1
|
Phillips RD, van Kints S, Ong B, Weinstein AM, Peakall R, Flematti GR, Bohman B. Pollination by sexual deception via pro-pheromone mimicry? THE NEW PHYTOLOGIST 2025; 246:2416-2424. [PMID: 40211617 PMCID: PMC12095990 DOI: 10.1111/nph.70131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/17/2025] [Indexed: 05/23/2025]
Affiliation(s)
- Ryan D. Phillips
- Department of Ecological, Plant and Animal SciencesLa Trobe UniversityMelbourneVic3086Australia
- Research School of BiologyAustralian National UniversityCanberraACT2600Australia
- Royal Botanic Gardens VictoriaCranbourneVic3977Australia
| | - Seeger van Kints
- School of Molecular SciencesUniversity of Western AustraliaPerth6009WAAustralia
- Tasmanian Institute of AgricultureUniversity of TasmaniaHobart7005TasAustralia
| | - Ben Ong
- School of Molecular SciencesUniversity of Western AustraliaPerth6009WAAustralia
| | - Alyssa M. Weinstein
- Research School of BiologyAustralian National UniversityCanberraACT2600Australia
- School of Molecular SciencesUniversity of Western AustraliaPerth6009WAAustralia
| | - Rod Peakall
- Research School of BiologyAustralian National UniversityCanberraACT2600Australia
- School of Molecular SciencesUniversity of Western AustraliaPerth6009WAAustralia
| | - Gavin R. Flematti
- School of Molecular SciencesUniversity of Western AustraliaPerth6009WAAustralia
| | - Björn Bohman
- Research School of BiologyAustralian National UniversityCanberraACT2600Australia
- School of Molecular SciencesUniversity of Western AustraliaPerth6009WAAustralia
- Department of Plant Protection BiologySwedish University of Agriculture23422LommaSweden
| |
Collapse
|
2
|
Zhou F, Zhao YN, Perkins J, Xu H, Pichersky E, Peakall R, Wong DCJ. Fine-tuned terpene synthase gene expression, functional promiscuity, and subcellular localization: implications for the evolution of complex floral volatile bouquet in Caladenia orchids. PLANT & CELL PHYSIOLOGY 2025; 66:627-644. [PMID: 40056156 PMCID: PMC12085088 DOI: 10.1093/pcp/pcaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/10/2025]
Abstract
Chemically mediated floral volatile signals are crucial for pollinator attraction across angiosperms. However, beyond model plant systems, the molecular mechanisms underpinning their tissue-specific biosynthesis, regulation, and emission are still poorly understood. In this study of a food-deceptive insect-pollinated orchid (Caladenia denticulata), we elucidated the molecular basis of α-pinene biosynthesis-the major floral volatile emitted by this species and diverse lower abundance monoterpenes and sesquiterpenes. To achieve this, we combined comparative transcriptomics between active glandular trichome-rich sepal tips and labellum and non-active remaining flower tissues, floral volatile headspace profiling, phylogenetic analysis of a multigene family, and protein functional assays. We found (i) multiple branch points of the terpene synthase (TPS) biosynthetic pathway were highly expressed and coordinately upregulated in the active floral tissues compared to non-active ones, (ii) the monoterpene synthase CdTPS-b3 underpinning α-pinene biosynthesis and a bona fide promiscuous TPS CdTPS-b4 that may contribute to the diverse array of low-abundance mono- and sesquiterpenes found in its flowers, and (iii) dual localization (plastid and cytosol) of CdTPS-b3 and CdTPS-b4. Our findings highlight metabolic pathway specialization at multiple TPS pathway branch points supporting the biosynthesis and emission of α-pinene in C. denticulata flowers that are implicated in its generalist pollinator attraction. Furthermore, the complexity of diverse floral terpenes in Caladenia is likely mediated by finely tuned TPS gene expression, functional promiscuity, and subcellular localization. We predict that the combination of these three mechanisms underpin the evolution of multiple deceptive pollination strategies in Caladenia.
Collapse
Affiliation(s)
- Fei Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Ya-Nan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - James Perkins
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Haiyang Xu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Eran Pichersky
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
- School of Agriculture, Food, and Wine, Waite Research Precinct, University of Adelaide, Adelaide, SA 5064, Australia
| |
Collapse
|
3
|
Jermakowicz E, Stocki M, Szefer P, Burzyńska J, Brzosko E. Complex Floral Scent Profile of Neottia ovata (Orchidaceae): General Attractants and Beyond. PLANTS (BASEL, SWITZERLAND) 2025; 14:942. [PMID: 40265839 PMCID: PMC11946450 DOI: 10.3390/plants14060942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Understanding the complexity of flower scent-a crucial attractant for pollinators and a key factor in ensuring plant reproduction-is an essential ecological task for highly endangered orchids. To address this issue, we studied the flower volatiles profile of Neottia ovata, a nectar-rewarding orchid known for its generalist pollination strategy. We then compared the chemical composition of N. ovata floral scent with scent data of other orchid species to place our findings in the context of general volatile attractants emitted by nectar-rewarding or food-deceptive species. Our results contribute to understanding the complexity of the N. ovata floral scent profile and provide valuable methodological insights. The scented bouquet of N. ovata comprises 100 compounds with a relatively consistent composition across the analyzed samples. It is rich in terpenes, including linalool and trans-/cis-sabinene hydrate, compounds commonly associated with generalized rewarding or food-deceptive pollination systems. Other terpenes identified include α- and β-pinene, limonene, and β-phellandrene, whose presence underscores the generalized nature of the floral scent. Interestingly, in the studied N. ovata populations, the dominance among terpenes is shifting markedly towards γ-terpinene, α-terpinene, and terpinene-4-ol, commonly found in essential oils and the floral scents of some supergeneralist-pollination plants. Aromatic compounds were less represented in the N. ovata scent profile and those of other orchids studied, though benzyl alcohol and benzaldehyde were noticeably more abundant. Aliphatic compounds composed the least prevalent fraction, showing a marked decreasing trend among nectar-rewarding species with generalized or specialized pollination systems. It is worth emphasizing that the applied methodology revealed an extensive group of low-frequency compounds in the N. ovata floral scent. This finding raises new ecological questions about the intraspecific diversity of floral scent profiles and sheds new light on the factors determining effective reproduction in this species of orchid.
Collapse
Affiliation(s)
- Edyta Jermakowicz
- Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, 15-245 Białystok, Poland; (J.B.); (E.B.)
| | - Marcin Stocki
- Faculty of Civil Engineering and Environmental Sciences, Institute of Forest Sciences, Białystok University of Technology, 15-351 Białystok, Poland;
| | - Piotr Szefer
- Faculty of Science, University of South Bohemia, České Budějovice, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic;
- Biology Centre, Institute of Entomology, Czech Academy of Science, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Justyna Burzyńska
- Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, 15-245 Białystok, Poland; (J.B.); (E.B.)
| | - Emilia Brzosko
- Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, 15-245 Białystok, Poland; (J.B.); (E.B.)
| |
Collapse
|
4
|
Carlomagno F, Lanzino M, Mendicino F, Bonacci T, Pellegrino G. Pollinator diversity of the food-deceptive orchids in southern Italy. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:1144-1153. [PMID: 39417402 DOI: 10.1111/plb.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
The orchid family is renowned for its enormous diversity in pollination biology. Many orchid species use deception to attract pollinators, and the main strategy in terrestrial orchids is food deception. Food-deceptive orchids usually show a low number of pollinator visitations, making field observations of pollinators difficult. In this study visual census, pollinator capture and molecular analysis of pollinaria found on caught insects allowed us to obtain information on species composition of orchid pollinators. A total of 321 insects were caught; most specimens were hymenopterans (Apis mellifera, Bombus ruderatus and Eucera rufa) and coleopterans (Tropinota hirta and T. squalida). The identity of species to which pollinaria found on the insect's body belonged was confirmed by molecular analysis. Moreover, some individuals of Billaea lata (Tachinidae, Diptera) were captured and photographed with the pollinaria on their head. Two new and important results emerged clearly in this work: a dipteran, Billaea lata, pollinator of Anacamptis pyramidalis, and two beetles in the genus Tropinota are pollinators of Orchis italica. Our results confirm that generalized food-deceptive orchids of the genera Orchis and Anacamptis show weak pollinator specificity.
Collapse
Affiliation(s)
- F Carlomagno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - M Lanzino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - F Mendicino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - T Bonacci
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - G Pellegrino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
5
|
Nakazawa T, Matsumoto TK, Katsuhara KR. When is lethal deceptive pollination maintained? A population dynamics approach. ANNALS OF BOTANY 2024; 134:665-682. [PMID: 39091208 PMCID: PMC11523630 DOI: 10.1093/aob/mcae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND AND AIMS Not all plant-pollinator interactions are mutualistic, and in fact deceptive pollination systems are widespread in nature. The genus Arisaema has a pollination system known as lethal deceptive pollination, in which plants not only attract pollinating insects without providing any rewards, but also trap them until they die. Many Arisaema species are endangered from various disturbances, including reduction in forest habitat, modification of the forest understorey owing to increasing deer abundance, and plant theft for horticultural cultivation. We aimed to theoretically investigate how lethal deceptive pollination can be maintained from a demographic perspective and how plant and pollinator populations respond to different types of disturbance. METHODS We developed and analysed a mathematical model to describe the population dynamics of a deceptive plant species and its victim pollinator. Calibrating the model based on empirical data, we assessed the conditions under which plants and pollinators could coexist, while manipulating relevant key parameters. KEY RESULTS The model exhibited qualitatively distinct behaviours depending on certain parameters. The plant becomes extinct when it has a low capability for vegetative reproduction and slow transition from male to female, and plant-insect co-extinction occurs especially when the plant is highly attractive to male insects. Increasing deer abundance has both positive and negative effects because of removal of other competitive plants and diminishing pollinators, respectively. Theft for horticultural cultivation can readily threaten plants whether male or female plants are frequently collected. The impact of forest habitat reduction may be limited compared with that of other disturbance types. CONCLUSIONS Our results have emphasized that the demographic vulnerability of lethal deceptive pollination systems would differ qualitatively from that of general mutualistic pollination systems. It is therefore important to consider the demographics of both victim pollinators and deceptive plants to estimate how endangered Arisaema populations respond to various disturbances.
