1
|
Noda Y, Wang F, Chankaew S, Ariga H, Muto C, Iki Y, Ohashi H, Takahashi Y, Sakai H, Iseki K, Ogiso‐Tanaka E, Suzui N, Yin Y, Miyoshi Y, Enomoto K, Kawachi N, Somta P, Furukawa J, Tomooka N, Naito K. Diurnal Regulation of SOS Pathway and Sodium Excretion Underlying Salinity Tolerance of Vigna marina. PLANT, CELL & ENVIRONMENT 2025; 48:3925-3938. [PMID: 39853734 PMCID: PMC12050389 DOI: 10.1111/pce.15402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/26/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
Vigna marina (Barm.) Merr. is adapted to tropical marine beaches and has an outstanding tolerance to salt stress. Given there are growing demands for cultivating crops in saline soil or with saline water, it is important to understand how halophytic species are adapted to the saline environments. Here we revealed by positron-emitting tracer imaging system (PETIS) that V. marina actively excretes sodium from the root during the light period but not the dark period. The following whole genome sequencing accompanied with forward genetic study identified a QTL region harbouring SOS1, encoding plasma membrane Na+/H+ antiporter, which was associated with not only salt tolerance but also the ability of sodium excretion. We also found the QTL region contained a large structural rearrangement that suppressed recombination across ~14 Mbp, fixing multiple gene loci potentially involved in salt tolerance. RNA-seq and promoter analyses revealed SOS1 in V. marina was highly expressed even without salt stress and its promoter shared common cis-regulatory motifs with those exhibiting similar expression profiles. Interestingly, the cis-regulatory motifs seemed installed by a transposable element (TE) insertion. Though not identified by genetic analysis, the transcriptome data also revealed SOS2 transcription was under diurnal regulation, explaining the pattern of sodium excretion together with upregulated expression of SOS1. Altogether, the study elucidated one aspect of the strategy adopted by V. marina to adapt to marine beach, which is highly saline and transpiring.
Collapse
Grants
- This study was financially supported by JST PRESTO Grant Number JPMJPR11B6, Moonshot R&D Program for Agriculture, Forestry and Fisheries by Cabinet Office, Government of Japan (JPJ009237), JSPS KAKENHI (JP18H02182), NARO Innovation Program, Environmental Radioactivity Research Network Center (Y-19-05) and Interdisciplinary Project on Environmental Transfer of Radionuclides (No. Y-1).
- This study was financially supported by JST PRESTO Grant Number JPMJPR11B6, Moonshot R&D Program for Agriculture, Forestry and Fisheries by Cabinet Office, Government of Japan (JPJ009237), JSPS KAKENHI (JP18H02182), NARO Innovation Program, Environmental Radioactivity Research Network Center (Y-19-05), Interdisciplinary Project on Environmental Transfer of Radionuclides (No. Y-1) and the commissioned research fund provided by F-REI (JPFR23040101).
Collapse
Affiliation(s)
- Yusaku Noda
- Takasaki Institute for Advanced Quantum ScienceNational Institutes for Quantum Science and Technology (QST)GunmaJapan
| | - Fanmiao Wang
- Research Center of Genetic ResourcesNational Agriculture and Food Research OrganizationIbarakiJapan
| | - Sompong Chankaew
- Department of AgronomyFaculty of AgricultureKhon Kaen UniversityKhon KaenThailand
- Department of AgronomyFaculty of Agriculture at Kamphaeng SaenKasetsart UniversityNakhon PathomThailand
| | - Hirotaka Ariga
- Research Center of Genetic ResourcesNational Agriculture and Food Research OrganizationIbarakiJapan
| | - Chiaki Muto
- Research Center of Genetic ResourcesNational Agriculture and Food Research OrganizationIbarakiJapan
| | - Yurie Iki
- Graduate School of Frontier SciencesThe University of TokyoChibaJapan
| | - Haruko Ohashi
- Graduate School of Frontier SciencesThe University of TokyoChibaJapan
| | - Yu Takahashi
- Department of AgronomyFaculty of AgricultureKhon Kaen UniversityKhon KaenThailand
| | - Hiroaki Sakai
- Research Center of Advanced AnalysisNational Agriculture and Food Research OrganizationIbarakiJapan
| | - Kohtaro Iseki
- Japan International Research Center for Agricultural SciencesIbarakiJapan
| | - Eri Ogiso‐Tanaka
- Center for Molecular Biodiversity ResearchNational Museum of Nature & ScienceIbarakiJapan
| | - Nobuo Suzui
- Takasaki Institute for Advanced Quantum ScienceNational Institutes for Quantum Science and Technology (QST)GunmaJapan
| | - Yong‐Gen Yin
- Takasaki Institute for Advanced Quantum ScienceNational Institutes for Quantum Science and Technology (QST)GunmaJapan
| | - Yuta Miyoshi
- Takasaki Institute for Advanced Quantum ScienceNational Institutes for Quantum Science and Technology (QST)GunmaJapan
| | - Kazuyuki Enomoto
- Takasaki Institute for Advanced Quantum ScienceNational Institutes for Quantum Science and Technology (QST)GunmaJapan
| | - Naoki Kawachi
- Takasaki Institute for Advanced Quantum ScienceNational Institutes for Quantum Science and Technology (QST)GunmaJapan
| | - Prakit Somta
- Department of AgronomyFaculty of Agriculture at Kamphaeng SaenKasetsart UniversityNakhon PathomThailand
| | - Jun Furukawa
- Institute of Life and Environmental SciencesUniversity of TsukubaIbarakiJapan
| | - Norihiko Tomooka
- Research Center of Genetic ResourcesNational Agriculture and Food Research OrganizationIbarakiJapan
| | - Ken Naito
- Research Center of Genetic ResourcesNational Agriculture and Food Research OrganizationIbarakiJapan
| |
Collapse
|
2
|
Segarra-Medina C, Gómez-Cadenas A, Zandalinas SI. Physiological, molecular, and metabolic adaptations of plants to combined salinity and high irradiance stress. PHYSIOLOGIA PLANTARUM 2025; 177:e70164. [PMID: 40128164 DOI: 10.1111/ppl.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025]
Abstract
Global warming is expected to drive climate change, intensifying extreme weather events and aggravating stress conditions for plants due to the heightened frequency and severity of environmental factors. Among these stresses, the interplay of salinity and high irradiance is particularly critical, as it poses significant threats to crop productivity, food quality, and overall global food security. This review provides a comprehensive analysis of the physiological, molecular, and metabolic responses of various plant species to salinity (S), high irradiance (HL), and their combined stress (S + HL), highlighting the adaptative mechanisms plants employ to mitigate these adverse conditions. This study integrates in silico data, focusing on gene expression profiles and functional classification using Gene Ontology (GO) terms and analysis of transcription factor (TF) families such as MYB, WRKY and bHLH. Alongside gene expression data, we incorporated analyses of growth, development, and metabolism profiles across different species exposed to S, HL and S + HL. The findings point to adaptive mechanisms crucial for resilience, including reconfigurations in gene expression patterns, metabolic pathways and phytohormone profiles, demonstrating their potential in the development of climate-resilient crops. This review offers a framework for further research into multi-stress adaptation strategies. In addition, the importance of advancing crop resilience through these insights, contributing to the development of innovative approaches for sustainable agriculture in a rapidly changing climate, is outlined.
Collapse
Affiliation(s)
| | | | - Sara I Zandalinas
- Department of Biology, Biochemistry and Natural Sciences, Castellón, Spain
| |
Collapse
|
3
|
He J, Tang H. Combined Physiological and Transcriptomic Analyses of the Effects of Exogenous Trehalose on Salt Tolerance in Maize ( Zea mays L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:3506. [PMID: 39771205 PMCID: PMC11676066 DOI: 10.3390/plants13243506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
Soil salinization severely affects the quality and yield of maize. As a C4 plant with high efficiency in utilizing light and carbon dioxide, maize (Zea mays L.) is one of the most important crops worldwide. This study aims to investigate the pathways and mechanisms by which trehalose mediates the improvement of salt tolerance in maize through a combined analysis of physiology and transcriptomics. The results indicate that foliar application of trehalose treatment significantly increased maize biomass and antioxidant enzyme activity while reducing the H2O2 and Na+/K+ ratios in both the aerial and underground parts of the plant. Additionally, trehalose enhanced the total secretion of organic acids from maize roots, improving the soil microenvironment for maize growth under salt stress and alleviating Na+ toxicity. Transcriptomic data revealed that under salt stress, most differentially expressed genes (DEGs) were enriched in pathways related to photosynthesis, abscisic acid signaling, and sugar metabolism, and trehalose application increased the expression levels of these pathways, thereby mitigating the growth inhibition caused by salinity. This study elucidates mechanisms for enhancing salt tolerance in maize, providing theoretical support for improving its resilience and offering innovative strategies for utilizing a wide range of saline-alkali land.
Collapse
Affiliation(s)
| | - Hongliang Tang
- School of Life Sciences, Hebei University, Baoding 071002, China;
| |
Collapse
|
4
|
Zhang S, Wang G, Yu W, Wei L, Gao C, Li D, Guo L, Yang J, Jian S, Liu N. Multi-omics analyses reveal the mechanisms underlying the responses of Casuarina equisetifolia ssp. incana to seawater atomization and encroachment stress. BMC PLANT BIOLOGY 2024; 24:854. [PMID: 39266948 PMCID: PMC11391710 DOI: 10.1186/s12870-024-05561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Casuarina equisetifolia trees are used as windbreaks in subtropical and tropical coastal zones, while C. equisetifolia windbreak forests can be degraded by seawater atomization (SA) and seawater encroachment (SE). To investigate the mechanisms underlying the response of C. equisetifolia to SA and SE stress, the transcriptome and metabolome of C. equisetifolia seedlings treated with control, SA, and SE treatments were analyzed. We identified 737, 3232, 3138, and 3899 differentially expressed genes (SA and SE for 2 and 24 h), and 46, 66, 62, and 65 differentially accumulated metabolites (SA and SE for 12 and 24 h). The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that SA and SE stress significantly altered the expression of genes related to plant hormone signal transduction, plant-pathogen interaction, and starch and sucrose metabolism pathways. The accumulation of metabolites associated with the biosynthetic pathways of phenylpropanoid and amino acids, as well as starch and sucrose metabolism, and glycolysis/gluconeogenesis were significantly altered in C. equisetifolia subjected to SA and SE stress. In conclusion, C. equisetifolia responds to SA and SE stress by regulating plant hormone signal transduction, plant-pathogen interaction, biosynthesis of phenylpropanoid and amino acids, starch and sucrose metabolism, and glycolysis/gluconeogenesis pathways. Compared with SA stress, C. equisetifolia had a stronger perception and response to SE stress, which required more genes and metabolites to be regulated. This study enhances our understandings of how C. equisetifolia responds to two types of seawater stresses at transcriptional and metabolic levels. It also offers a theoretical framework for effective coastal vegetation management in tropical and subtropical regions.
Collapse
Affiliation(s)
- Shike Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Guobing Wang
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Weiwei Yu
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Long Wei
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Coastal Shelterbelt Ecosystem National Observation and Research Station, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Chao Gao
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Di Li
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Lili Guo
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Jianbo Yang
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Shuguang Jian
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Nan Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
5
|
Dehghanian Z, Ahmadabadi M, Asgari Lajayer B, Gougerdchi V, Hamedpour-Darabi M, Bagheri N, Sharma R, Vetukuri RR, Astatkie T, Dell B. Quinoa: A Promising Crop for Resolving the Bottleneck of Cultivation in Soils Affected by Multiple Environmental Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:2117. [PMID: 39124236 PMCID: PMC11313704 DOI: 10.3390/plants13152117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
Quinoa (Chenopodium quinoa Willd.) has gained worldwide recognition for its nutritional values, adaptability to diverse environments, and genetic diversity. This review explores the current understanding of quinoa tolerance to environmental stress, focusing on drought, salinity, heat, heavy metals, and UV-B radiation. Although drought and salinity have been extensively studied, other stress factors remain underexplored. The ever-increasing incidence of abiotic stress, exacerbated by unpredictable weather patterns and climate change, underscores the importance of understanding quinoa's responses to these challenges. Global gene banks safeguard quinoa's genetic diversity, supporting breeding efforts to develop stress-tolerant varieties. Recent advances in genomics and molecular tools offer promising opportunities to improve stress tolerance and increase the yield potential of quinoa. Transcriptomic studies have shed light on the responses of quinoa to drought and salinity, yet further studies are needed to elucidate its resilience to other abiotic stresses. Quinoa's ability to thrive on poor soils and limited water resources makes it a sustainable option for land restoration and food security enterprises. In conclusion, quinoa is a versatile and robust crop with the potential to address food security challenges under environmental constraints.
