1
|
Ansari MM, Bisht N, Singh T, Chauhan PS. Symphony of survival: Insights into cross-talk mechanisms in plants, bacteria, and fungi for strengthening plant immune responses. Microbiol Res 2024; 285:127762. [PMID: 38763015 DOI: 10.1016/j.micres.2024.127762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/05/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
Plants coexist with a diverse array of microorganisms, predominantly bacteria and fungi, in both natural and agricultural environments. While some microorganisms positively influence plant development and yield, others can cause harm to the host, leading to significant adverse impacts on the environment and the economy. Plant growth-promoting microorganisms (PGPM), including plant growth-promoting bacteria, arbuscular mycorrhizal fungus (AMF), and rhizobia, have been found to increase plant biomass production by synthesizing hormones, fixing nitrogen, and solubilizing phosphate and potassium. Numerous studies have contributed to unraveling the complex process of plant-microbe interactions in recent decades. In light of the increasing global challenges such as population growth, climate change, and resource scarcity, it has become imperative to explore the potential of plant-bacteria-fungi crosstalk in promoting sustainability. This review aims to bridge existing knowledge gaps, providing a roadmap for future research in this dynamic field by synthesizing current knowledge and identifying emerging trends.
Collapse
Affiliation(s)
- Mohd Mogees Ansari
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nikita Bisht
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Tanya Singh
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Puneet Singh Chauhan
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
2
|
Li L, Liu J, Zhou JM. From molecule to cell: the expanding frontiers of plant immunity. J Genet Genomics 2024; 51:680-690. [PMID: 38417548 DOI: 10.1016/j.jgg.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
In recent years, the field of plant immunity has witnessed remarkable breakthroughs. During the co-evolution between plants and pathogens, plants have developed a wealth of intricate defense mechanisms to safeguard their survival. Newly identified immune receptors have added unexpected complexity to the surface and intracellular sensor networks, enriching our understanding of the ongoing plant-pathogen interplay. Deciphering the molecular mechanisms of resistosome shapes our understanding of these mysterious molecules in plant immunity. Moreover, technological innovations are expanding the horizon of the plant-pathogen battlefield into spatial and temporal scales. While the development provides new opportunities for untangling the complex realm of plant immunity, challenges remain in uncovering plant immunity across spatiotemporal dimensions from both molecular and cellular levels.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jing Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Min Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China.
| |
Collapse
|
3
|
Ijaz U, Zhao C, Shabala S, Zhou M. Molecular Basis of Plant-Pathogen Interactions in the Agricultural Context. BIOLOGY 2024; 13:421. [PMID: 38927301 PMCID: PMC11200688 DOI: 10.3390/biology13060421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Biotic stressors pose significant threats to crop yield, jeopardizing food security and resulting in losses of over USD 220 billion per year by the agriculture industry. Plants activate innate defense mechanisms upon pathogen perception and invasion. The plant immune response comprises numerous concerted steps, including the recognition of invading pathogens, signal transduction, and activation of defensive pathways. However, pathogens have evolved various structures to evade plant immunity. Given these facts, genetic improvements to plants are required for sustainable disease management to ensure global food security. Advanced genetic technologies have offered new opportunities to revolutionize and boost plant disease resistance against devastating pathogens. Furthermore, targeting susceptibility (S) genes, such as OsERF922 and BnWRKY70, through CRISPR methodologies offers novel avenues for disrupting the molecular compatibility of pathogens and for introducing durable resistance against them in plants. Here, we provide a critical overview of advances in understanding disease resistance mechanisms. The review also critically examines management strategies under challenging environmental conditions and R-gene-based plant genome-engineering systems intending to enhance plant responses against emerging pathogens. This work underscores the transformative potential of modern genetic engineering practices in revolutionizing plant health and crop disease management while emphasizing the importance of responsible application to ensure sustainable and resilient agricultural systems.
Collapse
Affiliation(s)
- Usman Ijaz
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (U.I.); (C.Z.)
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (U.I.); (C.Z.)
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia;
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (U.I.); (C.Z.)
| |
Collapse
|
4
|
Fernández-Melero B, Del Moral L, Todesco M, Rieseberg LH, Owens GL, Carrère S, Chabaud M, Muños S, Velasco L, Pérez-Vich B. Development and characterization of a new sunflower source of resistance to race G of Orobanche cumana Wallr. derived from Helianthus anomalus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:56. [PMID: 38386181 PMCID: PMC10884359 DOI: 10.1007/s00122-024-04558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/20/2024] [Indexed: 02/23/2024]
Abstract
KEY MESSAGE A new OrAnom1 gene introgressed in cultivated sunflower from wild Helianthus anomalus confers late post-attachment resistance to Orobanche cumana race G and maps to a target interval in Chromosome 4 where two receptor-like kinases (RLKs) have been identified in the H. anomalus genome as putative candidates. Sunflower broomrape is a parasitic weed that infects sunflower (Helianthus annuus L.) roots causing severe yield losses. Breeding for resistance is the most effective and sustainable control method. In this study, we report the identification, introgression, and genetic and physiological characterization of a new sunflower source of resistance to race G of broomrape developed from the wild annual sunflower H. anomalus (accession PI 468642). Crosses between PI 468642 and the susceptible line P21 were carried out, and the genetic study was conducted in BC1F1, BC1F2, and its derived BC1F3 populations. A BC1F5 germplasm named ANOM1 was developed through selection for race G resistance and resemblance to cultivated sunflower. The resistant trait showed monogenic and dominant inheritance. The gene, named OrAnom1, was mapped to Chromosome 4 within a 1.2 cM interval and co-segregated with 7 SNP markers. This interval corresponds to a 1.32 Mb region in the sunflower reference genome, housing a cluster of receptor-like kinase and receptor-like protein (RLK-RLP) genes. Notably, the analysis of the H. anomalus genome revealed the absence of RLPs in the OrAnom1 target region but featured two RLKs as possible OrAnom1 candidates. Rhizotron and histological studies showed that OrAnom1 determines a late post-attachment resistance mechanism. Broomrape can establish a vascular connection with the host, but parasite growth is stopped before tubercle development, showing phenolic compounds accumulation and tubercle necrosis. ANOM1 will contribute to broadening the genetic basis of broomrape resistance in the cultivated sunflower pool and to a better understanding of the molecular basis of the sunflower-broomrape interaction.
Collapse
Affiliation(s)
- Belén Fernández-Melero
- Instituto de Agricultura Sostenible (IAS-CSIC), Alameda del Obispo S/N, 14004, Córdoba, Spain
| | - Lidia Del Moral
- Instituto de Agricultura Sostenible (IAS-CSIC), Alameda del Obispo S/N, 14004, Córdoba, Spain
| | - Marco Todesco
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Gregory L Owens
- Department of Biology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Sébastien Carrère
- Laboratoire des Interactions Plantes Microbes-Environnement (LIPME), Université de Toulouse, CNRS, INRAE, Castanet-Tolosan, France
| | - Mireille Chabaud
- Laboratoire des Interactions Plantes Microbes-Environnement (LIPME), Université de Toulouse, CNRS, INRAE, Castanet-Tolosan, France
| | - Stéphane Muños
- Laboratoire des Interactions Plantes Microbes-Environnement (LIPME), Université de Toulouse, CNRS, INRAE, Castanet-Tolosan, France
| | - Leonardo Velasco
- Instituto de Agricultura Sostenible (IAS-CSIC), Alameda del Obispo S/N, 14004, Córdoba, Spain
| | - Begoña Pérez-Vich
- Instituto de Agricultura Sostenible (IAS-CSIC), Alameda del Obispo S/N, 14004, Córdoba, Spain.
| |
Collapse
|
5
|
Kourelis J. Interplay between cell-surface receptor and intracellular NLR-mediated immune responses. THE NEW PHYTOLOGIST 2023; 240:2218-2226. [PMID: 37605623 DOI: 10.1111/nph.19212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/28/2023] [Indexed: 08/23/2023]
Abstract
The functional link between cell-surface receptors and intracellular NLR immune receptors is a critical aspect of plant immunity. To establish disease, successful pathogens have evolved mechanisms to suppress cell-surface immune signalling. In response, plants have adapted by evolving NLRs that recognize pathogen effectors involved in this suppression, thereby counteracting their immune-suppressing function. This ongoing co-evolutionary struggle has seemingly resulted in intertwined signalling pathways in some plant species, where NLRs form a separate signalling branch downstream of activated cell-surface receptor complexes essential for full immunity. Understanding these interconnected receptor networks could lead to novel strategies for developing durable disease resistance.