Collapse
Affiliation(s)
- Takefumi Nakazawa
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Tetsuya K Matsumoto
- Faculty of Environmental, Life, Nature Science and Technology, Okayama University, Okayama 700-8530, Japan
- Graduate School of Science and Engineering, Ibaraki University, Mito 310-8512, Japan
| | - Koki R Katsuhara
- Faculty of Environmental, Life, Nature Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
6
|
Bohman B, Bersch AJ, Flematti GR, Schlüter PM. Practical preparation of unsaturated very-long-chain fatty acids (VLCFAs) and very-long-chain alkene pollinator attractants. Sci Rep 2024; 14:19694. [PMID: 39181972 PMCID: PMC11344852 DOI: 10.1038/s41598-024-70598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
To prepare very-long-chain fatty acids and alkenes (VLCFAs and VLC alkenes) that are known pollinator attractants for sexually deceptive orchids, and biosynthetic precursors thereof, we applied a methodology allowing us to prepare monounsaturated VLCFAs with chain lengths up to 28 carbons and VLC alkenes up to 31 carbons. We implemented a coupling reaction between commercially available terminal alkynes and bromoalkanoic acids to prepare VLCFAs, allowing the products to be formed in two steps. For VLC alkenes, with many alkyltriphenylphosphonium bromides commercially available, we applied a Wittig reaction approach to prepare (Z)-configured monoenes in a single step. Using practical methods not requiring special reagents or equipment, we obtained 11 VLCFAs in > 90% isomeric purity, and 17 VLC alkenes in > 97% isomeric purity. Such general and accessible synthetic methods are essential for chemical ecology and biochemistry research to aid researchers in unambiguously identifying isolated semiochemicals and their precursors.
Collapse
Affiliation(s)
- Björn Bohman
- School of Molecular Sciences, University of Western Australia, Perth, Australia.
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden.
| | - Aylin J Bersch
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Gavin R Flematti
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Philipp M Schlüter
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
7
|
Russo A, Alessandrini M, El Baidouri M, Frei D, Galise TR, Gaidusch L, Oertel HF, Garcia Morales SE, Potente G, Tian Q, Smetanin D, Bertrand JAM, Onstein RE, Panaud O, Frey JE, Cozzolino S, Wicker T, Xu S, Grossniklaus U, Schlüter PM. Genome of the early spider-orchid Ophrys sphegodes provides insights into sexual deception and pollinator adaptation. Nat Commun 2024; 15:6308. [PMID: 39060266 PMCID: PMC11282089 DOI: 10.1038/s41467-024-50622-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Pollinator-driven evolution of floral traits is thought to be a major driver of angiosperm speciation and diversification. Ophrys orchids mimic female insects to lure male pollinators into pseudocopulation. This strategy, called sexual deception, is species-specific, thereby providing strong premating reproductive isolation. Identifying the genomic architecture underlying pollinator adaptation and speciation may shed light on the mechanisms of angiosperm diversification. Here, we report the 5.2 Gb chromosome-scale genome sequence of Ophrys sphegodes. We find evidence for transposable element expansion that preceded the radiation of the O. sphegodes group, and for gene duplication having contributed to the evolution of chemical mimicry. We report a highly differentiated genomic candidate region for pollinator-mediated evolution on chromosome 2. The Ophrys genome will prove useful for investigations into the repeated evolution of sexual deception, pollinator adaptation and the genomic architectures that facilitate evolutionary radiations.
Collapse
Affiliation(s)
- Alessia Russo
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany.
- Department of Plant and Microbial Biology and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland.
- Department of Systematic and Evolutionary Botany and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland.
| | - Mattia Alessandrini
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Moaine El Baidouri
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- EMR269 MANGO, Institut de Recherche pour le Développement, Perpignan, France
| | - Daniel Frei
- Department of Methods Development and Analytics, Agroscope, Wädenswil, Switzerland
| | | | - Lara Gaidusch
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Hannah F Oertel
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Sara E Garcia Morales
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Giacomo Potente
- Department of Systematic and Evolutionary Botany and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland
| | - Qin Tian
- Naturalis Biodiversity Centre, Leiden, The Netherlands
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Dmitry Smetanin
- Department of Plant and Microbial Biology and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland
| | - Joris A M Bertrand
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- EMR269 MANGO, Institut de Recherche pour le Développement, Perpignan, France
| | - Renske E Onstein
- Naturalis Biodiversity Centre, Leiden, The Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle - Jena - Leipzig, Leipzig, Germany
| | - Olivier Panaud
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- EMR269 MANGO, Institut de Recherche pour le Développement, Perpignan, France
| | - Jürg E Frey
- Department of Methods Development and Analytics, Agroscope, Wädenswil, Switzerland
| | | | - Thomas Wicker
- Department of Plant and Microbial Biology and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland
| | - Shuqing Xu
- Institute of Organismic and Molecular Evolution, University of Mainz, Mainz, Germany
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland
| | - Philipp M Schlüter
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany.
- Department of Systematic and Evolutionary Botany and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland.
| |
Collapse
|
8
|
Phillips RD, Bohman B, Peakall R, Reiter N. Sexual attraction with pollination during feeding behaviour: implications for transitions between specialized strategies. ANNALS OF BOTANY 2024; 133:273-286. [PMID: 37963103 PMCID: PMC11005785 DOI: 10.1093/aob/mcad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND AND AIMS Understanding the origin of pollination by sexual deception has proven challenging, as sexually deceptive flowers are often highly modified, making it hard to resolve how any intermediate forms between sexual deception and an ancestral strategy might have functioned. Here, we report the discovery in Caladenia (Orchidaceae) of sexual attraction with pollination during feeding behaviour, which may offer important clues for understanding shifts in pollination strategy. METHODS For Caladenia robinsonii, we observed the behaviour of its male wasp pollinator, Phymatothynnus aff. nitidus (Thynnidae), determined the site of release of the sexual attractant, and experimentally evaluated if the position of the attractant influences rates of attempted copulation and feeding behaviour. We applied GC-MS to test for surface sugar on the labellum. To establish if this pollination strategy is widespread in Caladenia, we conducted similar observations and experiments for four other Caladenia species. KEY RESULTS In C. robinsonii, long-range sexual attraction of the pollinator is via semiochemicals emitted from the glandular sepal tips. Of the wasps landing on the flower, 57 % attempted copulation with the sepal tips, while 27 % attempted to feed from the base of the labellum, the behaviour associated with pollen transfer. A similar proportion of wasps exhibited feeding behaviour when the site of odour release was manipulated. A comparable pollination strategy occurs in another phylogenetically distinct clade of Caladenia. CONCLUSIONS We document a previously overlooked type of sexual deception for orchids involving long-distance sexual attraction, but with pollination occurring during feeding behaviour at the labellum. We show this type of sexual deception operates in other Caladenia species and predict that it is widespread across the genus. Our findings may offer clues about how an intermediate transitional strategy from a food-rewarding or food-deceptive ancestor operated during the evolution of sexual deception.
Collapse
Affiliation(s)
- Ryan D Phillips
- Department of Environment and Genetics and the Research Centre for Future Landscapes, La Trobe University, Melbourne, Victoria 3086, Australia
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
- Royal Botanic Gardens Victoria, Science Division, Corner of Ballarto Road and Botanic Drive, Cranbourne, VIC 3977, Australia
- Kings Park and Botanic Garden, The Botanic Garden and Parks Authority, West Perth, WA 6005, Australia
| | - Björn Bohman
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
- Department of Plant Protection Biology, the Swedish University of Agricultural Sciences, Lomma 23422, Sweden
- School of Molecular Sciences, The University of Western Australia Crawley, WA 6009Australia
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Noushka Reiter
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
- Royal Botanic Gardens Victoria, Science Division, Corner of Ballarto Road and Botanic Drive, Cranbourne, VIC 3977, Australia
| |
Collapse
|
9
|
Quarrell S, Weinstein AM, Hannah L, Bonavia N, del Borrello O, Flematti GR, Bohman B. Critical Pollination Chemistry: Specific Sesquiterpene Floral Volatiles in Carrot Inhibit Honey Bee Feeding. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16079-16089. [PMID: 37871312 PMCID: PMC10623568 DOI: 10.1021/acs.jafc.3c03392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/22/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Many plants rely on insect pollination, yet numerous agricultural plant-breeding programs focus on traits that appeal to growers and consumers instead of pollinators, leading to declining pollinator attraction and crop yields. Using hybrid carrot seed production as a model, we investigated low-yielding carrot varieties by analyzing sugars and minerals in nectar and floral volatile composition. While the analysis of nectar sugars and minerals did not reveal any key differences between the carrot varieties, differences between the 112 detected volatiles in 23 samples were observed. Numerous differentiating sesquiterpenes were identified in floral solvent extracts, and subsequent behavioral assays showed that β-ocimene from higher-yielding carrot varieties stimulated nectar feeding (attractant), while α- and β-selinene from lower-yielding lines decreased feeding (deterrents). Sesquiterpenes have previously been implicated in plant defense, suggesting a trade-off between pollination and protection. Our results highlight the importance of volatiles as regulators of pollinator attraction in agricultural settings.