Collapse
Affiliation(s)
- Zahra Dehghanian
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran; (Z.D.); (M.A.); (N.B.)
| | - Mohammad Ahmadabadi
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran; (Z.D.); (M.A.); (N.B.)
| | | | - Vahideh Gougerdchi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran;
| | - Mohsen Hamedpour-Darabi
- Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz 7194684471, Iran;
| | - Nazila Bagheri
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran; (Z.D.); (M.A.); (N.B.)
| | - Ritika Sharma
- Department of Botany, Central University of Jammu, Rahya Suchani, Samba, Jammu 181143, India;
| | - Ramesh R. Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23422 Lomma, Sweden;
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - Bernard Dell
- Centre for Crop and Food Innovation, Murdoch University, Murdoch 6150, Australia;
| |
Collapse
|
6
|
Han M, Niu M, Gao T, Shen Y, Zhou X, Zhang Y, Liu L, Chai M, Sun G, Wang Y. Responsive Alternative Splicing Events of Opisthopappus Species against Salt Stress. Int J Mol Sci 2024; 25:1227. [PMID: 38279226 PMCID: PMC10816081 DOI: 10.3390/ijms25021227] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
Salt stress profoundly affects plant growth, prompting intricate molecular responses, such as alternative splicing (AS), for environmental adaptation. However, the response of AS events to salt stress in Opisthopappus (Opisthopappus taihangensis and Opisthopappus longilobus) remains unclear, which is a Taihang Mountain cliff-dwelling species. Using RNA-seq data, differentially expressed genes (DEGs) were identified under time and concentration gradients of salt stress. Two types of AS, skipped exon (SE) and mutually exclusive exons (MXE), were found. Differentially alternative splicing (DAS) genes in both species were significantly enriched in "protein phosphorylation", "starch and sucrose metabolism", and "plant hormone signal transduction" pathways. Meanwhile, distinct GO terms and KEGG pathways of DAS occurred between two species. Only a small subset of DAS genes overlapped with DEGs under salt stress. Although both species likely adopted protein phosphorylation to enhance salt stress tolerance, they exhibited distinct responses. The results indicated that the salt stress mechanisms of both Opisthopappus species exhibited similarities and differences in response to salt stress, which suggested that adaptive divergence might have occurred between them. This study initially provides a comprehensive description of salt responsive AS events in Opisthopappus and conveys some insights into the molecular mechanisms behind species tolerance on the Taihang Mountains.
Collapse
Affiliation(s)
- Mian Han
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Mengfan Niu
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Ting Gao
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Yuexin Shen
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Xiaojuan Zhou
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Yimeng Zhang
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Li Liu
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Min Chai
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Genlou Sun
- Department of Botany, Saint Mary’s University, Halifax, NS B3H 3C3, Canada
| | - Yiling Wang
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| |
Collapse
|
7
|
Du M, Lu D, Liu X. The Arabidopsis ubiquitin ligases ATL31 and ATL6 regulate plant response to salt stress in an ABA-independent manner. Biochem Biophys Res Commun 2023; 685:149156. [PMID: 37913694 DOI: 10.1016/j.bbrc.2023.149156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
E3 ubiquitin ligases play critical roles in regulating plant response to salt stress. Arabidopsis Tóxicos En Levadura (ATL) is a subfamily of RING-type E3 ubiquitin ligases widely conserved in plant species. ATL genes have been shown to be involved in regulating plant response to biotic or abiotic stresses. We previously found that a pair of ATL genes, ATL31 and ATL6 positively regulated plant innate immunity. However, whether ATL31/6 are also involved in salt stress response remains to be investigated. Here, we demonstrate that ATL31/6 are induced by salt stress. The atl31 atl6 double mutant exhibits increased salt tolerance compared to the wild-type plants, while transgenic plants overexpressing ATL31 are more salt-sensitive. Notably, ATL31 and ATL6 do not participate in the abscisic acid (ABA) response. Furthermore, NaCl treatment induces the proteasomal degradation of ATL31 proteins. Together, we demonstrate that ATL31/6 positively regulate plant tolerance to salt stress, which is independent of ABA, and our work reveals that ATL31/6 are involved in regulating plant response to both biotic and abiotic stress.
Collapse
Affiliation(s)
- Mingshuo Du
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China
| | - Dongping Lu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China.
| | - Xiaotong Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| |
Collapse
|
8
|
Segarra-Medina C, Alseekh S, Fernie AR, Rambla JL, Pérez-Clemente RM, Gómez-Cádenas A, Zandalinas SI. Abscisic acid promotes plant acclimation to the combination of salinity and high light stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108008. [PMID: 37690143 DOI: 10.1016/j.plaphy.2023.108008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Plants encounter combinations of different abiotic stresses such as salinity (S) and high light (HL). These environmental conditions have a detrimental effect on plant growth and development, posing a threat to agricultural production. Metabolic changes play a crucial role in enabling plants to adapt to fluctuations in their environment. Furthermore, hormones such as abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA) have been previously identified as regulators of plant responses to different abiotic stresses. Here we studied the response of Arabidopsis wild type (Col and Ler) plants and mutants impaired in hormone biosynthesis (aba2-11 and aba1-1 in ABA, aos in JA and sid2 in SA) to the combination of S and HL (S + HL). Our findings showed that aba2-11 plants displayed reduced growth, impaired photosystem II (PSII) function, increased leaf damage, and decreased survival compared to Col when subjected to stress combination. However, aos and sid2 mutants did not display significant changes in response to S + HL compared to Col, indicating a key role for ABA in promoting plant tolerance to S + HL and suggesting a marginal role for JA and SA in this process. In addition, we revealed differences in the metabolic response of plants to S + HL compared to S or HL. The analysis of altered metabolic pathways under S + HL suggested that the accumulation of flavonoids is ABA-dependent, whereas the accumulation of branched-chain amino acids (BCAAs) and proline is ABA-independent. Therefore, our study uncovered a key function for ABA in regulating the accumulation of different flavonoids in plants during S + HL.
Collapse
Affiliation(s)
- Clara Segarra-Medina
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany; Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany; Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - José L Rambla
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain
| | - Rosa M Pérez-Clemente
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain
| | - Aurelio Gómez-Cádenas
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain.
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain.
| |
Collapse
|
9
|
Wu R, Kong L, Wu X, Gao J, Niu T, Li J, Li Z, Dai L. GsNAC2 gene enhances saline-alkali stress tolerance by promoting plant growth and regulating glutathione metabolism in Sorghum bicolor. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:677-690. [PMID: 37423605 DOI: 10.1071/fp23015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023]
Abstract
The quality and yields of Sorghum bicolo r plants are seriously affected by saline-alkali conditions. NAC (NAM, ATAF, and CUC) transcription factors are plant specific and have various functions in plant development and response to various stresses. To investigate how GsNAC2 functions in sorghum responses to saline-alkali treatment, the characteristics of GsNAC2 were analysed by bioinformatics methods, and NaHCO3 :Na2 CO3 (5:1, 75mM, pH 9.63) saline-alkali stress solution was applied when sorghum plants were 2weeks old. The research results show that GsNAC2 belongs to the NAC gene family. GsNAC2 was significantly induced by saline-alkali treatment and strongly expressed in sorghum leaves. GsNAC2 -overexpressing sorghum plants had increased plant height, dry weight, moisture content, root activity, leaf length, chlorophyll content, stomatal conductance, relative root activity, relative chlorophyll content, relative stomatal conductance, and relative transpiration rate after saline-alkali treatment. Lower H2 O2 and O2 - levels, relative permeability of the plasma membrane, and malondialdehyde (MDA) content were found in GsNAC2 -overexpressing sorghum. In transcriptome analysis, clusters of orthologous groups (COG) analysis showed that a high proportion of differentially-expressed genes (DEGs) participated in defence mechanisms at each processing time, and 18 DEGs related to synthetic glutathione were obtained. Gene expression analysis revealed that key genes in glutathione biosynthesis pathways were upregulated. GR and GSH-Px activities were increased, and GSH accumulated more with the overexpression of GsNAC2 after saline-alkali treatment. Furthermore, these results suggest that GsNAC2 acts as a potentially important regulator in response to saline-alkali stress and may be used in molecular breeding to improve crop yields under adverse environmental conditions.
Collapse
Affiliation(s)
- Rong Wu
- College of Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Lingxin Kong
- College of Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Xiao Wu
- College of Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Jing Gao
- College of Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Tingli Niu
- College of Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Jianying Li
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing, Heilongjiang Province 163319, China
| | - Zhijiang Li
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Lingyan Dai
- College of Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| |
Collapse
|
10
|
Li L, Du L, Cao Q, Yang Z, Liu Y, Yang H, Duan X, Meng Z. Salt Tolerance Evaluation of Cucumber Germplasm under Sodium Chloride Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2927. [PMID: 37631139 PMCID: PMC10459999 DOI: 10.3390/plants12162927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Cucumber (Cucumis sativus L.) is an important horticultural crop worldwide. Sodium (Na+) and chloride (Cl-) in the surface soil are the major limiting factors in coastal areas of Shandong Province in China. Therefore, to understand the mechanism used by cucumber to adapt to sodium chloride (NaCl), we analyzed the phenotypic and physiological indicators of eighteen cucumber germplasms after three days under 100 and 150 mM NaCl treatment. A cluster analysis revealed that eighteen germplasms could be divided into five groups based on their physiological indicators. The first three groups consisted of seven salt-tolerant and medium salt-tolerant germplasms, including HLT1128h, Zhenni, and MC2065. The two remaining groups consisted of five medium salt-sensitive germplasms, including DM26h and M1-2-h-10, and six salt-sensitive germplasms including M1XT and 228. A principal component analysis revealed that the trend of comprehensive scores was consistent with the segmental cluster analysis and survival rates of cucumber seedlings. Overall, the phenotype, comprehensive survival rate, cluster analysis, and principal component analysis revealed that the salt-tolerant and salt-sensitive germplasms were Zhenni, F11-15, MC2065, M1XT, M1-2-h-10, and DM26h. The results of this study will provide references to identify or screen salt-tolerant cucumber germplasms and lay a foundation for breeding salt-tolerant cucumber varieties.
