1
|
Chen T, Jia Y, Tang Y, Chen J, Xu H, Qi G. Cotton leaf curl Multan virus activates autophagy in the whitefly AsiaII7, weakening its vectorial capacity for transmission. PEST MANAGEMENT SCIENCE 2025; 81:3039-3047. [PMID: 39871813 DOI: 10.1002/ps.8674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/01/2025] [Accepted: 01/08/2025] [Indexed: 01/29/2025]
Abstract
BACKGROUND Autophagy plays an important role against pathogen infections in both insects and plants. Insect vectors employ autophagy as an intrinsic antiviral defense mechanism against viral infections, whereas viruses can exploit autophagy to enhance their transmission via insect vectors. The Cotton leaf curl Multan virus (CLCuMuV) is transmitted by the AsiaII7 cryptic species of Bemisia tabaci, however, the role of autophagy is involved in regulating the transmission of this virus remains unclear. RESULT In this study, it was observed that CLCuMuV infection induced autophagy in AsiaII7 whitefly, as evidenced by an elevated in the level of ATG8-II and the upregulation of Atg3, Atg8, Atg9 and Atg12. Both the administration of the autophagy inhibitor bafilomycin A1 and the silencing of Atg9 expression increased the viral load and enhanced CLCuMuV transmission. Conversely, the activation of autophagy via rapamycin feeding significantly reduced the amount of CLCuMuV and inhibited the efficiency of virus transmission. CONCLUSION CLCuMuV infection can activate the autophagy pathway in whiteflies. The activation of autophagy leads to the subsequent degradation of the virus and suppresses CLCuMuV transmission efficiency, whereas suppression of autophagy promotes virus transmission. Our research provides insight into the potential role of autophagy in antiviral defense mechanisms. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences Guangzhou, Guangzhou, China
| | - Yanbo Jia
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences Guangzhou, Guangzhou, China
- Department of Life Sciences, Heibei University, Baoding, China
| | - Yafei Tang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences Guangzhou, Guangzhou, China
| | - Jie Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences Guangzhou, Guangzhou, China
| | - Haiyun Xu
- Department of Life Sciences, Heibei University, Baoding, China
| | - Guojun Qi
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences Guangzhou, Guangzhou, China
| |
Collapse
|
2
|
Verdier M, Boissinot S, Baltenweck R, Negrel L, Brault V, Ziegler‐Graff V, Hugueney P, Scheidecker D, Krieger C, Chesnais Q, Drucker M. The Turnip Yellows Virus Capsid Protein Promotes Access of Its Main Aphid Vector Myzus persicae to Phloem Tissues. PLANT, CELL & ENVIRONMENT 2025; 48:2434-2444. [PMID: 39623721 PMCID: PMC11788975 DOI: 10.1111/pce.15303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/24/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025]
Abstract
Many plant viruses modify the phenotype of their hosts, which may influence the behaviour of their vectors and facilitate transmission. Among them is the turnip yellows virus (TuYV), which can modify the orientation, feeding, and performance of its main aphid vector, Myzus persicae. However, the virus factors driving these mechanisms have not been elucidated. In this study, we compared the feeding behaviour and fecundity of aphids on TuYV-infected and transgenic Arabidopsis thaliana expressing individual TuYV proteins (CP, RT and P0) to define the role of these proteins in aphid-plant interactions. Aphids on TuYV-infected plants had shorter pathway phases and ingested phloem sap for longer times, which is expected to promote the acquisition of the phloem-limited TuYV. No change in aphid fecundity was observed on TuYV-infected plants. The transmission-conducive feeding behaviour changes could be fully reproduced by phloem-specific expression of the capsid protein (CP) in transgenic plants, whereas expression of P0 had minor and RT had no effects on aphid feeding behaviour. We then carried out a metabolomic analysis to determine plant compounds that could be involved in the modification of the aphid behaviour. A few metabolites were specific for TuYV-infected or CP-transgenic A. thaliana, and are good candidates for inducing behavioural changes.