Collapse
Affiliation(s)
- Stephen
R. Quarrell
- Tasmanian
Institute of Agriculture, University of
Tasmania, College Rd, Hobart 7005, Australia
| | - Alyssa M. Weinstein
- Ecology
and Evolution, Research School of Biology, The Australian National University, Canberra 2601, Australia
| | - Lea Hannah
- Seed
Production Research, Research and Development, Rijk Zwaan Australia, Musk, Victoria 3461, Australia
- Hawkesbury
Institute for the Environment, Western Sydney
University, Richmond, New South Wales 2753, Australia
| | - Nicole Bonavia
- Seed
Production Research, Research and Development, Rijk Zwaan Australia, Musk, Victoria 3461, Australia
| | - Oscar del Borrello
- School
of Molecular Sciences, University of Western
Australia, Crawley, Western Australia 6009, Australia
| | - Gavin R. Flematti
- School
of Molecular Sciences, University of Western
Australia, Crawley, Western Australia 6009, Australia
| | - Björn Bohman
- School
of Molecular Sciences, University of Western
Australia, Crawley, Western Australia 6009, Australia
- Department
of Plant Protection Biology, Swedish University
of Agricultural Sciences, Lomma 234 22, Sweden
| |
Collapse
|
10
|
Peakall R. Pollination by sexual deception. Curr Biol 2023; 33:R489-R496. [PMID: 37279681 DOI: 10.1016/j.cub.2023.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The flower is arguably the centrepiece of angiosperm evolution. Its primary function is to secure pollination - the transfer of pollen from the anther (male) to the stigma (female). As plants are sessile organisms, the extraordinary diversity of flowers in large part reflects countless alternative evolutionary solutions to achieve this critical step in the flowering plant life cycle. The majority of flowering plants, some 87% by one estimate, depend on animals for pollination, with most of these paying for the service of pollination via food rewards of nectar or pollen. As in human economic systems, however, some cheating and deception occurs, with the pollination strategy of sexual deception being one such example.
Collapse
Affiliation(s)
- Rod Peakall
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
11
|
Wong DCJ, Pichersky E, Peakall R. Many different flowers make a bouquet: Lessons from specialized metabolite diversity in plant-pollinator interactions. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102332. [PMID: 36652780 DOI: 10.1016/j.pbi.2022.102332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 06/10/2023]
Abstract
Flowering plants have evolved extraordinarily diverse metabolites that underpin the floral visual and olfactory signals enabling plant-pollinator interactions. In some cases, these metabolites also provide unusual rewards that specific pollinators depend on. While some metabolites are shared by most flowering plants, many have evolved in restricted lineages in response to the specific selection pressures encountered within different niches. The latter are designated as specialized metabolites. Recent investigations continue to uncover a growing repertoire of unusual specialized metabolites. Increased accessibility to cutting-edge multi-omics technologies (e.g. genome, transcriptome, proteome, metabolome) is now opening new doors to simultaneously uncover the molecular basis of their synthesis and their evolution across diverse plant lineages. Drawing upon the recent literature, this perspective discusses these aspects and, where known, their ecological and evolutionary relevance. A primer on omics-guided approaches to discover the genetic and biochemical basis of functional specialized metabolites is also provided.
Collapse
Affiliation(s)
- Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.
| | - Eran Pichersky
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
12
|
LaFountain AM, Yuan YW. Evolution: The art of deceptive pollination. Curr Biol 2023; 33:R301-R303. [PMID: 37098331 PMCID: PMC10601782 DOI: 10.1016/j.cub.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Beetle daisies evolved floral spots that mimic female bee flies to entice mate-seeking males for pollination. A new study shows that these deceptive spots emerged through stepwise co-option of multiple genetic elements, shedding light on the origin of complex phenotypic novelties.
Collapse
Affiliation(s)
- Amy M LaFountain
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA.
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
13
|
Pichersky E. Biochemistry and genetics of floral scent: a historical perspective. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36995899 DOI: 10.1111/tpj.16220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Floral scent plays a crucial role in the reproductive process of many plants. Humans have been fascinated by floral scents throughout history, and have transported and traded floral scent products for which they have found multiple uses, such as in food additives, hygiene and perfume products, and medicines. Yet the scientific study of how plants synthesize floral scent compounds began later than studies on most other major plant metabolites, and the first report of the characterization of an enzyme responsible for the synthesis of a floral scent compound, namely linalool in Clarkia breweri, a California annual, appeared in 1994. In the almost 30 years since, enzymes and genes involved in the synthesis of hundreds of scent compounds from multiple plant species have been described. This review recapitulates this history and describes the major findings relating to the various aspects of floral scent biosynthesis and emission, including genes and enzymes and their evolution, storage and emission of scent volatiles, and the regulation of the biochemical processes.
Collapse
Affiliation(s)
- Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Nakazawa T, Kishi S. Pollinator sex matters in competition and coexistence of co-flowering plants. Sci Rep 2023; 13:4497. [PMID: 36934149 PMCID: PMC10024751 DOI: 10.1038/s41598-023-31671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Male and female pollinators often exhibit sex-specific preferences for visiting different flowers. Recent studies have shown that these preferences play an important role in shaping the network structure of pollination mutualism, but little is known about how they can mediate plant-plant interactions and coexistence of competing plants. The ecological consequences of sex-specific pollination can be complex. Suppose that a plant is favoured by female pollinators. They produce male pollinators, who may prefer visiting other competing plants and intensify the negative effects of inter-plant competition. Here, we analysed a simple two plant-one pollinator model with the sex structure of the pollinator. We observed that (i) sex-specific pollination can have complex consequences for inter-plant competition and coexistence (e.g. the occurrence of non-trivial alternative stable states in which one plant excludes or coexists with the other depending on the initial conditions), (ii) male and female pollinators have distinct ecological consequences because female pollinators have a demographic impact owing to reproduction, and (iii) plants are likely to coexist when male and female pollinators prefer different plants. These results suggest that sex-specific pollination is crucial for competition and coexistence of co-flowering plants. Future, pollination research should more explicitly consider the sex-specific behaviour of pollinating animals.
Collapse
Affiliation(s)
- Takefumi Nakazawa
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan.
| | - Shigeki Kishi
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
15
|
Kellenberger RT, Ponraj U, Delahaie B, Fattorini R, Balk J, Lopez-Gomollon S, Müller KH, Ellis AG, Glover BJ. Multiple gene co-options underlie the rapid evolution of sexually deceptive flowers in Gorteria diffusa. Curr Biol 2023; 33:1502-1512.e8. [PMID: 36963385 DOI: 10.1016/j.cub.2023.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/26/2023]
Abstract
Gene co-option, the redeployment of an existing gene in an unrelated developmental context, is an important mechanism underlying the evolution of morphological novelty. In most cases described to date, novel traits emerged by co-option of a single gene or genetic network. Here, we show that the integration of multiple co-opted genetic elements facilitated the rapid evolution of complex petal spots that mimic female bee-fly pollinators in the sexually deceptive South African daisy Gorteria diffusa. First, co-option of iron homeostasis genes altered petal spot pigmentation, producing a color similar to that of female pollinators. Second, co-option of the root hair gene GdEXPA7 enabled the formation of enlarged papillate petal epidermal cells, eliciting copulation responses from male flies. Third, co-option of the miR156-GdSPL1 transcription factor module altered petal spot placement, resulting in better mimicry of female flies resting on the flower. The three genetic elements were likely co-opted sequentially, and strength of sexual deception in different G. diffusa floral forms strongly correlates with the presence of the three corresponding morphological alterations. Our findings suggest that gene co-options can combine in a modular fashion, enabling rapid evolution of novel complex traits.
Collapse
Affiliation(s)
- Roman T Kellenberger
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| | - Udhaya Ponraj
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Boris Delahaie
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; CIRAD, UMR DIADE, Montpellier 34398, France; UMR DIADE, Université de Montpellier, CIRAD, IRD, Montpellier, France
| | - Róisín Fattorini
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Janneke Balk
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, UK; School of Biological Sciences, University of East Anglia, Norwich NR4 4JT, UK
| | - Sara Lopez-Gomollon
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Karin H Müller
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Allan G Ellis
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| |
Collapse
|
16
|
Silveira RS, Singer RB, Ferro VG. Pollination in Epidendrum densiflorum Hook. (Orchidaceae: Laeliinae): Fraudulent Trap-Flowers, Self-Incompatibility, and a Possible New Type of Mimicry. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030679. [PMID: 36771764 PMCID: PMC9921780 DOI: 10.3390/plants12030679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/13/2023]
Abstract
The pollination and the breeding system of Epidendrum densiflorum (Orchidaceae: Laeliinae) were studied through fieldwork and controlled pollinations in cultivated plants. Pollination is exclusively promoted by males of diurnal Lepidoptera: five species of Arctiinae and four of Ithomiinae were recorded as pollinators. These male insects are known to obtain alkaloids (through the nectar) in flowers of Asteraceae and Boraginaceae. However, the flowers of E. densiflorum are nectarless, despite presenting a cuniculus (a likely nectariferous cavity). Pollinators insert their proboscides into the flowers and remove or deposit the pollinaria while searching for nectar. The floral tube is very narrow, and insects struggle for up to 75 min to get rid of the flowers. Plants are pollinator-dependent and nearly fully self-incompatible. Pollinarium removal, pollination, and fruiting success (2.85%) were very low; facts that are consistent with the patterns globally observed in deceptive (rewardless) orchids. Nilsson's male efficiency factor (0.245) was also low, indicating pollen loss in the system. Based on our field observations, we suggest that the fragrance of E. densiflorum likely mimics these plants that are normally used as a source of alkaloids by male Lepidoptera, a hypothesis that we intend to test in the future.