Collapse
Affiliation(s)
- Libin Li
- Key Laboratory of Greenhouse Vegetable Biology of Shandong Province, Vegetable Science Observation and Experiment Station in Huang—Huai Region of Ministry of Agriculture (Shandong), Shandong Branch of National Vegetable Improvement Center, Vegetable Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China (Q.C.)
| | - Lianda Du
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Qiwei Cao
- Key Laboratory of Greenhouse Vegetable Biology of Shandong Province, Vegetable Science Observation and Experiment Station in Huang—Huai Region of Ministry of Agriculture (Shandong), Shandong Branch of National Vegetable Improvement Center, Vegetable Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China (Q.C.)
| | - Zonghui Yang
- Key Laboratory of Greenhouse Vegetable Biology of Shandong Province, Vegetable Science Observation and Experiment Station in Huang—Huai Region of Ministry of Agriculture (Shandong), Shandong Branch of National Vegetable Improvement Center, Vegetable Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China (Q.C.)
| | - Yihan Liu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Hua Yang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xi Duan
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China
| | - Zhaojuan Meng
- Key Laboratory of Greenhouse Vegetable Biology of Shandong Province, Vegetable Science Observation and Experiment Station in Huang—Huai Region of Ministry of Agriculture (Shandong), Shandong Branch of National Vegetable Improvement Center, Vegetable Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China (Q.C.)
| |
Collapse
|
11
|
Zhang L, Wu Y, Yu Y, Zhang Y, Wei F, Zhu QH, Zhou J, Zhao L, Zhang Y, Feng Z, Feng H, Sun J. Acetylation of GhCaM7 enhances cotton resistance to Verticillium dahliae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1405-1424. [PMID: 36948889 DOI: 10.1111/tpj.16200] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 06/17/2023]
Abstract
Protein lysine acetylation is an important post-translational modification mechanism involved in cellular regulation in eukaryotes. Calmodulin (CaM) is a ubiquitous Ca2+ sensor in eukaryotes and is crucial for plant immunity, but it is so far unclear whether acetylation is involved in CaM-mediated plant immunity. Here, we found that GhCaM7 is acetylated upon Verticillium dahliae (V. dahliae) infection and a positive regulator of V. dahliae resistance. Overexpressing GhCaM7 in cotton and Arabidopsis enhances V. dahliae resistance and knocking-down GhCaM7 makes cotton more susceptible to V. dahliae. Transgenic Arabidopsis plants overexpressing GhCaM7 with mutation at the acetylation site are more susceptible to V. dahliae than transgenics overexpressing the wild-type GhCaM7, implying the importance of the acetylated GhCaM7 in response to V. dahliae infection. Yeast two-hybrid, bimolecular fluorescent complementation, luciferase complementation imaging, and coimmunoprecipitation assays demonstrated interaction between GhCaM7 and an osmotin protein GhOSM34 that was shown to have a positive role in V. dahliae resistance. GhCaM7 and GhOSM34 are co-localized in the cell membrane. Upon V. dahliae infection, the Ca2+ content reduces almost instantly in plants with downregulated GhCaM7 or GhOSM34. Down regulating GhOSM34 enhances accumulation of Na+ and increases cell osmotic pressure. Comparative transcriptomic analyses between cotton plants with an increased or reduced expression level of GhCaM7 and wild-type plants indicate the involvement of jasmonic acid signaling pathways and reactive oxygen species in GhCaM7-enabled disease resistance. Together, these results demonstrate the involvement of CaM protein in the interaction between cotton and V. dahliae, and more importantly, the involvement of the acetylated CaM in the interaction.
Collapse
Affiliation(s)
- Lei Zhang
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yajie Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Yongang Yu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yihao Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, 2601, Australia
| | - Jinglong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jie Sun
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| |
Collapse
|
12
|
Yan G, Shi Y, Mu C, Wang J. Differences in Organic Solute and Metabolites of Leymus chinensis in Response to Different Intensities of Salt and Alkali Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091916. [PMID: 37176974 PMCID: PMC10181334 DOI: 10.3390/plants12091916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
To explore differences in the physiological metabolic response mechanisms of grassland perennial plants to different intensities of salt-alkali stress, we employed GC-MS to identify the metabolome of perennial rhizome-saline-tolerant Leymus chinensis (L. chinensis). L. chinensis reduced stress damage by accumulating osmotic solutes during salt-alkali stress, although the types of accumulated solutes varied with stress and concentration gradients. Soluble sugars increased only under mild salt-alkali stress. Under salt and mild alkali stress, amino acids increased. Under severe salt-alkali stress, organic acids increased. Betaine increased as a typical osmolute under salt-alkali stress. Metabolic analysis identified 20 metabolites, including 4 amino acids, 6 sugars, and 10 organic acids. The majority of them increased in response to stress. Under mild salt stress, the metabolites included glycine and proline. Under mild alkali stress, they primarily consisted of sugars such as isomaltose and lactulose, whereas under severe salt-alkali stress, they primarily consisted of organic acids such as citric acid and isocitric acid. Pathway analysis showed that six pathways were affected. Glycine, serine, and threonine metabolism was affected under mild salt stress. Alanine, aspartate, and glutamate metabolism and butanota metabolism were affected under mild alkali stress, while energy metabolism pathways, such as the TCA cycle and glyoxylate and dicarboxylate metabolism, were affected under severe salt-alkali stress. The results indicate the importance of betaine in stress resistance and the significance of organic acid in severe salt stress, and they also demonstrate that energy supply was one of the key mechanisms in response to severe salt-alkali stress.
Collapse
Affiliation(s)
- Ge Yan
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, School of Life Sciences, Northeast Normal University, No. 5268 Renmin Street, Changchun 130024, China
| | - Yujie Shi
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, School of Life Sciences, Northeast Normal University, No. 5268 Renmin Street, Changchun 130024, China
| | - Chunsheng Mu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, School of Life Sciences, Northeast Normal University, No. 5268 Renmin Street, Changchun 130024, China
| | - Junfeng Wang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, School of Life Sciences, Northeast Normal University, No. 5268 Renmin Street, Changchun 130024, China
| |
Collapse
|
13
|
Ma X, Zhang Q, Ou Y, Wang L, Gao Y, Lucas GR, Resco de Dios V, Yao Y. Transcriptome and Low-Affinity Sodium Transport Analysis Reveals Salt Tolerance Variations between Two Poplar Trees. Int J Mol Sci 2023; 24:ijms24065732. [PMID: 36982804 PMCID: PMC10058024 DOI: 10.3390/ijms24065732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/04/2023] [Accepted: 03/05/2023] [Indexed: 03/19/2023] Open
Abstract
Salinity stress severely hampers plant growth and productivity. How to improve plants’ salt tolerance is an urgent issue. However, the molecular basis of plant resistance to salinity still remains unclear. In this study, we used two poplar species with different salt sensitivities to conduct RNA-sequencing and physiological and pharmacological analyses; the aim is to study the transcriptional profiles and ionic transport characteristics in the roots of the two Populus subjected to salt stress under hydroponic culture conditions. Our results show that numerous genes related to energy metabolism were highly expressed in Populus alba relative to Populus russkii, which activates vigorous metabolic processes and energy reserves for initiating a set of defense responses when suffering from salinity stress. Moreover, we found the capacity of Na+ transportation by the P. alba high-affinity K+ transporter1;2 (HKT1;2) was superior to that of P. russkii under salt stress, which enables P. alba to efficiently recycle xylem-loaded Na+ and to maintain shoot K+/Na+ homeostasis. Furthermore, the genes involved in the synthesis of ethylene and abscisic acid were up-regulated in P. alba but downregulated in P. russkii under salt stress. In P. alba, the gibberellin inactivation and auxin signaling genes with steady high transcriptions, several antioxidant enzymes activities (such as peroxidase [POD], ascorbate peroxidase [APX], and glutathione reductase [GR]), and glycine-betaine content were significantly increased under salt stress. These factors altogether confer P. alba a higher resistance to salinity, achieving a more efficient coordination between growth modulation and defense response. Our research provides significant evidence to improve the salt tolerance of crops or woody plants.
Collapse
Affiliation(s)
- Xuan Ma
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qiang Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yongbin Ou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lijun Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yongfeng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Gutiérrez Rodríguez Lucas
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Department of Crop and Forest Sciences & Agrotecnio Center, Universitat de Lleida, 25003 Leida, Spain
- Correspondence: (V.R.d.D.); (Y.Y.)
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Correspondence: (V.R.d.D.); (Y.Y.)
| |
Collapse
|
14
|
Zong J, Zhang Z, Huang P, Yang Y. Arbuscular mycorrhizal fungi alleviates salt stress in Xanthoceras sorbifolium through improved osmotic tolerance, antioxidant activity, and photosynthesis. Front Microbiol 2023; 14:1138771. [PMID: 37007515 PMCID: PMC10061154 DOI: 10.3389/fmicb.2023.1138771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Mycorrhizal inoculation was widely reported to alleviate the damage resulting from NaCl by various physiological ways. However, the symbiotic benefit under distant NaCl concentrations and the relationship among different responsive physiological processes were elusive. In this study, saline resistant plant Xanthoceras sorbifolium was selected as the experimental material and five concentrations of NaCl in the presence or absence of Arbuscular Mycorrhiza Fungi (AMF) were conducted, in order to understand the differences and similarities on the photosynthesis, antioxidant activity, and osmotic adjustment between arbuscular mycorrhizal (AM) plants and non-arbuscular mycorrhizal (NM) plants. Under low salt stress, X. sorbifolium can adapt to salinity by accumulating osmotic adjustment substances, such as soluble protein and proline, increasing superoxide dismutase (SOD), catalase (CAT) activity, and glutathione (GSH). However, under high concentrations of NaCl [240 and 320 mM (mmol·L−1)], the resistant ability of the plants significantly decreased, as evidenced by the significant downregulation of photosynthetic capacity and biomass compared with the control plants in both AM and NM groups. This demonstrates that the regulatory capacity of X. sorbifolium was limiting, and it played a crucial role mainly under the conditions of 0–160 mM NaCl. After inoculation of AMF, the concentration of Na+ in roots was apparently lower than that of NM plants, while Gs (Stomatal conductance) and Ci (Intercellular CO2 concentration) increased, leading to increases in Pn (Net photosynthetic rate) as well. Moreover, under high salt stress, proline, soluble protein, GSH, and reduced ascorbic acid (ASA) in AM plants are higher in comparison with NM plants, revealing that mycorrhizal symbiotic benefits are more crucial against severe salinity toxicity. Meanwhile, X. sorbifolium itself has relatively high tolerance to salinity, and AMF inoculation can significantly increase the resistant ability against NaCl, whose function was more important under high concentrations.
Collapse
Affiliation(s)
- Jianwei Zong
- College of Art, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- *Correspondence: Jianwei Zong,
| | - Zhilong Zhang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Peilu Huang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Yuhua Yang
- College of Art, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Yuhua Yang,
| |
Collapse
|
15
|
Zhu Y, Ren Y, Liu J, Liang W, Zhang Y, Shen F, Ling J, Zhang C. New Genes Identified as Modulating Salt Tolerance in Maize Seedlings Using the Combination of Transcriptome Analysis and BSA. PLANTS (BASEL, SWITZERLAND) 2023; 12:1331. [PMID: 36987019 PMCID: PMC10053919 DOI: 10.3390/plants12061331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
(1) Background: Salt stress is an abiotic factor that limits maize yield and quality. A highly salt-tolerance inbred AS5 and a salt-sensitive inbred NX420 collected from Ningxia Province, China, were used to identify new genes for modulating salt resistance in maize. (2) Methods: To understand the different molecular bases of salt tolerance in AS5 and NX420, we performed BSA-seq using an F2 population for two extreme bulks derived from the cross between AS5 and NX420. Transcriptomic analysis was also conducted for AS5 and NX420 at the seedling stage after treatment with 150 mM of NaCl for 14 days. (3) Results: AS5 had a higher biomass and lower Na+ content than NX420 in the seedling stage after treatment with 150 mM NaCl for 14 days. One hundred and six candidate regions for salt tolerance were mapped on all of the chromosomes through BSA-seq using F2 in an extreme population. Based on the polymorphisms identified between both parents, we detected 77 genes. A large number of differentially expressed genes (DEGs) at the seedling stage under salt stress between these two inbred lines were detected using transcriptome sequencing. GO analysis indicated that 925 and 686 genes were significantly enriched in the integral component of the membrane of AS5 and NX420, respectively. Among these results, two and four DEGs were identified as overlapping in these two inbred lines using BSA-seq and transcriptomic analysis, respectively. Two genes (Zm00001d053925 and Zm00001d037181) were detected in both AS5 and NX420; the transcription level of Zm00001d053925 was induced to be significantly higher in AS5 than in NX420 (41.99 times versus 6.06 times after 150 mM of NaCl treatment for 48 h), while the expression of Zm00001d037181 showed no significant difference upon salt treatment in both lines. The functional annotation of the new candidate genes showed that it was an unknown function protein. (4) Conclusions: Zm00001d053925 is a new functional gene responding to salt stress in the seedling stage, which provides an important genetic resource for salt-tolerant maize breeding.