Collapse
Affiliation(s)
| | | | | | - Lise Negrel
- INRAE, Université de Strasbourg, SVQVColmarFrance
| | | | - Véronique Ziegler‐Graff
- CNRS, Université de Strasbourg, Institut de Biologie Moléculaire des PlantesStrasbourgFrance
| | | | - Daniele Scheidecker
- CNRS, Université de Strasbourg, Institut de Biologie Moléculaire des PlantesStrasbourgFrance
| | - Célia Krieger
- CNRS, Université de Strasbourg, Institut de Biologie Moléculaire des PlantesStrasbourgFrance
| | | | | |
Collapse
|
3
|
Santos F, Peñaflor MFGV, Pulido H, Bampi D, Bento JMS, Mescher MC, De Moraes CM. The plant growth-promoting rhizobacterium Azospirillum brasilense reduces symptoms and aphid population growth on wheat plants infected with barley yellow dwarf virus. Proc Biol Sci 2025; 292:20242857. [PMID: 39968622 PMCID: PMC11836710 DOI: 10.1098/rspb.2024.2857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 02/20/2025] Open
Abstract
There is increasing interest in the potential of plant growth-promoting rhizobacteria (PGPR) in agriculture to improve plant quality and control pests and diseases. Emerging evidence indicates that some PGPR can influence interactions between plants and their pathogens, while less work has explored whether PGPR may also influence interactions between plants and arthropod vectors. We address this issue in a major agricultural pathosystem involving wheat infection by barley yellow dwarf virus (BYDV), the most economically important aphid-transmitted viral disease of cereal crops. We found that plant association with the PGPR Azospirillum brasilense mitigated both viral effects on plant growth and population growth of the BYDV aphid vector, Rhopalosiphum padi. Although effects varied across A. brasilense strains, PGPR treatments that attenuated virus effects were also associated with reduced induction of salicylic acid in response to infection, suggesting PGPR inoculation may induce systemic resistance against BYDV. These findings suggest that PGPR may have significant capacity for application in the sustainable management of crop growth. However, further investigation of the complex interactions among PGPR, plants, pathogens and their vectors is needed to better understand this potential.
Collapse
Affiliation(s)
- Franciele Santos
- Department of Entomology and Acarology, University of São Paulo, Escola Superior de Agricultura 'Luiz de Queiroz', CP 09, Piracicaba, São Paulo13418-900, Brazil
| | | | - Hannier Pulido
- Department of Environmental Systems Science, ETH Zürich, Zürich8092, Switzerland
| | - Daiana Bampi
- Department of Plant Pathology and Nematology, University of São Paulo, Escola Superior de Agricultura 'Luiz de Queiroz', CP 09, Piracicaba, São Paulo13418-900, Brazil
| | - José Mauricio S. Bento
- Department of Entomology and Acarology, University of São Paulo, Escola Superior de Agricultura 'Luiz de Queiroz', CP 09, Piracicaba, São Paulo13418-900, Brazil
| | - Mark C. Mescher
- Department of Environmental Systems Science, ETH Zürich, Zürich8092, Switzerland
| | | |
Collapse
|
4
|
Zhang H, Zhu Y, Wang Y, Jiang L, Shi X, Cheng G. Microbial interactions shaping host attractiveness: insights into dynamic behavioral relationships. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101275. [PMID: 39332621 DOI: 10.1016/j.cois.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/18/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
Insects discern the presence of hosts (host plants) by integrating chemosensory, gustatory, and visual cues, with olfaction playing a pivotal role in this process. Among these factors, volatile signals produced by host-associated microbial communities significantly affect insect attraction. Microorganisms are widely and abundantly found on the surfaces of humans, plants, and insects. Notably, these microorganisms can metabolize compounds from the host surface and regulate the production of characteristic volatiles, which may guide the use of host microorganisms to modulate insect behavior. Essentially, the attraction of hosts to insects is intricately linked to the presence of their symbiotic microorganisms. This review underscores the critical role of microorganisms in shaping the dynamics of attractiveness between insects and their hosts.