Collapse
Affiliation(s)
- Rodrigo Santtanna Silveira
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Rodrigo Bustos Singer
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Viviane Gianluppi Ferro
- Departamento de Zoologia, Laboratório de Ecologia de Insetos, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| |
Collapse
|
17
|
Perkins J, Hayashi T, Peakall R, Flematti GR, Bohman B. The volatile chemistry of orchid pollination. Nat Prod Rep 2023; 40:819-839. [PMID: 36691832 DOI: 10.1039/d2np00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Covering: up to September 2022Orchids are renowned not only for their diversity of floral forms, but also for their many and often highly specialised pollination strategies. Volatile semiochemicals play a crucial role in the attraction of a wide variety of insect pollinators of orchids. The compounds produced by orchid flowers are as diverse as the pollinators they attract, and here we summarise some of the chemical diversity found across orchid taxa and pollination strategies. We focus on compounds that have been experimentally demonstrated to underpin pollinator attraction. We also highlight the structural elucidation and synthesis of a select subset of important orchid pollinator attractants, and discuss the ecological significance of the discoveries, the gaps in our current knowledge of orchid pollination chemistry, and some opportunities for future research in this field.
Collapse
Affiliation(s)
- James Perkins
- Research School of Biology, The Australian National University, Australia
| | - Tobias Hayashi
- Research School of Biology, The Australian National University, Australia
| | - Rod Peakall
- Research School of Biology, The Australian National University, Australia.,School of Molecular Sciences, The University of Western Australia, Australia
| | - Gavin R Flematti
- School of Molecular Sciences, The University of Western Australia, Australia
| | - Björn Bohman
- Research School of Biology, The Australian National University, Australia.,School of Molecular Sciences, The University of Western Australia, Australia.,Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sweden.
| |
Collapse
|
18
|
Gui S, Yuval B, Engl T, Lu Y, Cheng D. Protein feeding mediates sex pheromone biosynthesis in an insect. eLife 2023; 12:83469. [PMID: 36656757 PMCID: PMC9908074 DOI: 10.7554/elife.83469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Protein feeding is critical for male reproductive success in many insect species. However, how protein affects the reproduction remains largely unknown. Using Bactrocera dorsalis as the study model, we investigated how protein feeding regulated sex pheromone synthesis. We show that protein ingestion is essential for sex pheromone synthesis in male. While protein feeding or deprivation did not affect Bacillus abundance, transcriptome analysis revealed that sarcosine dehydrogenase (Sardh) in protein-fed males regulates the biosynthesis of sex pheromones by increasing glycine and threonine (sex pheromone precursors) contents. RNAi-mediated loss-of-function of Sardh decreases glycine, threonine, and sex pheromone contents and results in decreased mating ability in males. The study links male feeding behavior with discrete patterns of gene expression that plays role in sex pheromone synthesis, which in turn translates to successful copulatory behavior of the males.
Collapse
Affiliation(s)
- Shiyu Gui
- Department of Entomology, South China Agricultural UniversityGuangzhouChina
| | - Boaz Yuval
- Department of Entomology, Hebrew University of JerusalemRehovotIsrael
| | - Tobias Engl
- Department of Insect Symbiosis, Max Planck Institute for Chemical EcologyJenaGermany
| | - Yongyue Lu
- Department of Entomology, South China Agricultural UniversityGuangzhouChina
| | - Daifeng Cheng
- Department of Entomology, South China Agricultural UniversityGuangzhouChina
| |
Collapse
|
19
|
Weinstein AM, Bohman B, Linde CC, Phillips RD. Conservation assessment of the Drakaea livida (Orchidaceae) ecotypes and an evaluation of methods for their identification. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1004177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Morphologically cryptic taxa must be accounted for when quantifying biodiversity and implementing effective conservation measures. Some orchids pollinated by sexual deception of male insects contain morphologically cryptic ecotypes, such as the warty hammer orchid Drakaea livida (Orchidaceae). This species is comprised of three cryptic pollination ecotypes, which can be distinguished based on differences in pollinator species and floral volatiles. The present study aims were: (a) to investigate the geographic range of the three D. livida ecotypes, enabling assessment of their conservation status; and (b) to test the efficacy of different methods of identifying the D. livida ecotypes. Three methods of ecotype identification were assessed: morphometric analysis, genome size comparison, and analysis of chemical volatile composition of labellum extracts from pollinated flowers. MaxEnt species distribution models revealed that each ecotype has a different predicted geographic range, with small areas of overlap at the range margins. One ecotype is known from just ten populations over a limited geographic area, the majority of which has been cleared for agriculture, and urban development. While there was broad overlap between the ecotypes in individual morphological traits, multivariate analysis of morphological traits provided correct assignment to ecotype in 87% of individuals. Using the labellum of pollinated flowers, screening for volatile chemical compounds associated with particular ecotypes returned an even higher correct assignment rate, of 96.5%. As such, we advocate that the use of volatiles from the labellum of recently pollinated flowers is an effective way to determine the ecotype of unknown individuals of D. livida, with minimal impact on the flowering plant.
Collapse
|
20
|
Zhang D, Zhao XW, Li YY, Ke SJ, Yin WL, Lan S, Liu ZJ. Advances and prospects of orchid research and industrialization. HORTICULTURE RESEARCH 2022; 9:uhac220. [PMID: 36479582 PMCID: PMC9720451 DOI: 10.1093/hr/uhac220] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/22/2022] [Indexed: 06/17/2023]
Abstract
Orchidaceae is one of the largest, most diverse families in angiosperms with significant ecological and economical values. Orchids have long fascinated scientists by their complex life histories, exquisite floral morphology and pollination syndromes that exhibit exclusive specializations, more than any other plants on Earth. These intrinsic factors together with human influences also make it a keystone group in biodiversity conservation. The advent of sequencing technologies and transgenic techniques represents a quantum leap in orchid research, enabling molecular approaches to be employed to resolve the historically interesting puzzles in orchid basic and applied biology. To date, 16 different orchid genomes covering four subfamilies (Apostasioideae, Vanilloideae, Epidendroideae, and Orchidoideae) have been released. These genome projects have given rise to massive data that greatly empowers the studies pertaining to key innovations and evolutionary mechanisms for the breadth of orchid species. The extensive exploration of transcriptomics, comparative genomics, and recent advances in gene engineering have linked important traits of orchids with a multiplicity of gene families and their regulating networks, providing great potential for genetic enhancement and improvement. In this review, we summarize the progress and achievement in fundamental research and industrialized application of orchids with a particular focus on molecular tools, and make future prospects of orchid molecular breeding and post-genomic research, providing a comprehensive assemblage of state of the art knowledge in orchid research and industrialization.
Collapse
Affiliation(s)
- Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xue-Wei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Yuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shi-Jie Ke
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei-Lun Yin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
21
|
Peakall R, Bohman B. Seed dispersal: Hungry hornets are unexpected and effective vectors. Curr Biol 2022; 32:R836-R838. [PMID: 35944483 DOI: 10.1016/j.cub.2022.06.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
A new study finds that, in the forests of tropical China, hungry hornets are lured to the fruits of Aquilaria sinensis by highly volatile compounds structurally similar to volatiles from herbivore-damaged leaves. The hornets disperse the short-lived seeds rapidly to optimal new habitats.
Collapse
Affiliation(s)
- Rod Peakall
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
| | - Björn Bohman
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; Department of Plant Protection Biology, The Swedish University of Agricultural Sciences, Lomma 23422, Sweden
| |
Collapse
|
22
|
Perkins J, Peakall R. Floral economies. Curr Biol 2022; 32:R640-R644. [PMID: 35728545 DOI: 10.1016/j.cub.2022.04.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Biology and economics are surprisingly similar disciplines. At their core, both fields are the study of competitive interactions for scarce resources and the consequences of those interactions over time. Perhaps the first person to notice this similarity was Charles Darwin, who credited his reading of the influential economist Thomas Robert Malthus with catalysing his understanding of natural selection as the driving force of evolution. While it may not have been recognised at the time, this was not the only area of Darwin's thinking to parallel economic concepts.
Collapse
Affiliation(s)
- James Perkins
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia.
| | - Rod Peakall
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
23
|
Wong DCJ, Peakall R. Orchid Phylotranscriptomics: The Prospects of Repurposing Multi-Tissue Transcriptomes for Phylogenetic Analysis and Beyond. FRONTIERS IN PLANT SCIENCE 2022; 13:910362. [PMID: 35712597 PMCID: PMC9196242 DOI: 10.3389/fpls.2022.910362] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 06/10/2023]
Abstract
The Orchidaceae is rivaled only by the Asteraceae as the largest plant family, with the estimated number of species exceeding 25,000 and encompassing more than 700 genera. To gain insights into the mechanisms driving species diversity across both global and local scales, well-supported phylogenies targeting different taxonomic groups and/or geographical regions will be crucial. High-throughput sequencing technologies have revolutionized the field of molecular phylogenetics by simplifying the process of obtaining genome-scale sequence data. Consequently, there has been an explosive growth of such data in public repositories. Here we took advantage of this unprecedented access to transcriptome data from predominantly non-phylogenetic studies to assess if it can be repurposed to gain rapid and accurate phylogenetic insights across the orchids. Exhaustive searches revealed transcriptomic data for more than 100 orchid species spanning 5 subfamilies, 13 tribes, 21 subtribes, and 50 genera that were amendable for exploratory phylotranscriptomic analysis. Next, we performed re-assembly of the transcriptomes before strategic selection of the final samples based on a gene completeness evaluation. Drawing on these data, we report phylogenetic analyses at both deep and shallow evolutionary scales via maximum likelihood and shortcut coalescent species tree methods. In this perspective, we discuss some key outcomes of this study and conclude by highlighting other complementary, albeit rarely explored, insights beyond phylogenetic analysis that repurposed multi-tissue transcriptome can offer.