Collapse
Affiliation(s)
- Yongxing Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
- Agricultural Biotechnology Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Ying Ren
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Ji’an Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Wenguang Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Yuanyuan Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Fengyuan Shen
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Jiang Ling
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| |
Collapse
|
16
|
Yuan Y, Zu M, Zuo J, Li R, Yang L, Tao J. Chaetomium globosum D5 confers salinity tolerance on Paeonia lactiflora Pall. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153878. [PMID: 36493668 DOI: 10.1016/j.jplph.2022.153878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/10/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Plants will interact with beneficial endophytic fungi to increase resistance under environmental stress. Among these stresses, salt stress poses one of the major threats to plant growth worldwide. We have studied the response mechanism of Chaetomium globosum D5, a salt-tolerant fungus isolated from the roots of Paeonia lactiflora under salt stress, and its mechanism of action in helping P. lactiflora alleviate salt stress. In our study, high levels of salt inhibit growth, whereas low levels promote the growth of C. globosum D5, which resists salt stress by forming dense hyphae and producing more pigments, soluble proteins, and antioxidants. Under salt stress, growth and photosynthesis of P. lactiflora are inhibited, and they are subjected to osmotic stress, oxidative stress, and ionic stress. C. globosum D5 could help P. lactiflora promote growth and photosynthesis by increasing the uptake of nitrogen and phosphorus and increasing the accumulation of the carbon and photosynthetic pigments, help P. lactiflora alleviate osmotic stress by increasing the accumulation of proline, help P. lactiflora alleviate ion stress by reducing Na+ and increasing K+/Na+, Ca2+/Na+ and Mg2+/Na + ratios in P. lactiflora roots and leaves. In summary, joint action between P. lactiflora and C. globosum D5 is responsible for mitigating damage caused by P. lactiflora under salt stress. We first investigate the interaction between the fungus and P. lactiflora under salt stress, providing a theoretical basis for further investigations into the mechanisms of P. lactiflora's response to salt stress and its promotion in coastal areas.
Collapse
Affiliation(s)
- Yingdan Yuan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center of Modern Production Technology of Grain Crops, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Mengting Zu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center of Modern Production Technology of Grain Crops, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Jiajia Zuo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center of Modern Production Technology of Grain Crops, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Runze Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center of Modern Production Technology of Grain Crops, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Liping Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center of Modern Production Technology of Grain Crops, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Jun Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center of Modern Production Technology of Grain Crops, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
17
|
Cao Y, Song H, Zhang L. New Insight into Plant Saline-Alkali Tolerance Mechanisms and Application to Breeding. Int J Mol Sci 2022; 23:ijms232416048. [PMID: 36555693 PMCID: PMC9781758 DOI: 10.3390/ijms232416048] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Saline-alkali stress is a widespread adversity that severely affects plant growth and productivity. Saline-alkaline soils are characterized by high salt content and high pH values, which simultaneously cause combined damage from osmotic stress, ionic toxicity, high pH and HCO3-/CO32- stress. In recent years, many determinants of salt tolerance have been identified and their regulatory mechanisms are fairly well understood. However, the mechanism by which plants respond to comprehensive saline-alkali stress remains largely unknown. This review summarizes recent advances in the physiological, biochemical and molecular mechanisms of plants tolerance to salinity or salt- alkali stress. Focused on the progress made in elucidating the regulation mechanisms adopted by plants in response to saline-alkali stress and present some new views on the understanding of plants in the face of comprehensive stress. Plants generally promote saline-alkali tolerance by maintaining pH and Na+ homeostasis, while the plants responding to HCO3-/CO32- stress are not exactly the same as high pH stress. We proposed that pH-tolerant or sensitive plants have evolved distinct mechanisms to adapt to saline-alkaline stress. Finally, we highlight the areas that require further research to reveal the new components of saline-alkali tolerance in plants and present the current and potential application of key determinants in breed improvement and molecular breeding.
Collapse
|
18
|
Ma D, Cai J, Ma Q, Wang W, Zhao L, Li J, Su L. Comparative time-course transcriptome analysis of two contrasting alfalfa ( Medicago sativa L.) genotypes reveals tolerance mechanisms to salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1070846. [PMID: 36570949 PMCID: PMC9773191 DOI: 10.3389/fpls.2022.1070846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Salt stress is a major abiotic stress affecting plant growth and crop yield. For the successful cultivation of alfalfa (Medicago sativa L.), a key legume forage, in saline-affected areas, it's essential to explore genetic modifications to improve salt-tolerance.Transcriptome assay of two comparative alfalfa genotypes, Adina and Zhaodong, following a 4 h and 8 h's 300 mM NaCl treatment was conducted in this study in order to investigate the molecular mechanism in alfalfa under salt stress conditions. Results showed that we obtained 875,023,571 transcripts and 662,765,594 unigenes were abtained from the sequenced libraries, and 520,091 assembled unigenes were annotated in at least one database. Among them, we identified 1,636 differentially expression genes (DEGs) in Adina, of which 1,426 were up-regulated and 210 down-regulated, and 1,295 DEGs in Zhaodong, of which 565 were up-regulated and 730 down-regulated. GO annotations and KEGG pathway enrichments of the DEGs based on RNA-seq data indicated that DEGs were involved in (1) ion and membrane homeostasis, including ABC transporter, CLC, NCX, and NHX; (2) Ca2+ sensing and transduction, including BK channel, EF-hand domain, and calmodulin binding protein; (3) phytohormone signaling and regulation, including TPR, FBP, LRR, and PP2C; (4) transcription factors, including zinc finger proteins, YABBY, and SBP-box; (5) antioxidation process, including GST, PYROX, and ALDH; (6) post-translational modification, including UCH, ubiquitin family, GT, MT and SOT. The functional roles of DEGs could explain the variations in salt tolerance performance observed between the two alfalfa genotypes Adina and Zhaodong. Our study widens the understanding of the sophisticated molecular response and tolerance mechanism to salt stress, providing novel insights on candidate genes and pathways for genetic modification involved in salt stress adaptation in alfalfa.
Collapse
Affiliation(s)
- Dongmei Ma
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Jinjun Cai
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Qiaoli Ma
- Agricultural College, Ningxia University, Yinchuan, China
| | - Wenjing Wang
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Lijuan Zhao
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Jiawen Li
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Lina Su
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| |
Collapse
|
19
|
A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize. Nat Commun 2022; 13:2222. [PMID: 35468878 PMCID: PMC9038930 DOI: 10.1038/s41467-022-29809-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/31/2022] [Indexed: 01/01/2023] Open
Abstract
Plant salt-stress response involves complex physiological processes. Previous studies have shown that some factors promote salt tolerance only under high transpiring condition, thus mediating transpiration-dependent salt tolerance (TDST). However, the mechanism underlying crop TDST remains largely unknown. Here, we report that ZmSTL1 (Salt-Tolerant Locus 1) confers natural variation of TDST in maize. ZmSTL1 encodes a dirigent protein (termed ZmESBL) localized to the Casparian strip (CS) domain. Mutants lacking ZmESBL display impaired lignin deposition at endodermal CS domain which leads to a defective CS barrier. Under salt condition, mutation of ZmESBL increases the apoplastic transport of Na+ across the endodermis, and then increases the root-to-shoot delivery of Na+ via transpiration flow, thereby leading to a transpiration-dependent salt hypersensitivity. Moreover, we show that the ortholog of ZmESBL also mediates CS development and TDST in Arabidopsis. Our study suggests that modification of CS barrier may provide an approach for developing salt-tolerant crops. Most crops are farmed under high transpiring environments, but our understanding of transpiration-dependent salt tolerance (TDST) remains limited. Here, the authors report a dirigent family protein is responsible for TDST by affecting lignin deposition at Casparian strip barrier and transportation of Na+ across the endodermis.
Collapse
|
20
|
Xu Z, Wang J, Zhen W, Sun T, Hu X. Abscisic acid alleviates harmful effect of saline-alkaline stress on tomato seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 175:58-67. [PMID: 35180529 DOI: 10.1016/j.plaphy.2022.01.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Saline-alkaline stress inhibits plant growth and reduces yield. Abscisic acid (ABA) is an important plant hormone in response to plant stress. However, the role of ABA under saline-alkaline stress is poorly understood. Therefore, the mechanisms of ABA accumulation and resistance improvement in tomato seedlings were studied under saline-alkaline stress. We investigated whether ABA accumulation improved the saline-alkaline stress resistance ability of tomato. Here, wild-type (Solanum lycopersicum cv. Ailsa Craig) and ABA-deficient mutant (notabilis) seedlings were used to determine the membrane lipid peroxidation, osmotic substance and chlorophyll contents. ABA synthesis and signal transduction changes and ABA roles regulating the antioxidation in tomato seedlings subject to saline-alkaline stress were further explored. Results showed that ABA synthesis and signal transduction were induced by saline-alkaline stress. Under saline-alkaline stress, tomato seedlings had decreased relative water content, increased relative electrical conductivity and malondialdehyde content, and these changes were alleviated by exogenous ABA treatment. Exogenous ABA alleviated the degradation of chlorophyll in the leaves of tomato seedlings caused by saline-alkaline stress, further promoted the accumulation of proline and soluble sugar, reduced the content of ROS and improved the ability of the antioxidant enzyme system. Moreover, notabilis appeared to be sensitive to saline-alkaline stress. Overall, ABA is involved in the resistance of tomato seedlings to saline-alkaline stress, and exogenous ABA improves the saline-alkaline tolerance of tomato seedlings.
Collapse
Affiliation(s)
- Zijian Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Jiachun Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Wentian Zhen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Tao Sun
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
21
|
Wang Q, Wang B, Liu H, Han H, Zhuang H, Wang J, Yang T, Wang H, Qin Y. Comparative proteomic analysis for revealing the advantage mechanisms of salt-tolerant tomato ( Solanum lycoperscium). PeerJ 2022; 10:e12955. [PMID: 35251781 PMCID: PMC8893030 DOI: 10.7717/peerj.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/27/2022] [Indexed: 01/11/2023] Open
Abstract
Salt stress causes the quality change and significant yield loss of tomato. However, the resources of salt-resistant tomato were still deficient and the mechanisms of tomato resistance to salt stress were still unclear. In this study, the proteomic profiles of two salt-tolerant and salt-sensitive tomato cultivars were investigated to decipher the salt-resistance mechanism of tomato and provide novel resources for tomato breeding. We found high abundance proteins related to nitrate and amino acids metabolismsin the salt-tolerant cultivars. The significant increase in abundance of proteins involved in Brassinolides and GABA biosynthesis were verified in salt-tolerant cultivars, strengthening the salt resistance of tomato. Meanwhile, salt-tolerant cultivars with higher abundance and activity of antioxidant-related proteins have more advantages in dealing with reactive oxygen species caused by salt stress. Moreover, the salt-tolerant cultivars had higher photosynthetic activity based on overexpression of proteins functioned in chloroplast, guaranteeing the sufficient nutrient for plant growth under salt stress. Furthermore, three key proteins were identified as important salt-resistant resources for breeding salt-tolerant cultivars, including sterol side chain reductase, gamma aminobutyrate transaminase and starch synthase. Our results provided series valuable strategies for salt-tolerant cultivars which can be used in future.