Collapse
Affiliation(s)
- Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, UK
| |
Collapse
|
6
|
Contreras MP, Lüdke D, Pai H, Toghani A, Kamoun S. NLR receptors in plant immunity: making sense of the alphabet soup. EMBO Rep 2023; 24:e57495. [PMID: 37602936 PMCID: PMC10561179 DOI: 10.15252/embr.202357495] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Plants coordinately use cell-surface and intracellular immune receptors to perceive pathogens and mount an immune response. Intracellular events of pathogen recognition are largely mediated by immune receptors of the nucleotide binding and leucine rich-repeat (NLR) classes. Upon pathogen perception, NLRs trigger a potent broad-spectrum immune reaction, usually accompanied by a form of programmed cell death termed the hypersensitive response. Some plant NLRs act as multifunctional singleton receptors which combine pathogen detection and immune signaling. However, NLRs can also function in higher order pairs and networks of functionally specialized interconnected receptors. In this article, we cover the basic aspects of plant NLR biology with an emphasis on NLR networks. We highlight some of the recent advances in NLR structure, function, and activation and discuss emerging topics such as modulator NLRs, pathogen suppression of NLRs, and NLR bioengineering. Multi-disciplinary approaches are required to disentangle how these NLR immune receptor pairs and networks function and evolve. Answering these questions holds the potential to deepen our understanding of the plant immune system and unlock a new era of disease resistance breeding.
Collapse
Affiliation(s)
| | - Daniel Lüdke
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | - Hsuan Pai
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | - Sophien Kamoun
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| |
Collapse
|
7
|
Sheikh AH, Zacharia I, Pardal AJ, Dominguez-Ferreras A, Sueldo DJ, Kim JG, Balmuth A, Gutierrez JR, Conlan BF, Ullah N, Nippe OM, Girija AM, Wu CH, Sessa G, Jones AME, Grant MR, Gifford ML, Mudgett MB, Rathjen JP, Ntoukakis V. Dynamic changes of the Prf/Pto tomato resistance complex following effector recognition. Nat Commun 2023; 14:2568. [PMID: 37142566 PMCID: PMC10160066 DOI: 10.1038/s41467-023-38103-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 04/16/2023] [Indexed: 05/06/2023] Open
Abstract
In both plants and animals, nucleotide-binding leucine-rich repeat (NLR) immune receptors play critical roles in pathogen recognition and activation of innate immunity. In plants, NLRs recognise pathogen-derived effector proteins and initiate effector-triggered immunity (ETI). However, the molecular mechanisms that link NLR-mediated effector recognition and downstream signalling are not fully understood. By exploiting the well-characterised tomato Prf/Pto NLR resistance complex, we identified the 14-3-3 proteins TFT1 and TFT3 as interacting partners of both the NLR complex and the protein kinase MAPKKKα. Moreover, we identified the helper NRC proteins (NLR-required for cell death) as integral components of the Prf /Pto NLR recognition complex. Notably our studies revealed that TFTs and NRCs interact with distinct modules of the NLR complex and, following effector recognition, dissociate facilitating downstream signalling. Thus, our data provide a mechanistic link between activation of immune receptors and initiation of downstream signalling cascades.
Collapse
Affiliation(s)
- Arsheed H Sheikh
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Center for Desert Agriculture, BESE Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Iosif Zacharia
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Alonso J Pardal
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Daniela J Sueldo
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Hogskoleringen 1, 7491, Trondheim, Norway
| | - Jung-Gun Kim
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Alexi Balmuth
- J.R. Simplot Company, Boise, ID, USA
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jose R Gutierrez
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Brendon F Conlan
- Research School of Biology, The Australian National University, Acton, 2601, ACT, Australia
| | - Najeeb Ullah
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Olivia M Nippe
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Anil M Girija
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Chih-Hang Wu
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Guido Sessa
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | | | - Murray R Grant
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Miriam L Gifford
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV4 7AL, UK
| | - Mary Beth Mudgett
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - John P Rathjen
- Research School of Biology, The Australian National University, Acton, 2601, ACT, Australia
| | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
8
|
Vo KTX, Yi Q, Jeon JS. Engineering effector-triggered immunity in rice: Obstacles and perspectives. PLANT, CELL & ENVIRONMENT 2023; 46:1143-1156. [PMID: 36305486 DOI: 10.1111/pce.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Improving rice immunity is one of the most effective approaches to reduce yield loss by biotic factors, with the aim of increasing rice production by 2050 amidst limited natural resources. Triggering a fast and strong immune response to pathogens, effector-triggered immunity (ETI) has intrigued scientists to intensively study and utilize the mechanisms for engineering highly resistant plants. The conservation of ETI components and mechanisms across species enables the use of ETI components to generate broad-spectrum resistance in plants. Numerous efforts have been made to introduce new resistance (R) genes, widen the effector recognition spectrum and generate on-demand R genes. Although engineering ETI across plant species is still associated with multiple challenges, previous attempts have provided an enhanced understanding of ETI mechanisms. Here, we provide a survey of recent reports in the engineering of rice R genes. In addition, we suggest a framework for future studies of R gene-effector interactions, including genome-scale investigations in both rice and pathogens, followed by structural studies of R proteins and effectors, and potential strategies to use important ETI components to improve rice immunity.
Collapse
Affiliation(s)
- Kieu Thi Xuan Vo
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
| | - Qi Yi
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
| |
Collapse
|
9
|
Indirect recognition of pathogen effectors by NLRs. Essays Biochem 2022; 66:485-500. [PMID: 35535995 DOI: 10.1042/ebc20210097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
To perceive pathogen threats, plants utilize both plasma membrane-localized and intracellular receptors. Nucleotide-binding domain leucine-rich repeat containing (NLR) proteins are key receptors that can recognize pathogen-derived intracellularly delivered effectors and activate downstream defense. Exciting recent findings have propelled our understanding of the various recognition and activation mechanisms of plant NLRs. Some NLRs directly bind to effectors, but others can perceive effector-induced changes on targeted host proteins (guardees), or non-functional host protein mimics (decoys). Such guarding strategies are thought to afford the host more durable resistance to quick-evolving and diverse pathogens. Here, we review classic and recent examples of indirect effector recognition by NLRs and discuss strategies for the discovery and study of new NLR-decoy/guardee systems. We also provide a perspective on how executor NLRs and helper NLRs (hNLRs) provide recognition for a wider range of effectors through sensor NLRs and how this can be considered an expanded form of indirect recognition. Furthermore, we summarize recent structural findings on NLR activation and resistosome formation upon indirect recognition. Finally, we discuss existing and potential applications that harness NLR indirect recognition for plant disease resistance and crop resilience.
