibited a reduction in rearing. Additionally, in the OFT, AIE-exposed females also exhibited increased anxiety-like behavior (entries to center zone). In the forced swim stress test, AIE-exposed male mice, but not females, spent less time immobile compared to their same-sex controls, indicative of sex-specific changes in stress reactivity. Male and female AIE-exposed mice showed increased Grin2B (Glutamate Ionotropic Receptor NMDA Type Subunit 2B) mRNA levels in the cerebellum compared to their same-sex controls. Together, these data show that adolescent binge-like ethanol exposure altered both exploratory and affective behaviors in a sex-specific manner and modified cerebellar Grin2B expression in adult mice. This indicates the cerebellum may serve as an important brain region that is susceptible to long-term molecular changes after AIE. Highlights Adolescent intermittent ethanol (AIE) exposure decreased exploratory behavior in adult male and female mice.In females, but not males, AIE increased anxiety-like behavior.In males, but not females, AIE reduced stress reactivity in adulthood.These findings indicate sex differences in the enduring effects of AIE on exploratory and affective behaviors. Cerebellar Grin2B mRNA levels were increased in adulthood in both male and female AIE-exposed mice. These findings add to the small, but growing literature on behavioral AIE effects in mice, and establish cerebellar excitatory synaptic gene expression as an enduring effect of adolescent ethanol exposure.
Collapse
|
6
|
Diviccaro S, Cioffi L, Piazza R, Caruso D, Melcangi RC, Giatti S. Neuroactive Steroid-Gut Microbiota Interaction in T2DM Diabetic Encephalopathy. Biomolecules 2023; 13:1325. [PMID: 37759725 PMCID: PMC10527303 DOI: 10.3390/biom13091325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
The pathological consequences of type 2 diabetes mellitus (T2DM) also involve the central nervous system; indeed, T2DM patients suffer from learning and memory disabilities with a higher risk of developing dementia. Although several factors have been proposed as possible contributors, how neuroactive steroids and the gut microbiome impact brain pathophysiology in T2DM remain unexplored. On this basis, in male Zucker diabetic fatty (ZDF) rats, we studied whether T2DM alters memory abilities using the novel object recognition test, neuroactive steroid levels by liquid chromatography-tandem mass spectrometry, hippocampal parameters using molecular assessments, and gut microbiome composition using 16S next-generation sequencing. Results obtained reveal that T2DM worsens memory abilities and that these are correlated with increased levels of corticosterone in plasma and with a decrease in allopregnanolone in the hippocampus, where neuroinflammation, oxidative stress, and mitochondrial dysfunction were reported. Interestingly, our analysis highlighted a small group of taxa strictly related to both memory impairment and neuroactive steroid levels. Overall, the data underline an interesting role for allopregnanolone and microbiota that may represent candidates for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.D.); (L.C.); (D.C.); (R.C.M.)
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.D.); (L.C.); (D.C.); (R.C.M.)
| | - Rocco Piazza
- Dipartimento di Medicina e Chirurgia, Università di Milano—Bicocca, 20126 Milan, Italy;
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.D.); (L.C.); (D.C.); (R.C.M.)
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.D.); (L.C.); (D.C.); (R.C.M.)
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.D.); (L.C.); (D.C.); (R.C.M.)
| |
Collapse
|