Collapse
Affiliation(s)
- Qiang Wang
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China,Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Huifang Liu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Hongwei Han
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Hongmei Zhuang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Hao Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yong Qin
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
22
|
Derbali W, Manaa A, Spengler B, Goussi R, Abideen Z, Ghezellou P, Abdelly C, Forreiter C, Koyro HW. Comparative proteomic approach to study the salinity effect on the growth of two contrasting quinoa genotypes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:215-229. [PMID: 33862501 DOI: 10.1016/j.plaphy.2021.03.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/28/2021] [Indexed: 05/27/2023]
Abstract
The aim of this study was to investigate the effect of NaCl salinity (0, 100 and 300 mM) on the individual response of the quinoa varieties Kcoito (Altiplano Ecotype) and UDEC-5 (Sea-level Ecotype) with physiological and proteomic approaches. Leaf protein profile was performed using two dimensional gel electrophoresis (2-DE). UDEC-5 showed an enhanced capacity to withstand salinity stress compared to Kcoito. In response to salinity, we detected overall the following differences between both genotypes: Toxicity symptoms, plant growth performance, photosynthesis performance and intensity of ROS-defense. We found a mirroring of these differences in the proteome of each genotype. Among the 700 protein spots reproducibly detected, 24 exhibited significant abundance variations between samples. These proteins were involved in energy and carbon metabolism, photosynthesis, ROS scavenging and detoxification, stress defense and chaperone functions, enzyme activation and ATPases. A specific set of proteins predominantly involved in photosynthesis and ROS scavenging showed significantly higher abundance under high salinity (300 mM NaCl). The adjustment was accompanied by a stimulation of various metabolic pathways to balance the supplementary demand for energy or intermediates. However, the more salt-resistant genotype UDEC-5 presented a beneficial and significantly higher expression of nearly all stress-related altered enzymes than Kcoito.
Collapse
Affiliation(s)
- Walid Derbali
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif, 2050, Tunisia; Faculté des Sciences de Tunis, Université Tunis El Manar, 2092. Tunisia; Institute for Plant Ecology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Arafet Manaa
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif, 2050, Tunisia.
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Rahma Goussi
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif, 2050, Tunisia; Faculté des Sciences de Tunis, Université Tunis El Manar, 2092. Tunisia
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte, University of Karachi, Karachi, Pakistan
| | - Parviz Ghezellou
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Chedly Abdelly
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif, 2050, Tunisia
| | - Christoph Forreiter
- Institut für Biologie, University of Siegen, Naturwissenschaftlich-Technische Fakultät, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| | - Hans-Werner Koyro
- Institute for Plant Ecology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
23
|
Kang Y, Yang X, Liu Y, Shi M, Zhang W, Fan Y, Yao Y, Zhang J, Qin S. Integration of mRNA and miRNA analysis reveals the molecular mechanism of potato (Solanum tuberosum L.) response to alkali stress. Int J Biol Macromol 2021; 182:938-949. [PMID: 33878362 DOI: 10.1016/j.ijbiomac.2021.04.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022]
Abstract
The continuing increase in the global saline-alkali land area has made saline-alkali stress the principal abiotic stress limiting plant growth. Potato is the most important non-grain crop, and its production is also severely limited by saline-alkali stress. However, few studies have addressed the mechanism of saline-alkali tolerance of potato with a focus on its response to neutral salt NaCl stress, or its response to alkali stress. Recently, miRNA-mRNA analyses have helped advance our understanding of how plants respond to stress. Here, we have characterized the morphological, physiological, and transcriptome changes of tissue culture seedlings of potato variety "Qingshu No. 9" treated with NaHCO3 (for 0, 2, 6, and 24 h). We found that the leaves of tissue culture seedlings wilted and withered under alkali stress, and the contents of ABA, BRs, trehalose, and lignin in roots increased significantly. The contents of GAs decreased significantly. Subsequently, miRNA-seq analysis results identified 168 differentially expressed miRNAs (DEMIs) under alkali stress, including 21 exist miRNAs and 37 known miRNAs from 47 families and 110 novel miRNAs. The mRNA-seq results identified 5731 differentially expressed mRNAs (DEMs) under alkali stress. By miRNA-mRNA integrated analysis, were obtained 33 miRNA-target gene pairs composed of 20 DEMIs and 33 DEMs. Next, we identified the "phenylpropanoid biosynthesis", "plant hormone signal transduction", and "starch and sucrose metabolism" pathways as necessary for potato to respond to alkali stress. miR4243-x and novel-m064-5p were involved in the response of potato to alkali stress by their negative regulatory effects on shikimate O-hydroxycinnamoyltransferase (HCT) and sucrose-phosphate synthase (SPS) genes, respectively. The expression results of miRNA and mRNA were verified by quantitative real-time PCR (qRT-PCR). Our results clarify the mechanism of potato response to alkali stress at the miRNA level, providing new insights into the molecular mechanisms of potato's response to alkali stress. We report many candidate miRNAs and mRNAs for molecular-assisted screening and salt-alkali resistance breeding.
Collapse
Affiliation(s)
- Yichen Kang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| | - Xinyu Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuhui Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| | - Mingfu Shi
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Weina Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanling Fan
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - YanHong Yao
- Dingxi Academy of Agricultural Sciences, Dingxi 743000, China
| | - Junlian Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| | - Shuhao Qin
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| |
Collapse
|
24
|
Lechón T, Sanz L, Sánchez-Vicente I, Lorenzo O. Nitric Oxide Overproduction by cue1 Mutants Differs on Developmental Stages and Growth Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1484. [PMID: 33158046 PMCID: PMC7692804 DOI: 10.3390/plants9111484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 01/26/2023]
Abstract
The cue1 nitric oxide (NO) overproducer mutants are impaired in a plastid phosphoenolpyruvate/phosphate translocator, mainly expressed in Arabidopsis thaliana roots. cue1 mutants present an increased content of arginine, a precursor of NO in oxidative synthesis processes. However, the pathways of plant NO biosynthesis and signaling have not yet been fully characterized, and the role of CUE1 in these processes is not clear. Here, in an attempt to advance our knowledge regarding NO homeostasis, we performed a deep characterization of the NO production of four different cue1 alleles (cue1-1, cue1-5, cue1-6 and nox1) during seed germination, primary root elongation, and salt stress resistance. Furthermore, we analyzed the production of NO in different carbon sources to improve our understanding of the interplay between carbon metabolism and NO homeostasis. After in vivo NO imaging and spectrofluorometric quantification of the endogenous NO levels of cue1 mutants, we demonstrate that CUE1 does not directly contribute to the rapid NO synthesis during seed imbibition. Although cue1 mutants do not overproduce NO during germination and early plant development, they are able to accumulate NO after the seedling is completely established. Thus, CUE1 regulates NO homeostasis during post-germinative growth to modulate root development in response to carbon metabolism, as different sugars modify root elongation and meristem organization in cue1 mutants. Therefore, cue1 mutants are a useful tool to study the physiological effects of NO in post-germinative growth.
Collapse
Affiliation(s)
| | | | | | - Oscar Lorenzo
- Department of Botany and Plant Physiology, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, 37185 Salamanca, Spain; (T.L.); (L.S.); (I.S.-V.)
| |
Collapse
|
25
|
Dubois M, Inzé D. Plant growth under suboptimal water conditions: early responses and methods to study them. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1706-1722. [PMID: 31967643 DOI: 10.1093/jxb/eraa037] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 05/03/2023]
Abstract
Drought stress forms a major environmental constraint during the life cycle of plants, often decreasing plant yield and in extreme cases threatening survival. The molecular and physiological responses induced by drought have been the topic of extensive research during the past decades. Because soil-based approaches to studying drought responses are often challenging due to low throughput and insufficient control of the conditions, osmotic stress assays in plates were developed to mimic drought. Addition of compounds such as polyethylene glycol, mannitol, sorbitol, or NaCl to controlled growth media has become increasingly popular since it offers the advantage of accurate control of stress level and onset. These osmotic stress assays enabled the discovery of very early stress responses, occurring within seconds or minutes following osmotic stress exposure. In this review, we construct a detailed timeline of early responses to osmotic stress, with a focus on how they initiate plant growth arrest. We further discuss the specific responses triggered by different types and severities of osmotic stress. Finally, we compare short-term plant responses under osmotic stress versus in-soil drought and discuss the advantages, disadvantages, and future of these plate-based proxies for drought.
Collapse
Affiliation(s)
- Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
26
|
Rolly NK, Imran QM, Lee IJ, Yun BW. Salinity Stress-Mediated Suppression of Expression of Salt Overly Sensitive Signaling Pathway Genes Suggests Negative Regulation by AtbZIP62 Transcription Factor in Arabidopsis thaliana. Int J Mol Sci 2020; 21:E1726. [PMID: 32138325 PMCID: PMC7084470 DOI: 10.3390/ijms21051726] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/26/2020] [Accepted: 03/01/2020] [Indexed: 12/31/2022] Open
Abstract
Salt stress is one of the most serious threats in plants, reducing crop yield and production. The salt overly sensitive (SOS) pathway in plants is a salt-responsive pathway that acts as a janitor of the cell to sweep out Na+ ions. Transcription factors (TFs) are key regulators of expression and/or repression of genes. The basic leucine zipper (bZIP) TF is a large family of TFs regulating various cellular processes in plants. In the current study, we investigated the role of the Arabidopsis thaliana bZIP62 TF in the regulation of SOS signaling pathway by measuring the transcript accumulation of its key genes such as SOS1, 2, and 3, in both wild-type (WT) and atbzip62 knock-out (KO) mutants under salinity stress. We further observed the activation of enzymatic and non-enzymatic antioxidant systems in the wild-type, atbzip62, atcat2 (lacking catalase activity), and atnced3 (lacking 9-cis-epoxycarotenoid dioxygenase involved in the ABA pathway) KO mutants. Our findings revealed that atbzip62 plants exhibited an enhanced salt-sensitive phenotypic response similar to atnced3 and atcat2 compared to WT, 10 days after 150 mM NaCl treatment. Interestingly, the transcriptional levels of SOS1, SOS2, and SOS3 increased significantly over time in the atbzip62 upon NaCl application, while they were downregulated in the wild type. We also measured chlorophyll a and b, pheophytin a and b, total pheophytin, and total carotenoids. We observed that the atbzip62 exhibited an increase in chlorophyll and total carotenoid contents, as well as proline contents, while it exhibited a non-significant increase in catalase activity. Our results suggest that AtbZIP62 negatively regulates the transcriptional events of SOS pathway genes, AtbZIP18 and AtbZIP69 while modulating the antioxidant response to salt tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Nkulu Kabange Rolly
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea; (N.K.R.); (Q.M.I.)
- National Laboratory of Seed Testing, National Seed Service, SENASEM, Ministry of Agriculture, Kinshasa 904KIN1, Congo
| | - Qari Muhammad Imran
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea; (N.K.R.); (Q.M.I.)
| | - In-Jung Lee
- Laboratory of Crop Physiology, School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea;
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea; (N.K.R.); (Q.M.I.)
| |
Collapse
|
27
|
da Silva HA, de Oliveira DFA, Avelino AP, de Macêdo CEC, Barros-Galvão T, Voigt EL. Salt stress differentially regulates mobilisation of carbon and nitrogen reserves during seedling establishment of Pityrocarpa moniliformis. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:1110-1118. [PMID: 31173441 DOI: 10.1111/plb.13017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Seedling establishment is a critical step in environment colonisation by higher plants that frequently occurs under adverse conditions. Thus, we carried out an integrated analysis of seedling growth, water status, ion accumulation, reserve mobilisation, metabolite partitioning and hydrolase activity during seedling establishment of the native Caatinga species Piptadenia moniliformis (Benth.) Luckow & R.W. Jobson under salinity. Two-day-old seedlings were cultivated in vitro for 4 days in water agar (control) or supplemented with 50 or 100 mm NaCl. Biochemical determinations were performed according to standard spectrophotometric protocols. We found that 100 mm NaCl stimulated starch degradation, amylase activity and soluble sugar accumulation, but limited storage protein hydrolysis in the cotyledons of P. moniliformis seedlings. Although Na+ accumulation in the seedling affected K+ partitioning between different organs, it was not possible to associate the salt-induced changes in reserve mobilisation with Na+ toxicity, or water status, in the cotyledons. Remarkably, we found that starch content increased in the roots of P. moniliformis seedlings under 100 mm NaCl, probably in response to the toxic effects of Na+ . The mobilisation of carbon and nitrogen reserves is independently regulated in P. moniliformis seedlings under salt stress. The salt-induced delay in seedling establishment and the resulting changes in the source-sink relationship may lead to storage protein retention in the cotyledons. Possibly, the intensification of starch mobilisation in the cotyledons supported starch accumulation in the root as a potential mechanism to mitigate Na+ toxicity.