Collapse
Affiliation(s)
- Hong Zhang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Southwest United Graduate School, Kunming 650092, China
| | - Yibaina Wang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Liping Jiang
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiaolu Shi
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Southwest United Graduate School, Kunming 650092, China.
| |
Collapse
|
5
|
Khechmar S, Chesnais Q, Villeroy C, Brault V, Drucker M. Interplay between a polerovirus and a closterovirus decreases aphid transmission of the polerovirus. Microbiol Spectr 2024; 12:e0111524. [PMID: 39387567 PMCID: PMC11537018 DOI: 10.1128/spectrum.01115-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/11/2024] [Indexed: 10/15/2024] Open
Abstract
Multi-infection of plants by viruses is very common and can change drastically infection parameters such as virus accumulation, distribution, and vector transmission. Sugar beet is an important crop that is frequently co-infected by the polerovirus beet chlorosis virus (BChV) and the closterovirus beet yellows virus (BYV), both vectored by the green peach aphid (Myzus persicae). These phloem-limited viruses are acquired while aphids ingest phloem sap from infected plants. Here we found that co-infection decreased transmission of BChV by ~50% but had no impact on BYV transmission. The drastic reduction of BChV transmission was due to neither lower accumulation of BChV in co-infected plants nor reduced phloem sap ingestion by aphids from these plants. Using the signal amplification by exchange reaction fluorescent in situ hybridization technique on plants, we observed that 40% of the infected phloem cells were co-infected and that co-infection caused redistribution of BYV in these cells. The BYV accumulation pattern changed from distinct intracellular spherical inclusions in mono-infected cells to a diffuse form in co-infected cells. There, BYV co-localized with BChV throughout the cytoplasm, indicative of virus-virus interactions. We propose that BYV-BChV interactions could restrict BChV access to the sieve tubes and reduce its accessibility for aphids and present a model of how co-infection could alter BChV intracellular movement and/or phloem loading and reduce BChV transmission.IMPORTANCEMixed viral infections in plants are understudied yet can have significant influences on disease dynamics and virus transmission. We investigated how co-infection with two unrelated viruses, BChV and BYV, affects aphid transmission of the viruses in sugar beet plants. We show that co-infection reduced BChV transmission by about 50% without affecting BYV transmission, despite similar virus accumulation rates in co-infected and mono-infected plants. Follow-up experiments examined the localization and intracellular distribution of the viruses, leading to the discovery that co-infection caused a redistribution of BYV in the phloem vessels and altered its repartition pattern within plant cells, suggesting virus-virus interactions. In conclusion, the interplay between BChV and BYV affects the transmission of BChV but not BYV, possibly through direct or indirect virus-virus interactions at the cellular level. Understanding these interactions could be crucial for managing virus propagation in crops and preventing yield losses.
Collapse
Affiliation(s)
- Souheyla Khechmar
- SVQV, UMR 1131, INRAE Centre Grand Est, Colmar, France
- Université Strasbourg, Strasbourg, France
| | - Quentin Chesnais
- SVQV, UMR 1131, INRAE Centre Grand Est, Colmar, France
- Université Strasbourg, Strasbourg, France
| | | | - Véronique Brault
- SVQV, UMR 1131, INRAE Centre Grand Est, Colmar, France
- Université Strasbourg, Strasbourg, France
| | - Martin Drucker
- SVQV, UMR 1131, INRAE Centre Grand Est, Colmar, France
- Université Strasbourg, Strasbourg, France
| |
Collapse
|
6
|
Easterling KA, Marshall AT, Pitino M, Walker WB, Cooper WR. Gene expression profiling of Cacopsylla pyricola (Hemiptera: Psyllidae) infected with Ca. Phytoplasma pyri (Acholeplasmatales: Acholeplasmataceae) reveals candidate effectors and mechanisms of infection. ENVIRONMENTAL ENTOMOLOGY 2024; 53:771-781. [PMID: 39235989 DOI: 10.1093/ee/nvae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Phytoplasmas can negatively or positively alter vector host fitness. "Candidatus Phytoplasma pyri," is the causal agent of pear decline in commercial pear (Pyrus communis L.; Rosales: Rosaceae) and peach yellow leafroll in peach [Prunus persica (L.); Rosaceae]. This plant pathogen is transmitted by several species of pear psyllids (Cacopsylla spp. Hemiptera: Psyllidae). We sought to explore the relationship between the pear decline phytoplasma and its US vector, Cacopsylla pyricola (Förster), at the molecular genetic level through transcriptomic analysis using RNA-sequencing methodology. We also focused on phytoplasma and insect effectors, which are secreted proteins that can modulate interactions within a pathosystem. In this study, we identified 30 differentially expressed genes, 14 candidate insect effector genes, and 8 Ca. Phytoplasma pyri candidate effectors. Two strains of Ca. Phytoplasma pyri were identified based on immunodominant membrane protein sequence analysis from C. pyricola collected in the Pacific Northwest agricultural region. Here, we present a first genetic look at the pear decline pathosystem and report gene candidates for further exploration of infection mechanisms and potential tools for integrated pest management.