Collapse
|
10
|
Fernández-Aparicio M, Del Moral L, Muños S, Velasco L, Pérez-Vich B. Genetic and physiological characterization of sunflower resistance provided by the wild-derived Or Deb2 gene against highly virulent races of Orobanche cumana Wallr. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:501-525. [PMID: 34741641 PMCID: PMC8866362 DOI: 10.1007/s00122-021-03979-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
OrDeb2 confers post-attachment resistance to Orobanche cumana and is located in a 1.38 Mbp genomic interval containing a cluster of receptor-like kinase and receptor-like protein genes with nine high-confidence candidates. Sunflower broomrape is a holoparasitic angiosperm that parasitizes on sunflower roots, severely constraining crop yield. Breeding for resistance is the most effective method of control. OrDeb2 is a dominant resistance gene introgressed into cultivated sunflower from a wild-related species that confers resistance to highly virulent broomrape races. The objectives of this study were as follows: (i) locate OrDeb2 into the sunflower genome and determine putative candidate genes and (ii) characterize its underlying resistance mechanism. A segregating population from a cross between the sunflower resistant line DEB2, carrying OrDeb2, and a susceptible line was phenotyped for broomrape resistance in four experiments, including different environments and two broomrape races (FGV and GTK). This population was also densely genotyped with microsatellite and SNP markers, which allowed locating OrDeb2 within a 0.9 cM interval in the upper half of Chromosome 4. This interval corresponded to a 1.38 Mbp genomic region of the sunflower reference genome that contained a cluster of genes encoding LRR (leucine-rich repeat) receptor-like proteins lacking a cytoplasmic kinase domain and receptor-like kinases with one or two kinase domains and lacking an extracellular LRR region, which were valuable candidates for OrDeb2. Rhizotron and histological studies showed that OrDeb2 determines a post-attachment resistance response that blocks O. cumana development mainly at the cortex before the establishment of host-parasite vascular connections. This study will contribute to understand the interaction between crops and parasitic weeds, to establish durable breeding strategies based on genetic resistance and provide useful tools for marker-assisted selection and OrDeb2 map-based cloning.
Collapse
Affiliation(s)
| | - Lidia Del Moral
- Instituto de Agricultura Sostenible (IAS-CSIC), Alameda del Obispo s/n, 14004, Córdoba, Spain
| | - Stéphane Muños
- Laboratoire des Interactions Plantes Microbes-Environnement (LIPME), CNRS, INRAE, Université de Toulouse, Castanet-Tolosan, France
| | - Leonardo Velasco
- Instituto de Agricultura Sostenible (IAS-CSIC), Alameda del Obispo s/n, 14004, Córdoba, Spain
| | - Begoña Pérez-Vich
- Instituto de Agricultura Sostenible (IAS-CSIC), Alameda del Obispo s/n, 14004, Córdoba, Spain.
| |
Collapse
|
11
|
NOD-like receptor-mediated plant immunity: from structure to cell death. Nat Rev Immunol 2020; 21:305-318. [PMID: 33293618 DOI: 10.1038/s41577-020-00473-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 12/25/2022]
Abstract
Animal and plant immune systems use intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) to detect pathogens, resulting in the activation of immune responses that are often associated with localized host cell death. Whereas vertebrate NLRs detect evolutionarily conserved molecular patterns and have undergone comparatively little copy number expansion, plant NLRs detect virulence factors that have often diversified in plant pathogen populations, and thus plant NLRs have been subject to parallel diversification. Plant NLRs sense the presence of virulence factors with enzymatic virulence activity often indirectly through their modification of host target proteins. By contrast, phytopathogenic virulence factors without enzymatic activity are usually recognized by NLRs directly by their structure. Structural and biochemical analyses have shown that both indirect and direct recognition of plant pathogens trigger the oligomerization of plant NLRs into active complexes. Assembly into three-layered ring-like structures has emerged as a common principle of NLR activation in plants and animals, but with distinct amino-terminal domains initiating different signalling pathways. Collectively, these analyses point to host cell membranes as a convergence point for activated plant NLRs and the disruption of cellular ion homeostasis as a possible major factor in NLR-triggered cell death signalling.
Collapse
|
12
|
Chakraborty J, Ghosh P. Advancement of research on plant NLRs evolution, biochemical activity, structural association, and engineering. PLANTA 2020; 252:101. [PMID: 33180185 DOI: 10.1007/s00425-020-03512-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
In this review, we have included evolution of plant intracellular immune receptors, oligomeric complex formation, enzymatic action, engineering, and mechanisms of immune inspection for appropriate defense outcomes. NLR (Nucleotide binding oligomerization domain containing leucine-rich repeat) proteins are the intracellular immune receptors that recognize pathogen-derived virulence factors to confer effector-triggered immunity (ETI). Activation of plant defense by the NLRs are often conveyed through N-terminal Toll-like/ IL-1 receptor (TIR) or non-TIR (coiled-coils or CC) domains. Homodimerization or self-association property of CC/ TIR domains of plant NLRs contribute to their auto-activity and induction of in planta ectopic cell death. High resolution crystal structures of Arabidopsis thaliana RPS4TIR, L6TIR, SNC1TIR, RPP1TIR and Muscadinia rotundifolia RPV1TIR showed that interaction is mediated through one or two distinct interfaces i.e., αA and αE helices comprise AE interface and αD and αE helices were found to form DE interface. By contrast, conserved helical regions were determined for CC domains of plant NLRs. Evolutionary history of NLRs diversification has shown that paired forms were originated from NLR singletons. Plant TIRs executed NAD+ hydrolysis activity for cell death promotion. Plant NLRs were found to form large oligomeric complexes as observed in animal inflammasomes. We have also discussed different protein engineering methods includes domain shuffling, and decoy modification that increase effector recognition spectrum of plant NLRs. In summary, our review highlights structural basis of perception of the virulence factors by NLRs or NLR pairs to design novel classes of plant immune receptors.
Collapse
Affiliation(s)
| | - Prithwi Ghosh
- Department of Botany, Narajole Raj College, Narajole, Paschim Medinipur, 721211, West Bengal, India
| |
Collapse
|
13
|
Bentham AR, De la Concepcion JC, Mukhi N, Zdrzałek R, Draeger M, Gorenkin D, Hughes RK, Banfield MJ. A molecular roadmap to the plant immune system. J Biol Chem 2020; 295:14916-14935. [PMID: 32816993 PMCID: PMC7606695 DOI: 10.1074/jbc.rev120.010852] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Plant diseases caused by pathogens and pests are a constant threat to global food security. Direct crop losses and the measures used to control disease (e.g. application of pesticides) have significant agricultural, economic, and societal impacts. Therefore, it is essential that we understand the molecular mechanisms of the plant immune system, a system that allows plants to resist attack from a wide variety of organisms ranging from viruses to insects. Here, we provide a roadmap to plant immunity, with a focus on cell-surface and intracellular immune receptors. We describe how these receptors perceive signatures of pathogens and pests and initiate immune pathways. We merge existing concepts with new insights gained from recent breakthroughs on the structure and function of plant immune receptors, which have generated a shift in our understanding of cell-surface and intracellular immunity and the interplay between the two. Finally, we use our current understanding of plant immunity as context to discuss the potential of engineering the plant immune system with the aim of bolstering plant defenses against disease.