Collapse
|
24
|
The Floral Signals of the Inconspicuous Orchid Malaxis monophyllos: How to Lure Small Pollinators in an Abundant Environment. BIOLOGY 2022; 11:biology11050640. [PMID: 35625368 PMCID: PMC9137910 DOI: 10.3390/biology11050640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Malaxis monophyllos is an ephemeral orchid with very small, greenish flowers, whose pollination system remains vague. Therefore, the authors aimed to identify the flower’s features, including its anatomical micro and ultrastructure as well as scent biochemistry, which are involved in attracting pollinators. In this paper, the authors established the variety of emissions of M. monophyllos volatile compounds, with a high proportion of aldehydes and aliphatic alcohols, listed as chemicals that induce a pronounced reaction in Diptera. Second, the entire M. monophyllos labellum exhibits metabolic and secretory activity, which can be related to both emission of volatiles and visual attractants but also to the nutritional reward for pollinators. All these flower features indicated that its pollination system is dedicated to dipterans, with few signaling modalities corresponding to deceptive species (brood site and food decoy) but also referring to rewarding ones (nutritional secretion, fungus/microbe reward). This research reveals a few new issues in M. monophyllos pollination biology that provides new scientific areas for in-depth insights in the future. Abstract Many orchid species have evolved complex floral signals to ensure pollination efficiency. Here, the authors combined analyses of anatomical flower structure with analyses of the volatile composition and flower-visiting insects’ behaviour, as well as characterised features that can attract pollinators of the inconspicuous orchid Malaxis monophyllos. During field observations, the authors found that only small Diptera (e.g., mosquitos, drosophilids, fungus gnats) visit and are interested in the flowers of M. monophyllos, which was reflected in the characterised flower features that combine well with the pollination system, which engages dipterans. Analyses of the M. monophyllos floral scent revealed substantial concentrations of aliphatic compounds, e.g., 1-octen-3-ol and 1-octanol, which condition the mushroom-like scent and a substantial fraction of alkanes, some of which have been previously described as sex mimicry and aggregation pheromones in orchids’ deceptive systems. The labellum anatomical structure exhibits a highly diverse cell cuticle surface and pronounced metabolic and secretory activity of the epidermal and subepidermal cells from all parts of the labellum. Moreover, our study provides evidence for the subsequent decoys of M. monophyllos flowers, including visual signals, such as raphides located on the labellum margin and the rewarding ones connected with lipid secretion limited to the area behind the column. Taking an integrative approach to studying M. monophyllos pollination biology, the authors provide new insight into its previously vague pollination strategies and provide evidence for complex floral signal operation in luring potential pollinators. The synergistic effect of M. monophyllos flowers’ volatile and visual signals, together with additional rewarding for nectar/fungus/microbe-feeding pollinators, requires further detailed investigation that will be invaluable in explaining the evolution of Diptera-specific pollination systems in orchids.
Collapse
|
25
|
Are some species ‘robust’ to exploitation? Explaining persistence in deceptive relationships. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractAnimals and plants trick others in an extraordinary diversity of ways to gain fitness benefits. Mimicry and deception can, for example, lure prey, reduce the costs of parental care or aid in pollination–in ways that impose fitness costs on the exploited party. The evolutionary maintenance of such asymmetric relationships often relies on these costs being mitigated through counter-adaptations, low encounter rates, or indirect fitness benefits. However, these mechanisms do not always explain the evolutionary persistence of some classic deceptive interactions.Sexually deceptive pollination (in which plants trick male pollinators into mating with their flowers) has evolved multiple times independently, mainly in the southern hemisphere and especially in Australasia and Central and South America. This trickery imposes considerable costs on the males: they miss out on mating opportunities, and in some cases, waste their limited sperm on the flower. These relationships appear stable, yet in some cases there is little evidence suggesting that their persistence relies on counter-adaptations, low encounter rates, or indirect fitness benefits. So, how might these relationships persist?Here, we introduce and explore an additional hypothesis from systems biology: that some species are robust to exploitation. Robustness arises from a species’ innate traits and means they are robust against costs of exploitation. This allows species to persist where a population without those traits would not, making them ideal candidates for exploitation. We propose that this mechanism may help inform new research approaches and provide insight into how exploited species might persist.
Collapse
|
26
|
Wong DCJ, Perkins J, Peakall R. Anthocyanin and Flavonol Glycoside Metabolic Pathways Underpin Floral Color Mimicry and Contrast in a Sexually Deceptive Orchid. FRONTIERS IN PLANT SCIENCE 2022; 13:860997. [PMID: 35401591 PMCID: PMC8983864 DOI: 10.3389/fpls.2022.860997] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/17/2022] [Indexed: 06/10/2023]
Abstract
Sexually deceptive plants secure pollination by luring specific male insects as pollinators using a combination of olfactory, visual, and morphological mimicry. Flower color is a key component to this attraction, but its chemical and genetic basis remains poorly understood. Chiloglottis trapeziformis is a sexually deceptive orchid which has predominantly dull green-red flowers except for the central black callus projecting from the labellum lamina. The callus mimics the female of the pollinator and the stark color contrast between the black callus and dull green or red lamina is thought to enhance the visibility of the mimic. The goal of this study was to investigate the chemical composition and genetic regulation of temporal and spatial color patterns leading to visual mimicry, by integrating targeted metabolite profiling and transcriptomic analysis. Even at the very young bud stage, high levels of anthocyanins were detected in the dark callus, with peak accumulation by the mature bud stage. In contrast, anthocyanin levels in the lamina peaked as the buds opened and became reddish-green. Coordinated upregulation of multiple genes, including dihydroflavonol reductase and leucoanthocyanidin dioxygenase, and the downregulation of flavonol synthase genes (FLS) in the callus at the very young bud stage underpins the initial high anthocyanin levels. Conversely, within the lamina, upregulated FLS genes promote flavonol glycoside over anthocyanin production, with the downstream upregulation of flavonoid O-methyltransferase genes further contributing to the accumulation of methylated flavonol glycosides, whose levels peaked in the mature bud stage. Finally, the peak anthocyanin content of the reddish-green lamina of the open flower is underpinned by small increases in gene expression levels and/or differential upregulation in the lamina in select anthocyanin genes while FLS patterns showed little change. Differential expression of candidate genes involved in specific transport, vacuolar acidification, and photosynthetic pathways may also assist in maintaining the distinct callus and contrasting lamina color from the earliest bud stage through to the mature flower. Our findings highlight that flower color in this sexually deceptive orchid is achieved by complex tissue-specific coordinated regulation of genes and biochemical pathways across multiple developmental stages.
Collapse
|
27
|
Orchidaceae-Derived Anticancer Agents: A Review. Cancers (Basel) 2022; 14:cancers14030754. [PMID: 35159021 PMCID: PMC8833831 DOI: 10.3390/cancers14030754] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Orchids are commonly used in folk medicine for the treatment of infections and tumors but little is known about the actual chemical composition of these plants and their anticancer properties. In this paper, the most recent literature on orchid-derived bioactive substances with anticancer properties is reviewed. According to the published data, numerous species of orchids contain potential antitumor chemicals. Still, a relatively insignificant number of species of orchids have been tested for their bioactive properties and most of those studies were on Asian taxa. Broader research, ’including American and African species, as well as the correct identification of samples, is essential for evaluating the usefulness of orchids as a plant family with huge anticancer potential. Abstract Species of orchids, which belong to the largest family of flowering plants, are commonly used in folk medicine for the treatment of infections and tumors. However, little is known about the actual chemical composition of these plants and their anticancer properties. In this paper, the most recent literature on orchid-derived bioactive substances with anticancer properties is reviewed. For the assessment, previous papers on the anticancer activity of Orchidaceae published since 2015 were considered. The papers were found by exploring electronic databases. According to the available data, many species of orchids contain potential antitumor chemicals. The bioactive substances in a relatively insignificant number of orchids are identified, and most studies are on Asian taxa. Broader research on American and African species and the correct identification of samples included in the experiments are essential for evaluating the usefulness of orchids as a plant family with vast anticancer potential.
Collapse
|
28
|
Drakolide Structure-activity Relationships for Sexual Attraction of Zeleboria Wasp Pollinator. J Chem Ecol 2022; 48:323-336. [DOI: 10.1007/s10886-021-01324-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 11/26/2022]
|
29
|
Three Chemically Distinct Floral Ecotypes in Drakaea livida, an Orchid Pollinated by Sexual Deception of Thynnine Wasps. PLANTS 2022; 11:plants11030260. [PMID: 35161242 PMCID: PMC8840651 DOI: 10.3390/plants11030260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022]
Abstract
Sexually deceptive orchids are unusual among plants in that closely related species typically attract different pollinator species using contrasting blends of floral volatiles. Therefore, intraspecific variation in pollinator attraction may also be underpinned by differences in floral volatiles. Here, we tested for the presence of floral ecotypes in the sexually deceptive orchid Drakaea livida and investigated if the geographic range of floral ecotypes corresponded to variation in pollinator availability. Pollinator choice trials revealed the presence of three floral ecotypes within D. livida that each attracts a different species of thynnine wasp as a pollinator. Surveys of pollinator distribution revealed that the distribution of one of the ecotypes was strongly correlated with that of its pollinator, while another pollinator species was present throughout the range of all three ecotypes, demonstrating that pollinator availability does not always correlate with ecotype distribution. Floral ecotypes differed in chemical volatile composition, with a high degree of separation evident in principal coordinate analysis. Some compounds that differed between ecotypes, including pyrazines and (methylthio)phenols, are known to be electrophysiologically active in thynnine wasp antennae. Based on differences in pollinator response and floral volatile profile, the ecotypes represent distinct entities and should be treated as such in conservation management.