Collapse
Affiliation(s)
- H A da Silva
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal, Rio Grande do Norte, Brazil
| | - D F A de Oliveira
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal, Rio Grande do Norte, Brazil
| | - A P Avelino
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal, Rio Grande do Norte, Brazil
| | - C E C de Macêdo
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal, Rio Grande do Norte, Brazil
| | - T Barros-Galvão
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal, Rio Grande do Norte, Brazil
| | - E L Voigt
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
28
|
Wang R, Yang L, Han X, Zhao Y, Zhao L, Xiang B, Zhu Y, Bai Y, Wang Y. Overexpression of AtAGT1 promoted root growth and development during seedling establishment. PLANT CELL REPORTS 2019; 38:1165-1180. [PMID: 31161264 DOI: 10.1007/s00299-019-02435-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Arabidopsis photorespiratory gene AtAGT1 is important for the growth and development of root, the non-photosynthetic organ, and it is involved in a complex metabolic network and salt resistance. AtAGT1 in Arabidopsis encodes an aminotransferase that has a wide range of donor:acceptor combinations, including Asn:glyoxylate. Although it is one of the photorespiratory genes, its encoding protein has been suggested to function also in roots to metabolize Asn. However, experimental data are still lacking. In this study, we investigated experimentally the function of AtAGT1 in roots and our results uncovered its importance in root development during seedling establishment after seed germination. Overexpression of AtAGT1 in roots promoted both the growth of primary root and outgrowth of lateral roots. To further elucidate the molecular mechanisms underlying, amino acid content and gene expression in roots were analyzed, and results revealed that AtAGT1 is involved in a complex metabolic network and salt resistance of roots.
Collapse
Affiliation(s)
- Rui Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Xiaofang Han
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuhong Zhao
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ling Zhao
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Beibei Xiang
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Anshan Road 312, Tianjin, 300193, China
| | - Yerong Zhu
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yanling Bai
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yong Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
29
|
Köster P, Wallrad L, Edel KH, Faisal M, Alatar AA, Kudla J. The battle of two ions: Ca 2+ signalling against Na + stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:39-48. [PMID: 29411929 DOI: 10.1111/plb.12704] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/30/2018] [Indexed: 05/22/2023]
Abstract
Soil salinity adversely affects plant growth, crop yield and the composition of ecosystems. Salinity stress impacts plants by combined effects of Na+ toxicity and osmotic perturbation. Plants have evolved elaborate mechanisms to counteract the detrimental consequences of salinity. Here we reflect on recent advances in our understanding of plant salt tolerance mechanisms. We discuss the embedding of the salt tolerance-mediating SOS pathway in plant hormonal and developmental adaptation. Moreover, we review newly accumulating evidence indicating a crucial role of a transpiration-dependent salinity tolerance pathway, that is centred around the function of the NADPH oxidase RBOHF and its role in endodermal and Casparian strip differentiation. Together, these data suggest a unifying and coordinating role for Ca2+ signalling in combating salinity stress at the cellular and organismal level.
Collapse
Affiliation(s)
- P Köster
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - L Wallrad
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - K H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - M Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - A A Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - J Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| |
Collapse
|
30
|
Hinojosa L, González JA, Barrios-Masias FH, Fuentes F, Murphy KM. Quinoa Abiotic Stress Responses: A Review. PLANTS (BASEL, SWITZERLAND) 2018; 7:E106. [PMID: 30501077 PMCID: PMC6313892 DOI: 10.3390/plants7040106] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
Abstract
Quinoa (Chenopodium quinoa Willd.) is a genetically diverse Andean crop that has earned special attention worldwide due to its nutritional and health benefits and its ability to adapt to contrasting environments, including nutrient-poor and saline soils and drought stressed marginal agroecosystems. Drought and salinity are the abiotic stresses most studied in quinoa; however, studies of other important stress factors, such as heat, cold, heavy metals, and UV-B light irradiance, are severely limited. In the last few decades, the incidence of abiotic stress has been accentuated by the increase in unpredictable weather patterns. Furthermore, stresses habitually occur as combinations of two or more. The goals of this review are to: (1) provide an in-depth description of the existing knowledge of quinoa's tolerance to different abiotic stressors; (2) summarize quinoa's physiological responses to these stressors; and (3) describe novel advances in molecular tools that can aid our understanding of the mechanisms underlying quinoa's abiotic stress tolerance.
Collapse
Affiliation(s)
- Leonardo Hinojosa
- Sustainable Seed Systems Lab, Department of Crop and Soil Sciences, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA 99164-6420, USA.
- Facultad de Recursos Naturales, Escuela de Agrnomía, Escuela Superior Politecnica del Chimborazo, Riobamba 060106, Ecuador.
| | - Juan A González
- Fundación Miguel Lillo, Instituto de Ecología, Miguel Lillo, San Miguel de Tucumán Post 4000, Argentina.
| | - Felipe H Barrios-Masias
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada-Reno, Reno, NV 89557, USA.
| | - Francisco Fuentes
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Vicuña Mackenna, Macul, Santiago 4860, Chile.
| | - Kevin M Murphy
- Sustainable Seed Systems Lab, Department of Crop and Soil Sciences, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA 99164-6420, USA.
| |
Collapse
|
31
|
Sun X, Lin L, Sui N. Regulation mechanism of microRNA in plant response to abiotic stress and breeding. Mol Biol Rep 2018; 46:1447-1457. [PMID: 30465132 DOI: 10.1007/s11033-018-4511-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/19/2018] [Indexed: 01/08/2023]
Abstract
microRNAs (miRNAs) in plants are a class of small RNAs consisting of approximately 21-24 nucleotides. The mature miRNA binds to the target mRNA through the formation of a miRNA-induced silencing complex (MIRISC), and cleaves or inhibits translation, thereby achieving negative regulation of the target gene. Based on miRNA plays an important role in regulating plant gene expression, studies on the prediction, identification, function and evolution of plant miRNAs have been carried out. In addition, many researches prove that miRNAs are also involved in many kinds of abiotic and biotic stress, under abiotic stress, plants can express some miRNA, and act on stress-related target genes, which can make plants adapt to stress in physiological response. In this review, the synthetic pathway and mechanism of plant miRNA are briefly described, and we discuss the biological functions and regulatory mechanisms of miRNAs responding to abiotic stresses including low temperature, salt, drought stress and breeding to lay the foundation for further exploring the mechanism of action of miRNAs in stress resistance of plant. And analyze its utilization prospects in plant stress resistance research.
Collapse
Affiliation(s)
- Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Lin Lin
- Water Research Institute of Shandong Province, Jinan, People's Republic of China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China.
| |
Collapse
|
32
|
Xia C, Li N, Zhang Y, Li C, Zhang X, Nan Z. Role of Epichloë Endophytes in Defense Responses of Cool-Season Grasses to Pathogens: A Review. PLANT DISEASE 2018; 102:2061-2073. [PMID: 30270751 DOI: 10.1094/pdis-05-18-0762-fe] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Various cool-season grasses are infected by Epichloë endophyte, and this symbiotic relationship is always of benefit to the host grass due to an increased resistance to abiotic and biotic stresses. Fungal diseases adversely affect the yield, quality, and economic benefits of rangelands, which affects the production of animal husbandry. Therefore, it is imperative to breed resistant cultivars and to better understand the role of fungal endophytes in order to protect grasses against pathogens. The present review introduces research regarding how these endophytes affect the growth of pathogens in vitro and how they change the resistance of host plants to plant diseases. From the perspective of physical defense, changes in physiological indexes, and secretion of chemical compounds, we summarize the potential mechanisms by which endophytes are able to enhance the disease resistance of a host grass. Through these, we aim to establish a solid theoretical foundation for plant disease control and disease resistance breeding by application of fungal endophytes. A broader understanding of fungal endophyte effects on hosts could create a new opportunity for managing or introducing fungal symbioses in both agronomic or non-agronomic ecosystems.
Collapse
Affiliation(s)
- Chao Xia
- State Key Laboratory of Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture; and College of Pastoral Agricultural Science and Technology, Lanzhou University, P. O. Box 61, Lanzhou 730020, P. R. China
| | - Nana Li
- State Key Laboratory of Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture; and College of Pastoral Agricultural Science and Technology, Lanzhou University, P. O. Box 61, Lanzhou 730020, P. R. China
| | - Yawen Zhang
- State Key Laboratory of Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture; and College of Pastoral Agricultural Science and Technology, Lanzhou University, P. O. Box 61, Lanzhou 730020, P. R. China
| | - Chunjie Li
- State Key Laboratory of Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture; and College of Pastoral Agricultural Science and Technology, Lanzhou University, P. O. Box 61, Lanzhou 730020, P. R. China
| | - Xingxu Zhang
- State Key Laboratory of Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture; and College of Pastoral Agricultural Science and Technology, Lanzhou University, P. O. Box 61, Lanzhou 730020, P. R. China
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture; and College of Pastoral Agricultural Science and Technology, Lanzhou University, P. O. Box 61, Lanzhou 730020, P. R. China
| |
Collapse
|
33
|
Li M, Zhang K, Sun Y, Cui H, Cao S, Yan L, Xu M. Growth, physiology, and transcriptional analysis of Two contrasting Carex rigescens genotypes under Salt stress reveals salt-tolerance mechanisms. JOURNAL OF PLANT PHYSIOLOGY 2018; 229:77-88. [PMID: 30048907 DOI: 10.1016/j.jplph.2018.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
Salt stress is a major abiotic stress threatening plant growth and development throughout the world. In this study, we investigated the salt stress adaptation mechanism of Carex rigescens (Franch.) V. Krecz, a stress-tolerant turfgrass species with a wide distribution in northern China. Specifically, we analyzed the growth, physiology, and transcript expression patterns of two C. rigescens genotypes (Huanghua and Lvping No.1) exposed to salt stress. Results show that Huanghua demonstrated better growth performance, and higher turf quality (TQ), photochemical efficiency (Fv/Fm), relative water content (RWC), proline content, and lower relative electrolyte leakage (REL) during seven days of salt treatment compared to Lvping No.1, suggesting that Huanghua is more salt tolerant. Significant differences in reactive oxygen species (ROS), Malondialdehyde (MDA), melatonin, non-enzymatic antioxidants, lignin, and flavonoid content, as well as in antioxidant activity between Huanghua and Lvping No.1 after salt stress indicate the diverse regulation involved in salt stress adaptation in C. rigescens. These results, combined with those of the transcript expression pattern of involved genes, suggest that Huanghua is more active and efficient in ROS scavenging, Ca2+ binding, and its phytohormone response than Lvping No.1. Meanwhile, Lvping No.1 showed relatively higher phenylpropanoid synthesis, using flavonoid and lignin as supplements for the inadequate ROS-scavenging capacity and the development of vascular tissues, respectively. These performances illustrate the differences between the two genotypes in multifaceted and sophisticated actions contributing to the tolerance mechanism of salt stress in C. rigescens. In addition, the significantly higher content of melatonin and the rapid induction of Caffeic acid O-methyltransferase (COMT) highlight the role of melatonin in the salt stress response in Huanghua. The results of our study expand existing knowledge of the complexity of the salt stress response involving the antioxidant system, Ca2+ signaling, phytohormone response signaling, and phenylpropanoid pathways. It also provides a basis for further study of the underlying mechanism of salt tolerance in C. rigescens and other plant species.