Collapse
Affiliation(s)
- Adam R Bentham
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | | | - Nitika Mukhi
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Rafał Zdrzałek
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Markus Draeger
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Danylo Gorenkin
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Richard K Hughes
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom.
| |
Collapse
|
14
|
Zdrzałek R, Kamoun S, Terauchi R, Saitoh H, Banfield MJ. The rice NLR pair Pikp-1/Pikp-2 initiates cell death through receptor cooperation rather than negative regulation. PLoS One 2020; 15:e0238616. [PMID: 32931489 PMCID: PMC7491719 DOI: 10.1371/journal.pone.0238616] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Plant NLR immune receptors are multidomain proteins that can function as specialized sensor/helper pairs. Paired NLR immune receptors are generally thought to function via negative regulation, where one NLR represses the activity of the second and detection of pathogen effectors relieves this repression to initiate immunity. However, whether this mechanism is common to all NLR pairs is not known. Here, we show that the rice NLR pair Pikp-1/Pikp-2, which confers resistance to strains of the blast pathogen Magnaporthe oryzae (syn. Pyricularia oryzae) expressing the AVR-PikD effector, functions via receptor cooperation, with effector-triggered activation requiring both NLRs to trigger the immune response. To investigate the mechanism of Pikp-1/Pikp-2 activation, we expressed truncated variants of these proteins, and made mutations in previously identified NLR sequence motifs. We found that any domain truncation, in either Pikp-1 or Pikp-2, prevented cell death in the presence of AVR-PikD, revealing that all domains are required for activity. Further, expression of individual Pikp-1 or Pikp-2 domains did not result in cell death. Mutations in the conserved P-loop and MHD sequence motifs in both Pikp-1 and Pikp-2 prevented cell death activation, demonstrating that these motifs are required for the function of the two partner NLRs. Finally, we showed that Pikp-1 and Pikp-2 associate to form homo- and hetero-complexes in planta in the absence of AVR-PikD; on co-expression the effector binds to Pikp-1 generating a tri-partite complex. Taken together, we provide evidence that Pikp-1 and Pikp-2 form a fine-tuned system that is activated by AVR-PikD via receptor cooperation rather than negative regulation.
Collapse
Affiliation(s)
- Rafał Zdrzałek
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Centre, Iwate, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hiromasa Saitoh
- Laboratory of Plant Symbiotic and Parasitic Microbes, Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Mark J. Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
15
|
Kourelis J, Malik S, Mattinson O, Krauter S, Kahlon PS, Paulus JK, van der Hoorn RAL. Evolution of a guarded decoy protease and its receptor in solanaceous plants. Nat Commun 2020; 11:4393. [PMID: 32879321 PMCID: PMC7468133 DOI: 10.1038/s41467-020-18069-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/03/2020] [Indexed: 12/26/2022] Open
Abstract
Rcr3 is a secreted protease of tomato that is targeted by fungal effector Avr2, a secreted protease inhibitor of the fungal pathogen Cladosporium fulvum. The Avr2-Rcr3 complex is recognized by receptor-like protein Cf-2, triggering hypersensitive cell death (HR) and disease resistance. Avr2 also targets Rcr3 paralog Pip1, which is not required for Avr2 recognition but contributes to basal resistance. Thus, Rcr3 acts as a guarded decoy in this interaction, trapping the fungus into a recognition event. Here we show that Rcr3 evolved > 50 million years ago (Mya), whereas Cf-2 evolved <6Mya by co-opting the pre-existing Rcr3 in the Solanum genus. Ancient Rcr3 homologs present in tomato, potato, eggplants, pepper, petunia and tobacco can be inhibited by Avr2 with the exception of tobacco Rcr3. Four variant residues in Rcr3 promote Avr2 inhibition, but the Rcr3 that co-evolved with Cf-2 lacks three of these residues, indicating that the Rcr3 co-receptor is suboptimal for Avr2 binding. Pepper Rcr3 triggers HR with Cf-2 and Avr2 when engineered for enhanced inhibition by Avr2. Nicotiana benthamiana (Nb) is a natural null mutant carrying Rcr3 and Pip1 alleles with deleterious frame-shift mutations. Resurrected NbRcr3 and NbPip1 alleles were active proteases and further NbRcr3 engineering facilitated Avr2 inhibition, uncoupled from HR signalling. The evolution of a receptor co-opting a conserved pathogen target contrasts with other indirect pathogen recognition mechanisms.
Collapse
Affiliation(s)
- Jiorgos Kourelis
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Shivani Malik
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Oliver Mattinson
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Sonja Krauter
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Parvinderdeep S Kahlon
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Judith K Paulus
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Renier A L van der Hoorn
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK.
| |
Collapse
|
16
|
Nishad R, Ahmed T, Rahman VJ, Kareem A. Modulation of Plant Defense System in Response to Microbial Interactions. Front Microbiol 2020; 11:1298. [PMID: 32719660 PMCID: PMC7350780 DOI: 10.3389/fmicb.2020.01298] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/20/2020] [Indexed: 01/09/2023] Open
Abstract
At different stages throughout their life cycle, plants often encounter several pathogenic microbes that challenge plant growth and development. The sophisticated innate plant immune system prevents the growth of harmful microbes via two interconnected defense strategies based on pathogen perception. These strategies involve microbe-associated molecular pattern-triggered immunity and microbial effector-triggered immunity. Both these immune responses induce several defense mechanisms for restricting pathogen attack to protect against pathogens and terminate their growth. Plants often develop immune memory after an exposure to pathogens, leading to systemic acquired resistance. Unlike that with harmful microbes, plants make friendly interactions with beneficial microbes for boosting their plant immune system. A spike in recent publications has further improved our understanding of the immune responses in plants as triggered by interactions with microbes. The present study reviews our current understanding of how plant–microbe interactions can activate the sophisticated plant immune system at the molecular level. We further discuss how plant-microbe interaction boost the immune system of plants by demonstrating the examples of Mycorrhizal and Rhizobial association and how these plant-microbe interactions can be exploited to engineer disease resistance and crop improvement.
Collapse
Affiliation(s)
- Resna Nishad
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Talaat Ahmed
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar.,Environmental Science Centre, Qatar University, Doha, Qatar
| | | | - Abdul Kareem
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
17
|
Wang J, Chai J. Molecular actions of NLR immune receptors in plants and animals. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1303-1316. [DOI: 10.1007/s11427-019-1687-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022]
|
18
|
Kim JH, Castroverde CDM. Diversity, Function and Regulation of Cell Surface and Intracellular Immune Receptors in Solanaceae. PLANTS 2020; 9:plants9040434. [PMID: 32244634 PMCID: PMC7238418 DOI: 10.3390/plants9040434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/14/2020] [Accepted: 03/23/2020] [Indexed: 12/29/2022]
Abstract
The first layer of the plant immune system comprises plasma membrane-localized receptor proteins and intracellular receptors of the nucleotide-binding leucine-rich repeat protein superfamily. Together, these immune receptors act as a network of surveillance machines in recognizing extracellular and intracellular pathogen invasion-derived molecules, ranging from conserved structural epitopes to virulence-promoting effectors. Successful pathogen recognition leads to physiological and molecular changes in the host plants, which are critical for counteracting and defending against biotic attack. A breadth of significant insights and conceptual advances have been derived from decades of research in various model plant species regarding the structural complexity, functional diversity, and regulatory mechanisms of these plant immune receptors. In this article, we review the current state-of-the-art of how these host surveillance proteins function and how they are regulated. We will focus on the latest progress made in plant species belonging to the Solanaceae family, because of their tremendous importance as model organisms and agriculturally valuable crops.