Collapse
|
30
|
Arévalo-Rodrigues G, de Barros F, Davis AR, Cardoso-Gustavson P. Floral glands in myophilous and sapromyophilous species of Pleurothallidinae (Epidendroideae, Orchidaceae)-osmophores, nectaries, and a unique sticky gland. PROTOPLASMA 2021; 258:1061-1076. [PMID: 33619653 DOI: 10.1007/s00709-021-01624-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Pleurothallidinae orchids have been the focus of many multidisciplinary studies due to their challenging systematics and taxonomy. The synapomorphies already recognized in the group are mostly related to floral characters, the last proposed being the occurrence of alkanes in the floral fragrance. The composition of the floral bouquet varied significantly among the studied species, leading us to hypothesize that the variations in volatiles emitted could be linked to the structure of osmophores, especially when comparing the myophilous and sapromyophilous pollination syndromes. Sepals and labellum at different developmental stages of seven Brazilian Pleurothallidinae species were examined using light, scanning, and transmission electron microscopy. Nectar reabsorption was assessed by Lucifer Yellow CH tracer and imaged under confocal microscopy. Nectaries were restricted to the labellum of the myophilous species, whereas osmophores occurred in the dorsal and/or lateral sepals, varying according to species. In the sapromyophilous species, floral nectaries were not detected and osmophores were restricted to the labellum. Osmophore structure was correlated with the volatiles emitted, being the trichome osmophores notably present on the sepals of both myophilous species that possess nectaries. For the first time, we demonstrated reabsorption of the released nectar in Pleurothallidinae and the occurrence of a unique gland named sticky-exudate glands, which occurred in the lateral sepals and labellum of Echinosepala aspasicensis, a sapromyophilous species, that released a heterogeneous exudate composed of polysaccharides and lipids. Similar glands have been reported in Bulbophyllum, highlighting the convergence between both groups.
Collapse
Affiliation(s)
- Gustavo Arévalo-Rodrigues
- Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, São Paulo, SP, 04301-902, Brazil.
| | - Fábio de Barros
- Instituto de Botânica, Núcleo de Pesquisa Orquidário do Estado, São Paulo, SP, 04301-902, Brazil
| | - Arthur R Davis
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Poliana Cardoso-Gustavson
- Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, São Paulo, SP, 04301-902, Brazil
| |
Collapse
|
31
|
Phillips RD, Bohman B, Peakall R. Pollination by nectar-foraging pompilid wasps: a new specialized pollination strategy for the Australian flora. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:702-710. [PMID: 33998761 DOI: 10.1111/plb.13286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
The Pompilidae is a cosmopolitan and diverse group of wasps, which commonly feed on nectar. However, pollination systems specialized on pompilids have not been documented in detail outside of southern Africa. Here, we studied Caladenia drummondii (Orchidaceae) where, based on floral traits and preliminary field observations, we predicted pollination by sexual deception of male pompilid wasps. Detailed pollinator observations were undertaken using floral baiting experiments at sites spanning 375 km. Following evidence for nectar on some flowers of C. drummondii, the sugar content on the labellum was analysed by GC-MS. Floral spectral reflectance was measured and compared with Caladenia using other pollination strategies. Males of a single species of pompilid wasp (Calopompilus sp.) were the only visitors capable of pollinating C. drummondii. Attempts to feed from the surface of the labellum were frequent and were associated with removal and deposition of pollinia. GC-MS analysis revealed larger quantities of sugar on the labellum than reported in other Caladenia species. While no sexual or courtship behaviour was observed, the zig-zag and circling flight on approach to the flower is suggestive of odour-based attraction. Floral spectral reflectance was similar to sexually deceptive Caladenia. This study represents the first confirmation of a specialized pompilid pollination system outside of Africa. Although pollination occurs during nectar-foraging, long-distance sexual attraction cannot be ruled out as an explanation for the exclusive male visitation. The similarity in floral spectral reflectance to other Caladenia indicates colour may not impose a constraint on the evolution of pollination by pompilids.
Collapse
Affiliation(s)
- R D Phillips
- Department of Ecology, Environment & Evolution, La Trobe University, Bundoora, VIC, Australia
- Department of Biodiversity Conservation and Attractions, Kings Park Science, Kings Park, WA, Australia
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - B Bohman
- Department of Plant Protection Biology, Swedish University of Agricultural Science, Alnarp, Sweden
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - R Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
32
|
Martel C, Rakosy D, Dötterl S, Johnson SD, Ayasse M, Paulus HF, Nilsson LA, Mejlon H, Jersáková J. Specialization for Tachinid Fly Pollination in the Phenologically Divergent Varieties of the Orchid Neotinea ustulata. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.659176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite increased focus on elucidating the various reproductive strategies employed by orchids, we still have only a rather limited understanding of deceptive pollination systems that are not bee- or wasp-mediated. In Europe, the orchid Neotinea ustulata has been known to consist of two phenologically divergent varieties, neither of which provide rewards to its pollinators. However, detailed studies of their reproductive biology have been lacking. Our study aimed to characterize and understand the floral traits (i.e., morphology, color, and scent chemistry) and reproductive biology of N. ustulata. We found that the two varieties differ in all their floral traits; furthermore, while Neotinea ustulata var. ustulata appears to be pollinated by both bees (e.g., Anthophora, Bombus) and flies (e.g., Dilophus, Tachina), var. aestivalis is pollinated almost entirely by flies (i.e., Nowickia, Tachina). Tachinids were also found to be much more effective than bees in removing pollinaria, and we show experimentally that they use the characteristic dark inflorescence top as a cue for approaching inflorescences. Our results thus suggest that while both N. ustulata varieties rely on tachinids for pollination, they differ in their degree of specialization. Further studies are, however, needed to fully understand the reproductive strategy of N. ustulata varieties.
Collapse
|
33
|
Brunton Martin AL, Gaskett AC, O'Hanlon JC. Museum records indicate male bias in pollinators of sexually deceptive orchids. Naturwissenschaften 2021; 108:25. [PMID: 34091791 DOI: 10.1007/s00114-021-01737-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/09/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Deception has evolved in a range of taxa. When deception imposes costs, yet persists over generations, exploited species typically have traits to help them bear or minimise costs. The sexually deceptive orchids, Cryptostylis spp., are pollinated by tricking male haplodiploid wasps (Lissopimpla excelsa) into mating with flowers, which offer no reward and often elicit sperm wastage. We hypothesise that by attracting haplodiploid species, orchids have a pollinator ideally suited to withstand the costs of sexual deception-and a selective advantage compared to other orchids. Haplodiploid females can reproduce with or without sperm-albeit when spermless, females can only have sons. Through orchid deception and sperm wastage, deceived haplodiploid populations could become male biased, providing enough males to share between orchids and females. In this way, pollinator populations can persist despite high densities of sexually deceptive orchids. Here, we aim to broadly test this prediction using museum and digital records of the pollinator, L. excelsa, from sites with or without orchids. For robustness, we also analyse the sex ratio of a sister ichneumonid species that occurs in the same areas but is not deceived by orchids. We found that at sites with orchids, L. excelsa was significantly more male biased than at sites without orchids and significantly more male biased than the sister ichneumonid. This survey is the first to test the population-level effects of sexually deceptive orchids on their pollinator. It supports our prediction that orchid deception can drive male-biased sex ratios in exploited pollinators.
Collapse
Affiliation(s)
- A L Brunton Martin
- School of Biological Sciences, The University of Auckland, Auckland Central, New Zealand. .,Manaaki Whenua - Landcare Research, 1142, Auckland, New Zealand.
| | - A C Gaskett
- School of Biological Sciences, The University of Auckland, Auckland Central, New Zealand
| | - J C O'Hanlon
- School of Environmental and Rural Science, The University of New England, NSW, Armidale, Australia
| |
Collapse
|
34
|
Hayashi T, Bohman B, Scaffidi A, Peakall R, Flematti GR. An unusual tricosatriene is crucial for male fungus gnat attraction and exploitation by sexually deceptive Pterostylis orchids. Curr Biol 2021; 31:1954-1961.e7. [DOI: 10.1016/j.cub.2021.01.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/22/2020] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
|
35
|
Byers KJRP. "As if they discovered it by the scent": improving our understanding of the chemical ecology, evolution, and genetics of floral scent and its role in pollination. AMERICAN JOURNAL OF BOTANY 2021; 108:729-731. [PMID: 34008177 DOI: 10.1002/ajb2.1661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Kelsey J R P Byers
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| |
Collapse
|
36
|
Abstract
Sexually deceptive pollination is widespread in orchids, yet studies of its chemical basis have been mostly limited to species pollinated by bees and wasps. Two new studies in orchids demonstrate the novel chemistry of deceptive pollination by unusual pollinators.
Collapse
|
37
|
Cohen C, Liltved WR, Colville JF, Shuttleworth A, Weissflog J, Svatoš A, Bytebier B, Johnson SD. Sexual deception of a beetle pollinator through floral mimicry. Curr Biol 2021; 31:1962-1969.e6. [PMID: 33770493 DOI: 10.1016/j.cub.2021.03.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/13/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022]
Abstract
Sexual mimicry is a complex multimodal strategy used by some plants to lure insects to flowers for pollination.1-4 It is notable for being highly species-specific and is typically mediated by volatiles belonging to a restricted set of chemical compound classes.3,4 Well-documented cases involve exploitation of bees and wasps (Hymenoptera)5,6 and flies (Diptera).7-9 Although beetles (Coleoptera) are the largest insect order and are well known as pollinators of both early and modern plants,10,11 it has been unclear whether they are sexually deceived by plants during flower visits.12,13 Here we report the discovery of an unambiguous case of sexual deception of a beetle: male longhorn beetles (Chorothyse hessei, Cerambycidae) pollinate the elaborate insectiform flowers of a rare southern African orchid (Disa forficaria), while exhibiting copulatory behavior including biting the antennae-like petals, curving the abdomen into the hairy lip cleft, and ejaculating sperm. The beetles are strongly attracted by (16S,9Z)-16-ethyl hexadec-9-enolide, a novel macrolide that we isolated from the floral scent. Structure-activity studies14,15 confirmed that chirality and other aspects of the structural geometry of the macrolide are critical for the attraction of the male beetles. These results demonstrate a new biological function for plant macrolides and confirm that beetles can be exploited through sexual deception to serve as pollinators.