Collapse
Affiliation(s)
| | - Adrian T Marshall
- Temperate Tree Fruit and Vegetable Research Unit, USDA-ARS, Wapato, WA, USA
| | - Marco Pitino
- Temperate Tree Fruit and Vegetable Research Unit, USDA-ARS, Wapato, WA, USA
| | - William B Walker
- Temperate Tree Fruit and Vegetable Research Unit, USDA-ARS, Wapato, WA, USA
| | - W Rodney Cooper
- Temperate Tree Fruit and Vegetable Research Unit, USDA-ARS, Wapato, WA, USA
| |
Collapse
|
7
|
Falla EK, Cunniffe NJ. Why aphid virus retention needs more attention: Modelling aphid behaviour and virus manipulation in non-persistent plant virus transmission. PLoS Comput Biol 2024; 20:e1012479. [PMID: 39352908 PMCID: PMC11469505 DOI: 10.1371/journal.pcbi.1012479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/11/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
Plant viruses threaten food security and are often transmitted by insect vectors. Non-persistently transmitted (NPT) plant viruses are transmitted almost exclusively by aphids. Because virions attach to the aphid's stylet (mouthparts) and are acquired and inoculated via brief epidermal probes, the aphid-virus interaction is highly transient, with a very short aphid virus retention time. Many NPT viruses manipulate their host plant's phenotype to change aphid behaviour to optimise virus transmission. Epidemiological models of this have overlooked a key feature of aphid NPT virus retention: probing or feeding on a plant causes aphids to lose the virus. Furthermore, experimental studies suggest aphids could possibly inoculate multiple healthy plants within one infective period if they do not feed. Consequences of this for virus manipulation of host plant phenotype have not been explored. Our new compartmental epidemiological model includes both behaviour-based aphid dispersal and infectivity loss rates, and the ability of infective aphids to probe multiple plants before virus loss. We use our model to explore how NPT virus-induced host phenotypes affect epidemic outcomes, comparing these results to representative previous models. We find that previous models behave fundamentally differently and underestimate the benefit of an 'attract-and-deter' phenotype, where the virus induces increased aphid attraction to infected plants but deters them from prolonged feeding. Our results also highlight the importance of characterising NPT virus retention upon the aphid during probing. Allowing for multiple infective probes increases disease incidence and the effectiveness of virus manipulation, with implications for epidemic prediction and control.
Collapse
Affiliation(s)
- Elin K. Falla
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Paris TM, Johnston N, Strzyzewski I, Griesheimer JL, Reimer B, Malfa K, Allan SA, Martini X. Tomato yellow leaf curl virus manipulates Bemisia tabaci, MEAM1 both directly and indirectly through changes in visual and volatile cues. PeerJ 2024; 12:e17665. [PMID: 39071128 PMCID: PMC11276755 DOI: 10.7717/peerj.17665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/11/2024] [Indexed: 07/30/2024] Open
Abstract
The sweetpotato whitefly, Bemisia tabaci MEAM1, is one of the most devastating pests of row-crop vegetables worldwide, damaging crops directly through feeding and indirectly through the transmission of many different viruses, including the geminivirus Tomato yellow leaf curl virus (TYLCV). Y-tube olfactometer tests were conducted at different stages of TYLCV infection in tomatoes to understand how TYLCV affects B. tabaci behavior. We also recorded changes in tomato hosts' color and volatile profiles using color spectrophotometry and gas chromatography-mass spectrometry (GC-MS). We found that the infection status of B. tabaci and the infection stage of TYLCV influenced host selection, with uninfected whiteflies showing a preference for TYLCV-infected hosts, especially during the late stages of infection. Viruliferous B. tabaci attraction to visual targets significantly differed from non-viruliferous B. tabaci. Late-stage infected hosts had larger surface areas reflecting yellow-green wavelengths and higher emissions of methyl salicylate in their volatile profiles. These findings shed new light on several critical mechanisms involved in the viral manipulation of an insect vector and its economically important host.