Collapse
Affiliation(s)
- Jong Hum Kim
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: (J.H.K.); (C.D.M.C.)
| | | |
Collapse
|
19
|
Roberts R, Hind SR, Pedley KF, Diner BA, Szarzanowicz MJ, Luciano-Rosario D, Majhi BB, Popov G, Sessa G, Oh CS, Martin GB. Mai1 Protein Acts Between Host Recognition of Pathogen Effectors and Mitogen-Activated Protein Kinase Signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1496-1507. [PMID: 31251114 DOI: 10.1094/mpmi-05-19-0121-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The molecular mechanisms acting between host recognition of pathogen effectors by nucleotide-binding leucine-rich repeat receptor (NLR) proteins and mitogen-activated protein kinase (MAPK) signaling cascades are unknown. MAPKKKα (M3Kα) activates MAPK signaling leading to programmed cell death (PCD) associated with NLR-triggered immunity. We identified a tomato M3Kα-interacting protein, SlMai1, that has 80% amino acid identity with Arabidopsis brassinosteroid kinase 1 (AtBsk1). SlMai1 has a protein kinase domain and a C-terminal tetratricopeptide repeat domain that interacts with the kinase domain of M3Kα. Virus-induced gene silencing of Mai1 homologs in Nicotiana benthamiana increased susceptibility to Pseudomonas syringae and compromised PCD induced by four NLR proteins. PCD was restored by expression of a synthetic SlMai1 gene that resists silencing. Expression of AtBsk1 did not restore PCD in Mai1-silenced plants, suggesting SlMai1 is functionally divergent from AtBsk1. PCD caused by overexpression of M3Kα or MKK2 was unaffected by Mai1 silencing, suggesting Mai1 acts upstream of these proteins. Coexpression of Mai1 with M3Kα in leaves enhanced MAPK phosphorylation and accelerated PCD. These findings suggest Mai1 is a molecular link acting between host recognition of pathogens and MAPK signaling.
Collapse
Affiliation(s)
- Robyn Roberts
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
| | - Sarah R Hind
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
| | - Kerry F Pedley
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
| | - Benjamin A Diner
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
| | | | | | - Bharat B Majhi
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Georgy Popov
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Guido Sessa
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Chang-Sik Oh
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
20
|
Wróblewski T, Spiridon L, Martin EC, Petrescu AJ, Cavanaugh K, Truco MJ, Xu H, Gozdowski D, Pawłowski K, Michelmore RW, Takken FL. Genome-wide functional analyses of plant coiled-coil NLR-type pathogen receptors reveal essential roles of their N-terminal domain in oligomerization, networking, and immunity. PLoS Biol 2018; 16:e2005821. [PMID: 30540748 PMCID: PMC6312357 DOI: 10.1371/journal.pbio.2005821] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 12/31/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022] Open
Abstract
The ability to induce a defense response after pathogen attack is a critical feature of the immune system of any organism. Nucleotide-binding leucine-rich repeat receptors (NLRs) are key players in this process and perceive the occurrence of nonself-activities or foreign molecules. In plants, coevolution with a variety of pests and pathogens has resulted in repertoires of several hundred diverse NLRs in single individuals and many more in populations as a whole. However, the mechanism by which defense signaling is triggered by these NLRs in plants is poorly understood. Here, we show that upon pathogen perception, NLRs use their N-terminal domains to transactivate other receptors. Their N-terminal domains homo- and heterodimerize, suggesting that plant NLRs oligomerize upon activation, similar to the vertebrate NLRs; however, consistent with their large number in plants, the complexes are highly heterometric. Also, in contrast to metazoan NLRs, the N-terminus, rather than their centrally located nucleotide-binding (NB) domain, can mediate initial partner selection. The highly redundant network of NLR interactions in plants is proposed to provide resilience to perturbation by pathogens.
Collapse
Affiliation(s)
- Tadeusz Wróblewski
- The Genome Center, University of California–Davis, Davis, California, United States of America
| | - Laurentiu Spiridon
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Eliza Cristina Martin
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Keri Cavanaugh
- The Genome Center, University of California–Davis, Davis, California, United States of America
| | - Maria José Truco
- The Genome Center, University of California–Davis, Davis, California, United States of America
| | - Huaqin Xu
- The Genome Center, University of California–Davis, Davis, California, United States of America
| | - Dariusz Gozdowski
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Krzysztof Pawłowski
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Richard W. Michelmore
- The Genome Center, University of California–Davis, Davis, California, United States of America
- Departments of Plant Sciences, Molecular & Cellular Biology, and Medical Microbiology & Immunology, University of California–Davis, Davis, California, United States of America
- Department of Medical Microbiology and Immunology, University of California–Davis, Davis, California, United States of America
| | - Frank L.W. Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Van Ghelder C, Esmenjaud D, Callot C, Dubois E, Mazier M, Duval H. Ma Orthologous Genes in Prunus spp. Shed Light on a Noteworthy NBS-LRR Cluster Conferring Differential Resistance to Root-Knot Nematodes. FRONTIERS IN PLANT SCIENCE 2018; 9:1269. [PMID: 30254651 PMCID: PMC6141779 DOI: 10.3389/fpls.2018.01269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/10/2018] [Indexed: 06/01/2023]
Abstract
Root-knot nematodes (RKNs) are considerable polyphagous pests that severely challenge plants worldwide and especially perennials. The specific genetic resistance of plants mainly relies on the NBS-LRR genes that are pivotal factors for pathogens control. In Prunus spp., the Ma plum and RMja almond genes possess different spectra for resistance to RKNs. While previous works based on the Ma gene allowed to clone it and to decipher its peculiar TIR-NBS-LRR (TNL) structure, we only knew that the RMja gene mapped on the same chromosome as Ma. We carried out a high-resolution mapping using an almond segregating F2 progeny of 1448 seedlings from resistant (R) and susceptible (S) parental accessions, to locate precisely RMja on the peach genome, the reference sequence for Prunus species. We showed that the RMja gene maps in the Ma resistance cluster and that the Ma ortholog is the best candidate for RMja. This co-localization is a crucial step that opens the way to unravel the molecular determinants involved in the resistance to RKNs. Then we sequenced both almond parental NGS genomes and aligned them onto the RKN susceptible reference peach genome. We produced a BAC library of the R parental accession and, from two overlapping BAC clones, we obtained a 336-kb sequence encompassing the RMja candidate region. Thus, we could benefit from three Ma orthologous regions to investigate their sequence polymorphism, respectively, within plum (complete R spectrum), almond (incomplete R spectrum) and peach (null R spectrum). We showed that the Ma TNL cluster has evolved orthologs with a unique conserved structure comprised of five repeated post-LRR (PL) domains, which contain most polymorphism. In addition to support the Ma and RMja orthologous relationship, our results suggest that the polymorphism contained in the PL sequences might underlie differential resistance interactions with RKNs and an original immune mechanism in woody perennials. Besides, our study illustrates how PL exon duplications and losses shape TNL structure and give rise to atypical PL domain repeats of yet unknown role.