Collapse
Affiliation(s)
- Callan Cohen
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
| | - William R Liltved
- Compton Herbarium, South African National Biodiversity Institute, Newlands, Cape Town 7735, South Africa
| | - Jonathan F Colville
- Kirstenbosch Research Centre, South African National Biodiversity Institute, Newlands, Cape Town 7735, South Africa; Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - Adam Shuttleworth
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3209, South Africa
| | - Jerrit Weissflog
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Aleš Svatoš
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Benny Bytebier
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3209, South Africa
| | - Steven D Johnson
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3209, South Africa.
| |
Collapse
|
38
|
Acyl-Acyl Carrier Protein Desaturases and Plant Biotic Interactions. Cells 2021; 10:cells10030674. [PMID: 33803674 PMCID: PMC8002970 DOI: 10.3390/cells10030674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 11/29/2022] Open
Abstract
Interactions between land plants and other organisms such as pathogens, pollinators, or symbionts usually involve a variety of specialized effectors participating in complex cross-talks between organisms. Fatty acids and their lipid derivatives play important roles in these biological interactions. While the transcriptional regulation of genes encoding acyl–acyl carrier protein (ACP) desaturases appears to be largely responsive to biotic stress, the different monounsaturated fatty acids produced by these enzymes were shown to take active part in plant biotic interactions and were assigned with specific functions intrinsically linked to the position of the carbon–carbon double bond within their acyl chain. For example, oleic acid, an omega-9 monounsaturated fatty acid produced by Δ9-stearoyl–ACP desaturases, participates in signal transduction pathways affecting plant immunity against pathogen infection. Myristoleic acid, an omega-5 monounsaturated fatty acid produced by Δ9-myristoyl–ACP desaturases, serves as a precursor for the biosynthesis of omega-5 anacardic acids that are active biocides against pests. Finally, different types of monounsaturated fatty acids synthesized in the labellum of orchids are used for the production of a variety of alkenes participating in the chemistry of sexual deception, hence favoring plant pollination by hymenopterans.
Collapse
|
39
|
Peakall R, Wong DCJ, Phillips RD, Ruibal M, Eyles R, Rodriguez-Delgado C, Linde CC. A multitiered sequence capture strategy spanning broad evolutionary scales: Application for phylogenetic and phylogeographic studies of orchids. Mol Ecol Resour 2021; 21:1118-1140. [PMID: 33453072 DOI: 10.1111/1755-0998.13327] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 11/30/2022]
Abstract
With over 25,000 species, the drivers of diversity in the Orchidaceae remain to be fully understood. Here, we outline a multitiered sequence capture strategy aimed at capturing hundreds of loci to enable phylogenetic resolution from subtribe to subspecific levels in orchids of the tribe Diurideae. For the probe design, we mined subsets of 18 transcriptomes, to give five target sequence sets aimed at the tribe (Sets 1 & 2), subtribe (Set 3), and within subtribe levels (Sets 4 & 5). Analysis included alternative de novo and reference-guided assembly, before target sequence extraction, annotation and alignment, and application of a homology-aware k-mer block phylogenomic approach, prior to maximum likelihood and coalescence-based phylogenetic inference. Our evaluation considered 87 taxa in two test data sets: 67 samples spanning the tribe, and 72 samples involving 24 closely related Caladenia species. The tiered design achieved high target loci recovery (>89%), with the median number of recovered loci in Sets 1-5 as follows: 212, 219, 816, 1024, and 1009, respectively. Interestingly, as a first test of the homologous k-mer approach for targeted sequence capture data, our study revealed its potential for enabling robust phylogenetic species tree inferences. Specifically, we found matching, and in one case improved phylogenetic resolution within species complexes, compared to conventional phylogenetic analysis involving target gene extraction. Our findings indicate that a customized multitiered sequence capture strategy, in combination with promising yet underutilized phylogenomic approaches, will be effective for groups where interspecific divergence is recent, but information on deeper phylogenetic relationships is also required.
Collapse
Affiliation(s)
- Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Ryan D Phillips
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.,Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Vic., Australia
| | - Monica Ruibal
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Rodney Eyles
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Claudia Rodriguez-Delgado
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Celeste C Linde
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
40
|
Baguette M, Bertrand JAM, Stevens VM, Schatz B. Why are there so many bee-orchid species? Adaptive radiation by intra-specific competition for mnesic pollinators. Biol Rev Camb Philos Soc 2020; 95:1630-1663. [PMID: 32954662 DOI: 10.1111/brv.12633] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023]
Abstract
Adaptive radiations occur mostly in response to environmental variation through the evolution of key innovations that allow emerging species to occupy new ecological niches. Such biological innovations may play a major role in niche divergence when emerging species are engaged in reciprocal ecological interactions. To demonstrate coevolution is a difficult task; only a few studies have confirmed coevolution as driver of speciation and diversification. Herein we review current knowledge about bee orchid (Ophrys spp.) reproductive biology. We propose that the adaptive radiation of the Mediterranean orchid genus Ophrys, comprising several hundred species, is due to coevolutionary dynamics between these plants and their pollinators. We suggest that pollination by sexual swindling used by Ophrys orchids is the main driver of this coevolution. Flowers of each Ophrys species mimic a sexually receptive female of one particular insect species, mainly bees. Male bees are first attracted by pseudo-pheromones emitted by Ophrys flowers that are similar to the sexual pheromones of their females. Males then are lured by the flower shape, colour and hairiness, and attempt to copulate with the flower, which glues pollen onto their bodies. Pollen is later transferred to the stigma of another flower of the same Ophrys species during similar copulation attempts. In contrast to rewarding pollination strategies, Ophrys pollinators appear to be parasitized. Here we propose that this apparent parasitism is in fact a coevolutionary relationship between Ophrys and their pollinators. For plants, pollination by sexual swindling could ensure pollination efficiency and specificity, and gene flow among populations. For pollinators, pollination by sexual swindling could allow habitat matching and inbreeding avoidance. Pollinators might use the pseudo-pheromones emitted by Ophrys to locate suitable habitats from a distance within complex landscapes. In small populations, male pollinators would disperse once they have memorized the local diversity of sexual pseudo-pheromone bouquets or if all Ophrys flowers are fertilized and thus repel pollinators via production of repulsive pheromones that mimic those produced by fertilized female bees. We propose the following evolutionary scenario: Ophrys radiation is driven by strong intra-specific competition among Ophrys individuals for the attraction of species-specific pollinators, which is a consequence of the high cognitive abilities of pollinators. Male bees record the pheromone signatures of kin or of previously courted partners to avoid further copulation attempts, thereby inducing strong selection on Ophrys for variation in odour bouquets emitted by individual flowers. The resulting odour bouquets could by chance correspond to pseudo-pheromones of the females of another bee species, and thus attract a new pollinator. If such pollinator shifts occur simultaneously in several indivuals, pollen exchanges might occur and initiate speciation. To reinforce the attraction of the new pollinator and secure prezygotic isolation, the following step is directional selection on flower phenotypes (shape, colour and hairiness) towards a better match with the body of the pollinator's female. Pollinator shift and the resulting prezygotic isolation is adaptive for new Ophrys species because they may benefit from competitor-free space for limited pollinators. We end our review by proritizing several critical research avenues.
Collapse
Affiliation(s)
- Michel Baguette
- Institut Systématique, Evolution, Biodiversité (ISYEB), UMR 7205 Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, F-75005, Paris, France.,Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, F-09200, Moulis, France
| | - Joris A M Bertrand
- LGDP (Laboratoire Génome et Développement des Plantes) UMR5096, Université de Perpignan Via Domitia -CNRS, F-66860, Perpignan, France
| | - Virginie M Stevens
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, F-09200, Moulis, France
| | - Bertrand Schatz
- CEFE (Centre d'Ecologie Fonctionnelle et Evolutive) UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry - EPHE, 1919 Route de Mende, 34293, Montpellier, France
| |
Collapse
|
41
|
Joffard N, Arnal V, Buatois B, Schatz B, Montgelard C. Floral scent evolution in the section Pseudophrys: pollinator-mediated selection or phylogenetic constraints? PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:881-889. [PMID: 32130747 DOI: 10.1111/plb.13104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Sexually deceptive orchid species from the Mediterranean genus Ophrys usually interact with one or a few pollinator species by means of specific floral scents. In this study, we investigated the respective role of pollinator-mediated selection and phylogenetic constraints in the evolution of floral scents in the section Pseudophrys. We built a phylogenetic tree of 19 Pseudophrys species based on three nuclear loci; we gathered a dataset on their pollination interactions from the literature and from our own field data; and we extracted and analysed their floral scents using solid phase microextraction and gas chromatography-mass spectrometry. We then quantified the phylogenetic signal carried by floral scents and investigated the link between plant-pollinator interactions and floral scent composition using phylogenetic comparative methods. We confirmed the monophyly of the section Pseudophrys and demonstrated the existence of three main clades within this section. We found that floral scent composition is affected by both phylogenetic relationships among Ophrys species and pollination interactions, with some compounds (especially fatty acid esters) carrying a significant phylogenetic signal and some (especially alkenes and alkadienes) generating dissimilarities between closely related Pseudophrys pollinated by different insects. Our results show that in the section Pseudophrys, floral scents are shaped both by pollinator-mediated selection and by phylogenetic constraints, but that the relative importance of these two evolutionary forces differ among compound classes, probably reflecting distinct selective pressures imposed upon behaviourally active and non-active compounds.