Collapse
Affiliation(s)
- Mingna Li
- Grassland Science Department, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Kun Zhang
- Grassland Science Department, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yan Sun
- Grassland Science Department, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Huiting Cui
- Grassland Science Department, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Shihao Cao
- Grassland Science Department, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Li Yan
- Grassland Science Department, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Mengxin Xu
- Grassland Science Department, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
34
|
Belghith I, Senkler J, Hildebrandt T, Abdelly C, Braun HP, Debez A. Comparative analysis of salt-induced changes in the root proteome of two accessions of the halophyte Cakile maritima. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:20-29. [PMID: 29957572 DOI: 10.1016/j.plaphy.2018.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
NaCl stress is a major abiotic stress factor limiting the productivity and the geographical distribution of many plant species. Although halophytes are able to withstand and even to require salt in the rhizosphere, roots are the most sensitive organs to salinity. Here, we investigate the variability of salt tolerance in two Tunisian accessions of the halophyte Cakile maritima (Raoued and Djerba, harvested from the semi-arid and arid Mediterranean bioclimatic stages, respectively) with a special emphasis on the proteomic changes in roots. Seedlings were hydroponically grown for one month under salt-free conditions and subsequently at three salinities (0, 100, and 300 mM NaCl). Physiological parameters (plant growth, water content, Na+, K+ contents) and root protein profiles were analyzed. Plant biomass was higher in Raoued than in Djerba but the latter was impacted to a lesser extent by salinity, notably due to lower sodium accumulation and higher selectivity for K+. 121 and 97 salt-responsive proteins were identified in Djerba and Raoued accessions, respectively. These proteins can be assigned to several different functional categories: protein metabolism, nucleotide metabolism, amino acid metabolism, glutathione metabolism, translation and ribosome biogenesis, carbohydrate and energy metabolism, and reactive oxygen species regulation and detoxification. The comparative proteome analysis revealed that 33 proteins were salt-responsive in both accessions, while 88 and 64 proteins were salt-responsive only in the Djerba or Raoued accessions, respectively. Our results give deeper insights into the plasticity of salt-stress response of C. maritima in its native ecosystems.
Collapse
Affiliation(s)
- Ikram Belghith
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia; Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany; Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Jennifer Senkler
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Tatjana Hildebrandt
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Chedly Abdelly
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia
| | - Hans-Peter Braun
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Ahmed Debez
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia; Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| |
Collapse
|
35
|
Sun X, Wang Y, Sui N. Transcriptional regulation of bHLH during plant response to stress. Biochem Biophys Res Commun 2018; 503:397-401. [PMID: 30057319 DOI: 10.1016/j.bbrc.2018.07.123] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
Basic helix-loop-helix protein (bHLH) is the most extensive class of transcription factors in eukaryotes, which can regulate gene expression through interaction with specific motif in target genes. bHLH transcription factor is not only universally involved in plant growth and metabolism, including photomorphogenesis, light signal transduction and secondary metabolism, but also plays an important role in plant response to stress. In this review, we discuss the role of bHLH in plants in response to stresses such as drought, salt and cold stress. To provide a strong evidence for the important role of bHLH in plant stress response, in order to provide new ideas and targets for the prevention and treatment of plant stress resistance.
Collapse
Affiliation(s)
- Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, PR China
| | - Yu Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, PR China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, PR China.
| |
Collapse
|
36
|
Regulation mechanism of long non-coding RNA in plant response to stress. Biochem Biophys Res Commun 2018; 503:402-407. [PMID: 30055799 DOI: 10.1016/j.bbrc.2018.07.072] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022]
Abstract
Long non-coding RNA (lncRNA) is a non-coding RNA greater than 200 nucleotides in length. LncRNAs can regulate gene expression at transcription and post-transcription, epigenetic level, and plays an important role in a wide range of biological processes such as genomic imprinting, chromatin remodeling, transcriptional activation, transcriptional interference and cell cycle. It becomes the current hot topics in the study of molecular biology and genetics. Emerging evidence proposed that lncRNAs play important roles in response to both abiotic and biotic stress. In this review, we discuss the role of lncRNAs in drought resistance, salt resistance, disease resistance, and immunity of plants, providing strong evidence for exploring the important role of lncRNAs in plant resistance, in order to explore new ideas and new targets for prevention and control.
Collapse
|
37
|
Witzel K, Matros A, Møller ALB, Ramireddy E, Finnie C, Peukert M, Rutten T, Herzog A, Kunze G, Melzer M, Kaspar-Schoenefeld S, Schmülling T, Svensson B, Mock HP. Plasma membrane proteome analysis identifies a role of barley membrane steroid binding protein in root architecture response to salinity. PLANT, CELL & ENVIRONMENT 2018; 41:1311-1330. [PMID: 29385242 DOI: 10.1111/pce.13154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 05/19/2023]
Abstract
Although the physiological consequences of plant growth under saline conditions have been well described, understanding the core mechanisms conferring plant salt adaptation has only started. We target the root plasma membrane proteomes of two barley varieties, cvs. Steptoe and Morex, with contrasting salinity tolerance. In total, 588 plasma membrane proteins were identified by mass spectrometry, of which 182 were either cultivar or salinity stress responsive. Three candidate proteins with increased abundance in the tolerant cv. Morex were involved either in sterol binding (a GTPase-activating protein for the adenosine diphosphate ribosylation factor [ZIGA2], and a membrane steroid binding protein [MSBP]) or in phospholipid synthesis (phosphoethanolamine methyltransferase [PEAMT]). Overexpression of barley MSBP conferred salinity tolerance to yeast cells, whereas the knock-out of the heterologous AtMSBP1 increased salt sensitivity in Arabidopsis. Atmsbp1 plants showed a reduced number of lateral roots under salinity, and root-tip-specific expression of barley MSBP in Atmsbp1 complemented this phenotype. In barley, an increased abundance of MSBP correlates with reduced root length and lateral root formation as well as increased levels of auxin under salinity being stronger in the tolerant cv. Morex. Hence, we concluded the involvement of MSBP in phytohormone-directed adaptation of root architecture in response to salinity.
Collapse
Affiliation(s)
- Katja Witzel
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Stadt Seeland, Gatersleben, Germany
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Andrea Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Stadt Seeland, Gatersleben, Germany
| | - Anders L B Møller
- Technical University of Denmark, Søltofts Plads, Building 224, 2800, Kongens Lyngby, Denmark
| | - Eswarayya Ramireddy
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Free University of Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Christine Finnie
- Technical University of Denmark, Søltofts Plads, Building 224, 2800, Kongens Lyngby, Denmark
| | - Manuela Peukert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Stadt Seeland, Gatersleben, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Stadt Seeland, Gatersleben, Germany
| | - Andreas Herzog
- Biosystems Engineering, Fraunhofer Institute for Factory Operation and Automation, Joseph-von-Fraunhofer-Straße 1, 39106, Magdeburg, Germany
| | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Stadt Seeland, Gatersleben, Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Stadt Seeland, Gatersleben, Germany
| | - Stephanie Kaspar-Schoenefeld
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Stadt Seeland, Gatersleben, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Free University of Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Birte Svensson
- Technical University of Denmark, Søltofts Plads, Building 224, 2800, Kongens Lyngby, Denmark
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Stadt Seeland, Gatersleben, Germany
| |
Collapse
|
38
|
Manishankar P, Wang N, Köster P, Alatar AA, Kudla J. Calcium Signaling during Salt Stress and in the Regulation of Ion Homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5003005. [PMID: 29800460 DOI: 10.1093/jxb/ery201] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Indexed: 05/20/2023]
Abstract
Soil composition largely defines the living conditions of plants and represents one of their most relevant, dynamic and complex environmental cues. The effective concentrations of many either tolerated or essential ions and compounds in the soil usually differ from the optimum that would be most suitable for plants. In this regard, salinity - caused by excess of NaCl - represents a widespread adverse growth condition but also shortage of ions like K+, NO3- and Fe2+ restrains plant growth. During the past years many components and mechanisms that function in the sensing and establishment of ion homeostasis have been identified and characterized. Here, we reflect on recent insights that extended our understanding of components and mechanisms, which govern and fine-tune plant salt stress tolerance and ion homeostasis. We put special emphasis on mechanisms that allow for interconnection of the salt overly sensitivity pathway with plant development and discuss newly emerging functions of Ca2+ signaling in salinity tolerance. Moreover, we review and discuss accumulating evidence for a central and unifying role of Ca2+ signaling and Ca2+ dependent protein phosphorylation in regulating sensing, uptake, transport and storage processes of various ions. Finally, based on this cross-field inventory, we deduce emerging concepts and arising questions for future research.
Collapse
Affiliation(s)
- P Manishankar
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - N Wang
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - P Köster
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - A A Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - J Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
39
|
Abstract
A gene regulatory network (GRN) describes the hierarchical relationship between transcription factors, associated proteins, and their target genes. Studying GRNs allows us to understand how a plant's genotype and environment are integrated to regulate downstream physiological responses. Current efforts in plants have focused on defining the GRNs that regulate functions such as development and stress response and have been performed primarily in genetically tractable model plant species such as Arabidopsis thaliana. Future studies will likely focus on how GRNs function in non-model plants and change over evolutionary time to allow for adaptation to extreme environments. This broader understanding will inform efforts to engineer GRNs to create tailored crop traits.
Collapse
Affiliation(s)
- Ying Sun
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA
| | - José R Dinneny
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA. .,Department of Plant Biology, Carnegie Institution for Science, 260 Panama St, Stanford, CA, 94305, USA.
| |
Collapse
|
40
|
Paul A, Dasgupta P, Roy D, Chaudhuri S. Comparative analysis of Histone modifications and DNA methylation at OsBZ8 locus under salinity stress in IR64 and Nonabokra rice varieties. PLANT MOLECULAR BIOLOGY 2017; 95:63-88. [PMID: 28741224 DOI: 10.1007/s11103-017-0636-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Rice being an important cereal crop is highly sensitive to salinity stress causing growth retardation and loss in productivity. However, certain rice genotypes like Nonabokra and Pokkali show a high level of tolerance towards salinity stress compared to IR64 variety. This differential response of tolerant varieties towards salinity stress may be a cumulative effect of genetic and epigenetic factors. In this study, we have compared the salinity-induced changes in chromatin modifications at the OsBZ8 locus in salt-tolerant Nonabokra and salt-sensitive IR64 rice varieties. Expression analysis indicates that the OsBZ8 gene is highly induced in Nonabokra plants even in the absence of salt stress, whereas in IR64, the expression significantly increases only during salt stress. Sequence analysis and nucleosomal arrangement within the region -2000 to +1000 of OsBZ8 gene show no difference between the two rice varieties. However, there was a considerable difference in histone modifications and DNA methylation at the locus between these varieties. In Nonabokra, the upstream region was hyperacetylated at H3K9 and H3K27, and this acetylation did not change during salt stress. However, in IR64, histone acetylation was observed only during salt stress. Moreover, the upstream region of OsBZ8 gene has highly dynamic nucleosome arrangement in Nonabokra, compared to IR64. Furthermore, loss of DNA methylation was observed at OsBZ8 locus in Nonabokra control plants along with low H3K27me3 and high H3K4me3. Control IR64 plants show high DNA methylation and enriched H3K27me3. Collectively these results indicate a significant difference in chromatin modifications between the rice varieties that regulates differential expression of OsBZ8 gene during salt stress.