Collapse
Affiliation(s)
- Cyril Van Ghelder
- Institut Sophia Agrobiotech, INRA, CNRS, Université Côte d’Azur, Sophia Antipolis, France
| | - Daniel Esmenjaud
- Institut Sophia Agrobiotech, INRA, CNRS, Université Côte d’Azur, Sophia Antipolis, France
| | - Caroline Callot
- Centre National de Ressources Génomiques Végétales, INRA, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | | | - Marianne Mazier
- Unité de Génétique et Amélioration des Fruits et Légumes (GAFL), INRA, Montfavet, France
| | - Henri Duval
- Unité de Génétique et Amélioration des Fruits et Légumes (GAFL), INRA, Montfavet, France
| |
Collapse
|
22
|
Chakraborty J, Jain A, Mukherjee D, Ghosh S, Das S. Functional diversification of structurally alike NLR proteins in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 269:85-93. [PMID: 29606220 DOI: 10.1016/j.plantsci.2018.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/14/2017] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
In due course of evolution many pathogens alter their effector molecules to modulate the host plants' metabolism and immune responses triggered upon proper recognition by the intracellular nucleotide-binding oligomerization domain containing leucine-rich repeat (NLR) proteins. Likewise, host plants have also evolved with diversified NLR proteins as a survival strategy to win the battle against pathogen invasion. NLR protein indeed detects pathogen derived effector proteins leading to the activation of defense responses associated with programmed cell death (PCD). In this interactive process, genome structure and plasticity play pivotal role in the development of innate immunity. Despite being quite conserved with similar biological functions in all eukaryotes, the intracellular NLR immune receptor proteins happen to be structurally distinct. Recent studies have made progress in identifying transcriptional regulatory complexes activated by NLR proteins. In this review, we attempt to decipher the intracellular NLR proteins mediated surveillance across the evolutionarily diverse taxa, highlighting some of the recent updates on NLR protein compartmentalization, molecular interactions before and after activation along with insights into the finer role of these receptor proteins to combat invading pathogens upon their recognition. Latest information on NLR sensors, helpers and NLR proteins with integrated domains in the context of plant pathogen interactions are also discussed.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India.
| | - Akansha Jain
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India.
| | - Dibya Mukherjee
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India.
| | - Suchismita Ghosh
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India; Department of Biotechnology, St. Xavier's College, Kolkata, West Bengal, India.
| | - Sampa Das
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India.
| |
Collapse
|
23
|
Büttner D. Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol Rev 2018; 40:894-937. [PMID: 28201715 PMCID: PMC5091034 DOI: 10.1093/femsre/fuw026] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 07/03/2016] [Indexed: 01/30/2023] Open
Abstract
Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed.
Collapse
Affiliation(s)
- Daniela Büttner
- Genetics Department, Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
24
|
Conlan B, Stoll T, Gorman JJ, Saur I, Rathjen JP. Development of a Rapid in planta BioID System as a Probe for Plasma Membrane-Associated Immunity Proteins. FRONTIERS IN PLANT SCIENCE 2018; 9:1882. [PMID: 30619431 PMCID: PMC6305590 DOI: 10.3389/fpls.2018.01882] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/05/2018] [Indexed: 05/15/2023]
Abstract
Plant pathogens secrete effector molecules that suppress the plant immune response to facilitate disease development. AvrPto is a well-studied effector from the phytopathogenic bacterium Pseudomonas syringae. Here we utilize an in planta proximity dependent biotin ligase labeling technique (BioID) in combination with AvrPto to identify proximal proteins that are potential immune system components. The labeling technique biotinylated proteins proximal to AvrPto at the plasma-membrane allowing their isolation and identification by mass spectrometry. Five AvrPto proximal plant proteins (APPs) were identified and their effect on plant immune function and growth was examined in Nicotiana benthamiana leaves. One protein identified, RIN4, is a central immune component previously shown to interact with AvrPto. Two other proteins were identified which form a complex and when silenced significantly reduced P. syringae tabaci growth. The first was a receptor like protein kinase (APK1) which was required for Pto/Prf signaling and the second was Target of Myb1 (TOM1), a membrane associated protein with a phosphatidylinositol 5-phosphate (PtdIns5P) binding motif. We have developed a technology to rapidly determine protein interactions within living plant tissue. It is particularly useful for identifying plant immune system components by defining pathogenic effector protein interactions within their plant hosts.
Collapse
Affiliation(s)
- Brendon Conlan
- Research School of Biology, The Australian National University, Acton, ACT, Australia
- *Correspondence: Brendon Conlan,
| | - Thomas Stoll
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | - Isabel Saur
- Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - John P. Rathjen
- Research School of Biology, The Australian National University, Acton, ACT, Australia
| |
Collapse
|
25
|
Stotz HU, de Oliveira Almeida R, Davey N, Steuber V, Valente GT. Review of combinations of experimental and computational techniques to identify and understand genes involved in innate immunity and effector-triggered defence. Methods 2017; 131:120-127. [DOI: 10.1016/j.ymeth.2017.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022] Open
|
26
|
Moffett P. Transfer and modification of NLR proteins for virus resistance in plants. Curr Opin Virol 2017; 26:43-48. [DOI: 10.1016/j.coviro.2017.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 11/16/2022]
|
27
|
Li L, Kim P, Yu L, Cai G, Chen S, Alfano JR, Zhou JM. Activation-Dependent Destruction of a Co-receptor by a Pseudomonas syringae Effector Dampens Plant Immunity. Cell Host Microbe 2017; 20:504-514. [PMID: 27736646 DOI: 10.1016/j.chom.2016.09.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/30/2016] [Accepted: 09/06/2016] [Indexed: 12/13/2022]
Abstract
The Arabidopsis immune receptor FLS2 and co-receptor BAK1 perceive the bacterial flagellin epitope flg22 to activate plant immunity. To prevent this response, phytopathogenic bacteria deploy a repertoire of effector proteins to perturb immune signaling. However, the effector-induced perturbation is often sensed by the host, triggering another layer of immunity. We report that the Pseudomonas syringae effector HopB1 acts as a protease to cleave immune-activated BAK1. Prior to activation, HopB1 constitutively interacts with FLS2. Upon activation by flg22, BAK1 is recruited to the FLS2-HopB1 complex and is phosphorylated at Thr455. HopB1 then specifically cleaves BAK1 between Arg297 and Gly298 to inhibit FLS2 signaling. Although perturbation of BAK1 is known to trigger increased immune responses in plants, the HopB1-mediated cleavage of BAK1 leads to enhanced virulence, but not disease resistance. This study thus reveals a virulence strategy by which a pathogen effector attacks the plant immune system with minimal host perturbation.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing 100101, China.
| | - Panya Kim
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Liping Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Gaihong Cai
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - James R Alfano
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588, USA
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing 100101, China.
| |
Collapse
|
28
|
Zhang X, Dodds PN, Bernoux M. What Do We Know About NOD-Like Receptors in Plant Immunity? ANNUAL REVIEW OF PHYTOPATHOLOGY 2017. [PMID: 28637398 DOI: 10.1146/annurev-phyto-080516-035250] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The first plant disease resistance (R) genes were identified and cloned more than two decades ago. Since then, many more R genes have been identified and characterized in numerous plant pathosystems. Most of these encode members of the large family of intracellular NLRs (NOD-like receptors), which also includes animal immune receptors. New discoveries in this expanding field of research provide new elements for our understanding of plant NLR function. But what do we know about plant NLR function today? Genetic, structural, and functional analyses have uncovered a number of commonalities and differences in pathogen recognition strategies as well as how NLRs are regulated and activate defense signaling, but many unknowns remain. This review gives an update on the latest discoveries and breakthroughs in this field, with an emphasis on structural findings and some comparison to animal NLRs, which can provide additional insights and paradigms in plant NLR function.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2601, Australia;
| | - Peter N Dodds
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2601, Australia;
| | - Maud Bernoux
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2601, Australia;
| |
Collapse
|
29
|
Salhi A, Negrão S, Essack M, Morton MJL, Bougouffa S, Razali R, Radovanovic A, Marchand B, Kulmanov M, Hoehndorf R, Tester M, Bajic VB. DES-TOMATO: A Knowledge Exploration System Focused On Tomato Species. Sci Rep 2017; 7:5968. [PMID: 28729549 PMCID: PMC5519719 DOI: 10.1038/s41598-017-05448-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/25/2017] [Indexed: 12/29/2022] Open
Abstract
Tomato is the most economically important horticultural crop used as a model to study plant biology and particularly fruit development. Knowledge obtained from tomato research initiated improvements in tomato and, being transferrable to other such economically important crops, has led to a surge of tomato-related research and published literature. We developed DES-TOMATO knowledgebase (KB) for exploration of information related to tomato. Information exploration is enabled through terms from 26 dictionaries and combination of these terms. To illustrate the utility of DES-TOMATO, we provide several examples how one can efficiently use this KB to retrieve known or potentially novel information. DES-TOMATO is free for academic and nonprofit users and can be accessed at http://cbrc.kaust.edu.sa/des_tomato/, using any of the mainstream web browsers, including Firefox, Safari and Chrome.