Collapse
Affiliation(s)
- N Joffard
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier, France
| | - V Arnal
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier, France
| | - B Buatois
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier, France
| | - B Schatz
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier, France
| | - C Montgelard
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier, France
| |
Collapse
|
42
|
Phillips RD, Reiter N, Peakall R. Orchid conservation: from theory to practice. ANNALS OF BOTANY 2020; 126:345-362. [PMID: 32407498 PMCID: PMC7424752 DOI: 10.1093/aob/mcaa093] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/07/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Given the exceptional diversity of orchids (26 000+ species), improving strategies for the conservation of orchids will benefit a vast number of taxa. Furthermore, with rapidly increasing numbers of endangered orchids and low success rates in orchid conservation translocation programmes worldwide, it is evident that our progress in understanding the biology of orchids is not yet translating into widespread effective conservation. SCOPE We highlight unusual aspects of the reproductive biology of orchids that can have important consequences for conservation programmes, such as specialization of pollination systems, low fruit set but high seed production, and the potential for long-distance seed dispersal. Further, we discuss the importance of their reliance on mycorrhizal fungi for germination, including quantifying the incidence of specialized versus generalized mycorrhizal associations in orchids. In light of leading conservation theory and the biology of orchids, we provide recommendations for improving population management and translocation programmes. CONCLUSIONS Major gains in orchid conservation can be achieved by incorporating knowledge of ecological interactions, for both generalist and specialist species. For example, habitat management can be tailored to maintain pollinator populations and conservation translocation sites selected based on confirmed availability of pollinators. Similarly, use of efficacious mycorrhizal fungi in propagation will increase the value of ex situ collections and likely increase the success of conservation translocations. Given the low genetic differentiation between populations of many orchids, experimental genetic mixing is an option to increase fitness of small populations, although caution is needed where cytotypes or floral ecotypes are present. Combining demographic data and field experiments will provide knowledge to enhance management and translocation success. Finally, high per-fruit fecundity means that orchids offer powerful but overlooked opportunities to propagate plants for experiments aimed at improving conservation outcomes. Given the predictions of ongoing environmental change, experimental approaches also offer effective ways to build more resilient populations.
Collapse
Affiliation(s)
- Ryan D Phillips
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia
- Kings Park Science, Department of Biodiversity Conservation and Attractions, Kings Park, WA, Australia
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Noushka Reiter
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Royal Botanic Gardens Victoria, Corner of Ballarto Road and Botanic Drive, Cranbourne, VIC, Australia
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
43
|
Martel C, Neubig KM, Williams NH, Ayasse M. The uncinate viscidium and floral setae, an evolutionary innovation and exaptation to increase pollination success in the Telipogon alliance (Orchidaceae: Oncidiinae). ORG DIVERS EVOL 2020. [DOI: 10.1007/s13127-020-00457-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Phillips RD, Bohman B, Brown GR, Tomlinson S, Peakall R. A specialised pollination system using nectar-seeking thynnine wasps in Caladenia nobilis (Orchidaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:157-166. [PMID: 31705712 DOI: 10.1111/plb.13069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/01/2019] [Indexed: 05/26/2023]
Abstract
Caladenia is a diverse Australian genus that is exceptional among orchids in having both species pollinated by food-seeking and sexually deceived insects. Here, we investigated the pollination of Caladenia nobilis, a species predicted to be food-deceptive due to its large, cream-coloured and apparently nectarless flowers. Pollinator observations were made using experimental clumps of flowers. Measurements of floral colour were undertaken with a spectrometer, nectar was tested using GC-MS, and reproductive success was quantified for 2 years. While C. nobilis attracted nine species of insect, only males of the thynnine wasp Rhagigaster discrepans exhibited the correct size and behaviour to remove and deposit pollen. Male R. discrepans attempted to feed from the surface of the labellum, often crawling to multiple flowers, but showed no evidence of sexual attraction. Most flowers produced little or no nectar, although some may provide enough sucrose to act as a meagre reward to pollinators. Floral colouration was similar to a related Caladenia species pollinated by sexual deception, although the sexually deceptive species had a dull-red labellum. Reproductive success was generally low and highly variable between sites and years. In addition to most visitors being of inappropriate size for pollinia removal, the lack of response to the orchid by several co-occurring species of thynnine wasp suggests filtering of potential pollinators at the attraction phase. Our discovery of a pollination strategy that may be intermediate between food deception and food reward raises the question, how many putatively rewardless orchids actually produce meagre amounts of nectar?
Collapse
Affiliation(s)
- R D Phillips
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, VIC, Australia
- Kings Park Science, Department of Biodiversity Conservation and Attractions, Kings Park, Perth, WA, Australia
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - B Bohman
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - G R Brown
- Museum and Art Gallery of the Northern Territory, Darwin, NT, Australia
- CSIRO Land and Water, Winnellie, NT, Australia
- Research Institute for Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - S Tomlinson
- Kings Park Science, Department of Biodiversity Conservation and Attractions, Kings Park, Perth, WA, Australia
- School of Molecular & Life Sciences, Curtin University Bentley, Perth, Western Australia, Australia
| | - R Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
45
|
Identification of ( Z)-8-Heptadecene and n-Pentadecane as Electrophysiologically Active Compounds in Ophrys insectifera and Its Argogorytes Pollinator. Int J Mol Sci 2020; 21:ijms21020620. [PMID: 31963543 PMCID: PMC7014428 DOI: 10.3390/ijms21020620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/16/2022] Open
Abstract
Sexually deceptive orchids typically depend on specific insect species for pollination, which are lured by sex pheromone mimicry. European Ophrys orchids often exploit specific species of wasps or bees with carboxylic acid derivatives. Here, we identify the specific semiochemicals present in O. insectifera, and in females of one of its pollinator species, Argogorytes fargeii. Headspace volatile samples and solvent extracts were analysed by GC-MS and semiochemicals were structurally elucidated by microderivatisation experiments and synthesis. (Z)-8-Heptadecene and n-pentadecane were confirmed as present in both O. insectifera and A. fargeii female extracts, with both compounds being found to be electrophysiologically active to pollinators. The identified semiochemicals were compared with previously identified Ophrys pollinator attractants, such as (Z)-9 and (Z)-12-C27-C29 alkenes in O. sphegodes and (Z)-9-octadecenal, octadecanal, ethyl linoleate and ethyl oleate in O. speculum, to provide further insights into the biosynthesis of semiochemicals in this genus. We propose that all these currently identified Ophrys semiochemicals can be formed biosynthetically from the same activated carboxylic acid precursors, after a sequence of elongation and decarbonylation reactions in O. sphegodes and O. speculum, while in O. insectifera, possibly by decarbonylation without preceding elongation.
Collapse
|
46
|
Bohman B, Tan MMY, Phillips RD, Scaffidi A, Sobolev AN, Moggach SA, Flematti GR, Peakall R. A Specific Blend of Drakolide and Hydroxymethylpyrazines: An Unusual Pollinator Sexual Attractant Used by the Endangered Orchid
Drakaea micrantha. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Björn Bohman
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
- Research School of Biology Australian National University Canberra ACT 2600 Australia
| | - Monica M. Y. Tan
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
| | - Ryan D. Phillips
- Research School of Biology Australian National University Canberra ACT 2600 Australia
- Department of Biodiversity Conservation and Attractions Kings Park Science, 1 Kattidj Close West Perth WA 6005 Australia
- Department of Ecology Environment and Evolution La Trobe University Melbourne Melbourne Victoria 3086 Australia
| | - Adrian Scaffidi
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
| | - Alexandre N. Sobolev
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
| | - Stephen A. Moggach
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
| | - Gavin R. Flematti
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
| | - Rod Peakall
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
- Research School of Biology Australian National University Canberra ACT 2600 Australia
| |
Collapse
|
47
|
Diversity of Floral Glands and Their Secretions in Pollinator Attraction. REFERENCE SERIES IN PHYTOCHEMISTRY 2020. [DOI: 10.1007/978-3-319-96397-6_48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
48
|
Does the orchid Luisia teres attract its male chafer pollinators (Scarabaeidae: Protaetia pryeri pryeri) by sexual deception? CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-019-00297-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Bohman B, Tan MMY, Phillips RD, Scaffidi A, Sobolev AN, Moggach SA, Flematti GR, Peakall R. A Specific Blend of Drakolide and Hydroxymethylpyrazines: An Unusual Pollinator Sexual Attractant Used by the Endangered Orchid
Drakaea micrantha. Angew Chem Int Ed Engl 2019; 59:1124-1128. [DOI: 10.1002/anie.201911636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/31/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Björn Bohman
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
- Research School of Biology Australian National University Canberra ACT 2600 Australia
| | - Monica M. Y. Tan
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
| | - Ryan D. Phillips
- Research School of Biology Australian National University Canberra ACT 2600 Australia
- Department of Biodiversity Conservation and Attractions Kings Park Science, 1 Kattidj Close West Perth WA 6005 Australia
- Department of Ecology Environment and Evolution La Trobe University Melbourne Melbourne Victoria 3086 Australia
| | - Adrian Scaffidi
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
| | - Alexandre N. Sobolev
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
| | - Stephen A. Moggach
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
| | - Gavin R. Flematti
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
| | - Rod Peakall
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
- Research School of Biology Australian National University Canberra ACT 2600 Australia
| |
Collapse
|
50
|
Baldelomar M, Atala C, Molina-Montenegro MA. Top-Down and Bottom-Up Effects Deployed by a Nurse Shrub Allow Facilitating an Endemic Mediterranean Orchid. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|