Collapse
Affiliation(s)
- Amit Paul
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India
| | - Pratiti Dasgupta
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India
| | - Dipan Roy
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India
| | - Shubho Chaudhuri
- Division of Plant Biology, Bose Institute, P 1/12 C.I.T. Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
41
|
Quan R, Wang J, Yang D, Zhang H, Zhang Z, Huang R. EIN3 and SOS2 synergistically modulate plant salt tolerance. Sci Rep 2017; 7:44637. [PMID: 28300216 PMCID: PMC5353744 DOI: 10.1038/srep44637] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/13/2017] [Indexed: 12/27/2022] Open
Abstract
Ethylene biosynthesis and the ethylene signaling pathway regulate plant salt tolerance by activating the expression of downstream target genes such as those related to ROS and Na+/K+ homeostasis. The Salt Overly Sensitive (SOS) pathway regulates Na+/K+ homeostasis in Arabidopsis under salt stress. However, the connection between these two pathways is unclear. Through genetic screening, we identified two sos2 alleles as salt sensitive mutants in the ein3-1 background. Neither Ethylene-Insensitive 2 (EIN2) nor EIN3 changed the expression patterns of SOS genes including SOS1, SOS2, SOS3 and SOS3-like Calcium Binding Protein 8 (SCaBP8), but SOS2 activated the expression of one target gene of EIN3, Ethylene and Salt-inducible ERF 1 (ESE1). Moreover, Ser/Thr protein kinase SOS2 phosphorylated EIN3 in vitro mainly at the S325 site and weakly at the S35, T42 and S606 sites. EIN3 S325A mutation reduced its transcriptional activating activity on ESE1 promoter:GUS in a transient GUS assay, and impaired its ability to rescue ein3-1 salt hypersensitivity. Furthermore, SOS2 activated salt-responsive ESE1 target gene expression under salt stress. Therefore, EIN3-SOS2 might link the ethylene signaling pathway and the SOS pathway in Arabidopsis salt responses.
Collapse
Affiliation(s)
- Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Road, Beijing, 100081, China.,National Key Facility of Crop Gene Resources and Genetic Improvement, 12 Zhongguancun South Road, Beijing, 100081, China
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Road, Beijing, 100081, China.,National Key Facility of Crop Gene Resources and Genetic Improvement, 12 Zhongguancun South Road, Beijing, 100081, China
| | - Dexin Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Road, Beijing, 100081, China.,National Key Facility of Crop Gene Resources and Genetic Improvement, 12 Zhongguancun South Road, Beijing, 100081, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Road, Beijing, 100081, China.,National Key Facility of Crop Gene Resources and Genetic Improvement, 12 Zhongguancun South Road, Beijing, 100081, China
| | - Zhijin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Road, Beijing, 100081, China.,National Key Facility of Crop Gene Resources and Genetic Improvement, 12 Zhongguancun South Road, Beijing, 100081, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Road, Beijing, 100081, China.,National Key Facility of Crop Gene Resources and Genetic Improvement, 12 Zhongguancun South Road, Beijing, 100081, China
| |
Collapse
|
42
|
Song H, Nan Z, Song Q, Xia C, Li X, Yao X, Xu W, Kuang Y, Tian P, Zhang Q. Advances in Research on Epichloë endophytes in Chinese Native Grasses. Front Microbiol 2016; 7:1399. [PMID: 27656171 PMCID: PMC5013147 DOI: 10.3389/fmicb.2016.01399] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 08/24/2016] [Indexed: 11/24/2022] Open
Abstract
Epichloë fungal endophytes are broadly found in cool-season grasses. The symbiosis between these grasses and Epichloë may improve the abiotic and biotic resistance of the grass plant, but some Epichloë species produce alkaloids that are toxic for livestock. Therefore, it is important to understand the characteristics of the grass-Epichloë s symbiosis so that the beneficial aspects can be preserved and the toxic effects to livestock can be avoided. Since the 1990s, Chinese researchers have conducted a series of studies on grass-Epichloë symbiosis. In this review, we describe the current state of Epichloë endophyte research in Chinese native grasses. We found that more than 77 species of native grasses in China are associated with Epichloë endophytes. In addition, we review the effects of various Epichloë species on native grass responses to abiotic and biotic stress, phylogeny, and alkaloid production. We provide an overview of the study of Epichloë species on native grasses in China and directions for future research.
Collapse
Affiliation(s)
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhao Y, Ai X, Wang M, Xiao L, Xia G. A putative pyruvate transporter TaBASS2 positively regulates salinity tolerance in wheat via modulation of ABI4 expression. BMC PLANT BIOLOGY 2016; 16:109. [PMID: 27160076 PMCID: PMC4862123 DOI: 10.1186/s12870-016-0795-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/29/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND High salinity adversely affects crop production. Pyruvic acid is the precursor of abscisic acid (ABA) and other chemicals that are synthesized in chloroplast, some of which are involved in the response to salt. The transportation of pyruvic acid into chloroplast is mediated by pyruvate transporters. However, whether pyruvate transporters are involved in salt response has not been studied so far. Here, we answered this issue by assessing the function of a wheat pyruvate transporter in salt response. RESULTS A pyruvate transporter TaBASS2 was isolated from salt-tolerant wheat cultivar Shanrong 3. The expression of TaBASS2 was induced by NaCl stress as well as H2O2 and ABA treatments. Constitutive expression of TaBASS2 in Arabidopsis bass2-1 mutant complemented the mevastatin-sensitive phenotype that reflects the deficiency of transporting pyruvic acid into chloroplast. Overexpression of TaBASS2 enhanced salinity tolerance and reactive oxygen species scavenging in wheat. Arabidopsis constitutively expressing TaBASS2 also exhibited enhanced tolerance to salinity and oxidative stress. In Arabidopsis, TaBASS2 repressed the expression of ABA INSENSITIVE 4 (ABI4), a node linking ABA signaling and plastid retrograde signaling pathways. However, the enhanced salinity tolerance of TaBASS2 overexpression Arabidopsis was abolished when ABI4 expression was restored to the level of wild-type through overexpressing ABI4. CONCLUSIONS Our work demonstrates that TaBASS2 enhances salinity tolerance of plants via modulating ABI4 expression. This indicates that pyruvate transporters indeed participate in the interaction of plants with environmental stimuli.
Collapse
Affiliation(s)
- Yang Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shanda South Road, Jinan, Shandong, 250100, China
| | - Xinghui Ai
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shanda South Road, Jinan, Shandong, 250100, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shanda South Road, Jinan, Shandong, 250100, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shanda South Road, Jinan, Shandong, 250100, China.
| |
Collapse
|
44
|
Cui P, Liu H, Islam F, Li L, Farooq MA, Ruan S, Zhou W. OsPEX11, a Peroxisomal Biogenesis Factor 11, Contributes to Salt Stress Tolerance in Oryza sativa. FRONTIERS IN PLANT SCIENCE 2016; 7:1357. [PMID: 27695459 PMCID: PMC5024708 DOI: 10.3389/fpls.2016.01357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/25/2016] [Indexed: 05/19/2023]
Abstract
Peroxisomes are single membrane-bound organelles, whose basic enzymatic constituents are catalase and H2O2-producing flavin oxidases. Previous reports showed that peroxisome is involved in numerous processes including primary and secondary metabolism, plant development and abiotic stress responses. However, knowledge on the function of different peroxisome genes from rice and its regulatory roles in salt and other abiotic stresses is limited. Here, a novel prey protein, OsPEX11 (Os03g0302000), was screened and identified by yeast two-hybrid and GST pull-down assays. Phenotypic analysis of OsPEX11 overexpression seedlings demonstrated that they had better tolerance to salt stress than wild type (WT) and OsPEX11-RNAi seedlings. Compared with WT and OsPEX11-RNAi seedlings, overexpression of OsPEX11 had lower level of lipid peroxidation, Na+/K+ ratio, higher activities of antioxidant enzymes (SOD, POD, and CAT) and proline accumulation. Furthermore, qPCR data suggested that OsPEX11 acted as a positive regulator of salt tolerance by reinforcing the expression of several well-known rice transporters (OsHKT2;1, OsHKT1;5, OsLti6a, OsLti6b, OsSOS1, OsNHX1, and OsAKT1) involved in Na+/K+ homeostasis in transgenic plants under salinity. Ultrastructural observations of OsPEX11-RNAi seedlings showed that they were less sensitive to salt stress than WT and overexpression lines. These results provide experimental evidence that OsPEX11 is an important gene implicated in Na+ and K+ regulation, and plays a critical role in salt stress tolerance by modulating the expression of cation transporters and antioxidant defense. Thus, OsPEX11 could be considered in transgenic breeding for improvement of salt stress tolerance in rice crop.
Collapse
Affiliation(s)
- Peng Cui
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang UniversityHangzhou, China
| | - Hongbo Liu
- College of Agriculture and Food Science, Zhejiang A & F UniversityLin’an, China
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang UniversityHangzhou, China
| | - Lan Li
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang UniversityHangzhou, China
| | - Muhammad A. Farooq
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang UniversityHangzhou, China
| | - Songlin Ruan
- Laboratory of Plant Molecular Biology and Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural SciencesHangzhou, China
- *Correspondence: Weijun Zhou, Songlin Ruan,
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang UniversityHangzhou, China
- *Correspondence: Weijun Zhou, Songlin Ruan,
| |
Collapse
|
45
|
Sun Y, Xu W, Jia Y, Wang M, Xia G. The wheat TaGBF1 gene is involved in the blue-light response and salt tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1219-30. [PMID: 26588879 DOI: 10.1111/tpj.13082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 05/14/2023]
Abstract
Light and abiotic stress both strongly modulate plant growth and development. However, the effect of light-responsive factors on growth and abiotic stress responses in wheat (Triticum aestivum) is unknown. G-box binding factors (GBFs) are blue light-specific components, but their function in abiotic stress responses has not been studied. Here we identified a wheat GBF1 gene that mediated both the blue light- and abiotic stress-responsive signaling pathways. TaGBF1 was inducible by blue light, salt and exposure to abscisic acid (ABA). TaGBF1 interacted with a G-box light-responsive element in vitro and promoted a blue-light response in wheat and Aradidopsis thaliana. Both TaGBF1 over-expression in wheat and its heterologous expression in A. thaliana heighten sensitivity to salinity and ABA, but its knockdown in wheat conferred resistance to high salinity and ABA. The expression of AtABI5, a key component of the ABA signaling pathway in A. thaliana, and its homolog Wabi5 in wheat was increased by transgenic expression of TaGBF1. The hypersensitivity to salt and ABA caused by TaGBF1 was not observed in the abi5 mutant background, showing that ABI5 is the mediator in TaGBF1-induced abiotic stress responses. However, the hypersensitivity to salt conferred by TaGBF1 is not dependent on light. This suggests that TaGBF1 is a common component of blue light- and abiotic stress-responsive signaling pathways.
Collapse
Affiliation(s)
- Yang Sun
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong, 250100, China
| | - Wei Xu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong, 250100, China
| | - Yuebin Jia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong, 250100, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong, 250100, China
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, Shandong, 250100, China
| |
Collapse
|
46
|
Wuyts N, Dhondt S, Inzé D. Measurement of plant growth in view of an integrative analysis of regulatory networks. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:90-97. [PMID: 26002069 DOI: 10.1016/j.pbi.2015.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/17/2015] [Accepted: 05/01/2015] [Indexed: 05/29/2023]
Abstract
As the regulatory networks of growth at the cellular level are elucidated at a fast pace, their complexity is not reduced; on the contrary, the tissue, organ and even whole-plant level affect cell proliferation and expansion by means of development-induced and environment-induced signaling events in growth regulatory processes. Measurement of growth across different levels aids in gaining a mechanistic understanding of growth, and in defining the spatial and temporal resolution of sampling strategies for molecular analyses in the model Arabidopsis thaliana and increasingly also in crop species. The latter claim their place at the forefront of plant research, since global issues and future needs drive the translation from laboratory model-acquired knowledge of growth processes to improvements in crop productivity in field conditions.
Collapse
Affiliation(s)
- Nathalie Wuyts
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Stijn Dhondt
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium.
| |
Collapse
|