Collapse
Affiliation(s)
- Adil Salhi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | - Sónia Negrão
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | - Mitchell J L Morton
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Salim Bougouffa
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | - Rozaimi Razali
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | - Aleksandar Radovanovic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | | | - Maxat Kulmanov
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | - Robert Hoehndorf
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, 23955-6900, Saudi Arabia
| | - Mark Tester
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia.
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
30
|
Ru L, Osorio S, Wang L, Fernie AR, Patrick JW, Ruan YL. Transcriptomic and metabolomics responses to elevated cell wall invertase activity during tomato fruit set. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4263-4279. [PMID: 28922759 PMCID: PMC5853505 DOI: 10.1093/jxb/erx219] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fruit set is a developmental transition from ovaries to fruitlets that determines yield potential. Cell wall invertase (CWIN) is essential for fruit and seed set, but the underlying molecular basis remains elusive. We addressed this issue by using CWIN-elevated transgenic tomato, focusing on ovaries and fruitlets at 2 d before and after anthesis, respectively. RNAseq analyses revealed that ovaries and fruitlets exhibited remarkable differences in their transcriptomic responses to elevated CWIN activity. Ovaries 2 d before anthesis were far more responsive to elevated CWIN activity compared with the fruitlets. We identified several previously unknown pathways that were up-regulated by elevated CWIN activity during fruit set. The most notable of these were expression of genes for defence, ethylene synthesis and the cell cycle along with a large number of cell wall-related genes. By contrast, expression of photosynthetic, protein degradation and some receptor-like kinase genes were generally decreased as compared with the wild type ovaries. GC-MS analyses revealed that 22 out of 24 amino acids exhibited reduced levels in the RNAi ovaries as compared with that in the wild type, probably owing to a down-regulated expression of protein degradation genes. Overall, the data indicate that (i) ovaries are much more sensitive to metabolic intervention than fruitlets; (ii) high CWIN activity could promote fruit set by improving resistance against pathogens and altering cell cycle and cell wall synthesis.
Collapse
Affiliation(s)
- Lei Ru
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- Australia-China Research Centre for Crop Improvement, University of Newcastle, Callaghan, NSW, Australia
| | - Sonia Osorio
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Lu Wang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- Australia-China Research Centre for Crop Improvement, University of Newcastle, Callaghan, NSW, Australia
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - John W Patrick
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- Australia-China Research Centre for Crop Improvement, University of Newcastle, Callaghan, NSW, Australia
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- Australia-China Research Centre for Crop Improvement, University of Newcastle, Callaghan, NSW, Australia
- Correspondence:
| |
Collapse
|
31
|
Jones JDG, Vance RE, Dangl JL. Intracellular innate immune surveillance devices in plants and animals. Science 2016; 354:354/6316/aaf6395. [DOI: 10.1126/science.aaf6395] [Citation(s) in RCA: 597] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Sukarta OCA, Slootweg EJ, Goverse A. Structure-informed insights for NLR functioning in plant immunity. Semin Cell Dev Biol 2016; 56:134-149. [PMID: 27208725 DOI: 10.1016/j.semcdb.2016.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 01/07/2023]
Abstract
To respond to foreign invaders, plants have evolved a cell autonomous multilayered immune system consisting of extra- and intracellular immune receptors. Nucleotide binding and oligomerization domain (NOD)-like receptors (NLRs) mediate recognition of pathogen effectors inside the cell and trigger a host specific defense response, often involving controlled cell death. NLRs consist of a central nucleotide-binding domain, which is flanked by an N-terminal CC or TIR domain and a C-terminal leucine-rich repeat domain (LRR). These multidomain proteins function as a molecular switch and their activity is tightly controlled by intra and inter-molecular interactions. In contrast to metazoan NLRs, the structural basis underlying NLR functioning as a pathogen sensor and activator of immune responses in plants is largely unknown. However, the first crystal structures of a number of plant NLR domains were recently obtained. In addition, biochemical and structure-informed analyses revealed novel insights in the cooperation between NLR domains and the formation of pre- and post activation complexes, including the coordinated activity of NLR pairs as pathogen sensor and executor of immune responses. Moreover, the discovery of novel integrated domains underscores the structural diversity of NLRs and provides alternative models for how these immune receptors function in plants. In this review, we will highlight these recent advances to provide novel insights in the structural, biochemical and molecular aspects involved in plant NLR functioning.
Collapse
Affiliation(s)
- Octavina C A Sukarta
- Dept. of Plant Sciences, Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Erik J Slootweg
- Dept. of Plant Sciences, Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Aska Goverse
- Dept. of Plant Sciences, Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
33
|
Of guards, decoys, baits and traps: pathogen perception in plants by type III effector sensors. Curr Opin Microbiol 2015; 29:49-55. [PMID: 26599514 DOI: 10.1016/j.mib.2015.10.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/17/2022]
Abstract
Effector-triggered immunity (ETI) is conferred by dominant plant resistance (R) genes, which encode predominantly nucleotide-binding and leucine-rich repeat domain proteins (NLRs), against cognate microbial avirulence (Avr) genes, which include bacterial type III secreted effectors (T3Es). The 'guard model' describes the mechanism of T3E perception by plants, whereby NLRs monitor host proteins ('sensors') for T3E-induced perturbations. This model has provided a molecular framework to understand T3E perception and has rationalized how plants can use a limited number of NLRs (∼160 in Arabidopsis) to contend with a potentially limitless number of evolving effectors. In this review we provide a characteristic overview of plant T3E sensors and discuss how these sensors convey the presence of T3Es to NLR proteins to activate ETI.
Collapse
|
34
|
Le Roux C, Huet G, Jauneau A, Camborde L, Trémousaygue D, Kraut A, Zhou B, Levaillant M, Adachi H, Yoshioka H, Raffaele S, Berthomé R, Couté Y, Parker JE, Deslandes L. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 2015; 161:1074-1088. [PMID: 26000483 DOI: 10.1016/j.cell.2015.04.025] [Citation(s) in RCA: 310] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/04/2015] [Accepted: 04/03/2015] [Indexed: 01/10/2023]
Abstract
Microbial pathogens infect host cells by delivering virulence factors (effectors) that interfere with defenses. In plants, intracellular nucleotide-binding/leucine-rich repeat receptors (NLRs) detect specific effector interference and trigger immunity by an unknown mechanism. The Arabidopsis-interacting NLR pair, RRS1-R with RPS4, confers resistance to different pathogens, including Ralstonia solanacearum bacteria expressing the acetyltransferase effector PopP2. We show that PopP2 directly acetylates a key lysine within an additional C-terminal WRKY transcription factor domain of RRS1-R that binds DNA. This disrupts RRS1-R DNA association and activates RPS4-dependent immunity. PopP2 uses the same lysine acetylation strategy to target multiple defense-promoting WRKY transcription factors, causing loss of WRKY-DNA binding and transactivating functions needed for defense gene expression and disease resistance. Thus, RRS1-R integrates an effector target with an NLR complex at the DNA to switch a potent bacterial virulence activity into defense gene activation.
Collapse
Affiliation(s)
- Clémentine Le Roux
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan 31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan 31326, France; Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, Köln 50829, Germany
| | - Gaëlle Huet
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan 31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan 31326, France
| | - Alain Jauneau
- Institut Fédératif de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan 31326, France
| | - Laurent Camborde
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546, BP 42617 Auzeville, Castanet-Tolosan 31326, France; CNRS, UMR 5546, BP 42617, Castanet-Tolosan 31326, France
| | - Dominique Trémousaygue
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan 31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan 31326, France
| | - Alexandra Kraut
- Université Grenoble Alpes, iRTSV-BGE, Grenoble 38000, France; CEA, iRTSV-BGE, Grenoble 38000, France; INSERM, BGE, Grenoble 38000, France
| | - Binbin Zhou
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan 31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan 31326, France
| | - Marie Levaillant
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan 31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan 31326, France
| | - Hiroaki Adachi
- Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Hirofumi Yoshioka
- Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Sylvain Raffaele
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan 31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan 31326, France
| | - Richard Berthomé
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan 31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan 31326, France
| | - Yohann Couté
- Université Grenoble Alpes, iRTSV-BGE, Grenoble 38000, France; CEA, iRTSV-BGE, Grenoble 38000, France; INSERM, BGE, Grenoble 38000, France
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, Köln 50829, Germany
| | - Laurent Deslandes
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan 31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan 31326, France.
| |
Collapse
|
35
|
Saur IML, Conlan BF, Rathjen JP. The N-terminal domain of the tomato immune protein Prf contains multiple homotypic and Pto kinase interaction sites. J Biol Chem 2015; 290:11258-67. [PMID: 25792750 DOI: 10.1074/jbc.m114.616532] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Indexed: 01/12/2023] Open
Abstract
Resistance to Pseudomonas syringae bacteria in tomato (Solanum lycopersicum) is conferred by the Prf recognition complex, composed of the nucleotide-binding leucine-rich repeats protein Prf and the protein kinase Pto. The complex is activated by recognition of the P. syringae effectors AvrPto and AvrPtoB. The N-terminal domain is responsible for Prf homodimerization, which brings two Pto kinases into close proximity and holds them in inactive conformation in the absence of either effector. Negative regulation is lost by effector binding to the catalytic cleft of Pto, leading to disruption of its P+1 loop within the activation segment. This change is translated through Prf to a second Pto molecule in the complex. Here we describe a schematic model of the unique Prf N-terminal domain dimer and its interaction with the effector binding determinant Pto. Using heterologous expression in Nicotiana benthamiana, we define multiple sites of N domain homotypic interaction and infer that it forms a parallel dimer folded centrally to enable contact between the N and C termini. Furthermore, we found independent binding sites for Pto at either end of the N-terminal domain. Using the constitutively active mutant ptoL205D, we identify a potential repression site for Pto in the first ∼100 amino acids of Prf. Finally, we find that the Prf leucine-rich repeats domain also binds the N-terminal region, highlighting a possible mechanism for transfer of the effector binding signal to the NB-LRR regulatory unit (consisting of a central nucleotide binding and C-terminal leucine-rich repeats).
Collapse
Affiliation(s)
- Isabel Marie-Luise Saur
- From the Research School of Biology, The Australian National University, Acton ACT 2601, Australia
| | - Brendon Francis Conlan
- From the Research School of Biology, The Australian National University, Acton ACT 2601, Australia
| | - John Paul Rathjen
- From the Research School of Biology, The Australian National University, Acton ACT 2601, Australia
| |
Collapse
|
36
|
Boyle PC, Martin GB. Greasy tactics in the plant-pathogen molecular arms race. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1607-16. [PMID: 25725095 DOI: 10.1093/jxb/erv059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The modification of proteins by the attachment of fatty acids is a targeting tactic involved in mechanisms of both plant immunity and bacterial pathogenesis. The plant plasma membrane (PM) is a key battleground in the war against disease-causing microbes. This membrane is armed with an array of sensor proteins that function as a surveillance system to detect invading pathogens. Several of these sensor proteins are directed to the plasma membrane through the covalent addition of fatty acids, a process termed fatty acylation. Phytopathogens secrete effector proteins into the plant cell to subvert these surveillance mechanisms, rendering the host susceptible to infection. The targeting of effectors to specific locales within plant cells, particularly the internal face of the host PM, is critical for their virulence function. Several bacterial effectors hijack the host fatty acylation machinery to be modified and directed to this contested locale. To find and fight these fatty acylated effectors the plant leverages lipid-modified intracellular sensors. This review provides examples featuring how fatty acylation is a battle tactic used by both combatants in the molecular arms race between plants and pathogens. Also highlighted is the exploitation of a specific form of host-mediated fatty acid modification, which appears to be exclusively employed by phytopathogenic effector proteins.
Collapse
Affiliation(s)
- Patrick C Boyle
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
37
|
Cui H, Tsuda K, Parker JE. Effector-triggered immunity: from pathogen perception to robust defense. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:487-511. [PMID: 25494461 DOI: 10.1146/annurev-arplant-050213-040012] [Citation(s) in RCA: 829] [Impact Index Per Article: 82.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; , ,
| | | | | |
Collapse
|
38
|
Piquerez SJM, Harvey SE, Beynon JL, Ntoukakis V. Improving crop disease resistance: lessons from research on Arabidopsis and tomato. FRONTIERS IN PLANT SCIENCE 2014; 5:671. [PMID: 25520730 PMCID: PMC4253662 DOI: 10.3389/fpls.2014.00671] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/10/2014] [Indexed: 05/04/2023]
Abstract
One of the great challenges for food security in the 21st century is to improve yield stability through the development of disease-resistant crops. Crop research is often hindered by the lack of molecular tools, growth logistics, generation time and detailed genetic annotations, hence the power of model plant species. Our knowledge of plant immunity today has been largely shaped by the use of models, specifically through the use of mutants. We examine the importance of Arabidopsis and tomato as models in the study of plant immunity and how they help us in revealing a detailed and deep understanding of the various layers contributing to the immune system. Here we describe examples of how knowledge from models can be transferred to economically important crops resulting in new tools to enable and accelerate classical plant breeding. We will also discuss how models, and specifically transcriptomics and effectoromics approaches, have contributed to the identification of core components of the defense response which will be key to future engineering of durable and sustainable disease resistance in plants.
Collapse
Affiliation(s)
| | | | - Jim L. Beynon
- School of Life Sciences, University of WarwickCoventry, UK
| | | |
Collapse
|
39
|
Griebel T, Maekawa T, Parker JE. NOD-like receptor cooperativity in effector-triggered immunity. Trends Immunol 2014; 35:562-70. [PMID: 25308923 DOI: 10.1016/j.it.2014.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
Abstract
Intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are basic elements of innate immunity in plants and animals. Whereas animal NLRs react to conserved microbe- or damage-associated molecular patterns, plant NLRs intercept the actions of diverse pathogen virulence factors (effectors). In this review, we discuss recent genetic and molecular evidence for functional NLR pairs, and discuss the significance of NLR self-association and heteromeric NLR assemblies in the triggering of downstream signaling pathways. We highlight the versatility and impact of cooperating NLR pairs that combine pathogen sensing with the initiation of defense signaling in both plant and animal immunity. We propose that different NLR receptor molecular configurations provide opportunities for fine-tuning resistance pathways and enhancing the host's pathogen recognition spectrum to keep pace with rapidly evolving microbial populations.
Collapse
Affiliation(s)
- Thomas Griebel
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Takaki Maekawa
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|