Collapse
Affiliation(s)
- Thomson M. Paris
- Department of Entomology and Nematology, North Florida Research and Education Center, University of Florida, Quincy, FL, United States of America
| | - Nicholas Johnston
- Department of Entomology and Nematology, North Florida Research and Education Center, University of Florida, Quincy, FL, United States of America
| | - Iris Strzyzewski
- Department of Entomology and Nematology, North Florida Research and Education Center, University of Florida, Quincy, FL, United States of America
| | - Jessica L. Griesheimer
- Department of Entomology and Nematology, North Florida Research and Education Center, University of Florida, Quincy, FL, United States of America
| | - Benjamin Reimer
- Department of Entomology and Nematology, North Florida Research and Education Center, University of Florida, Quincy, FL, United States of America
| | - Kathi Malfa
- Department of Entomology and Nematology, North Florida Research and Education Center, University of Florida, Quincy, FL, United States of America
| | - Sandra A. Allan
- Insect Behavior and Biocontrol Research Unit, USDA-ARS, Gainesville, FL, United States of America
| | - Xavier Martini
- Department of Entomology and Nematology, North Florida Research and Education Center, University of Florida, Quincy, FL, United States of America
| |
Collapse
|
9
|
Cortez AO, Yoshinaga N, Mori N, Hwang SY. Plant growth-promoting rhizobacteria modulate induced corn defense against Spodoptera litura (Lepidoptera: Noctuidae). Biosci Biotechnol Biochem 2024; 88:872-884. [PMID: 38782714 DOI: 10.1093/bbb/zbae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Common cutworm, Spodoptera litura is an important pest of corn causing significant crop yield loss. Synthetic insecticides have mostly been used to combat this pest, raising human and environmental health concerns. Plant growth-promoting rhizobacteria (PGPR) could compensate for or augment the harmful effects of agrochemicals. Herein, we aimed to assess whether PGPR-induced defenses in corn plants impact the host-plant selection behavior of S. litura. Headspace volatile organic compounds were analyzed using gas chromatography-mass spectrometry. Larvae fed inoculated corn exhibited lower weights and relative growth rate than noninoculated plants. Under choice experiments, PGPR-treated plants significantly reduced percentage leaf damage area and oviposition rate compared to untreated plants. Volatile organic compound ratio emission varied significantly between control and PGPR treatments, which, in part, explains feeding and oviposition deterrence in PGPR-treated plants. The results demonstrate that PGPR inoculation can enhance corn resistance to S. litura, making it a promising candidate for crop protection strategies.
Collapse
Affiliation(s)
- Amado O Cortez
- Insect-Plant Interaction Laboratory, Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
- Department of Crop Science, College of Agriculture, Isabela State University, Echague, Isabela, the Philippines
| | - Naoko Yoshinaga
- Chemical Ecology Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naoki Mori
- Chemical Ecology Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shaw-Yhi Hwang
- Insect-Plant Interaction Laboratory, Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
10
|
Bailey ST, Kondragunta A, Choi HA, Han J, McInnes H, Rotenberg D, Ullman DE, Benoit JB. Dehydration and tomato spotted wilt virus infection combine to alter feeding and survival parameters for the western flower thrips, Frankliniella occidentalis. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100086. [PMID: 39193173 PMCID: PMC11345507 DOI: 10.1016/j.cris.2024.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 08/29/2024]
Abstract
Dehydration and tomato spotted wilt virus (TSWV) infection substantially impact the feeding of western flower thrips, Frankliniella occidentalis. Until now, the dynamics between these biotic and abiotic stresses have not been examined for thrips. Here, we report water balance characteristics and changes in other biological parameters during infection with TSWV for the western flower thrips. There were no apparent differences in water balance parameters during TSWV infection of male or female thrips. Our results show that, although water balance characteristics of western flower thrips are minimally impacted by TSWV infection, the increase in feeding and activity when dehydration and TSWV are combined suggests that virus transmission could be increased under periods of drought. Importantly, survival and progeny generation were impaired during TSWV infection and dehydration bouts. The negative impact on survival and reproduction suggests that the interactions between TSWV infection and dehydration will likely reduce thrips populations. The opposite effects of dehydration on feeding/activity and survival/reproduction for virus infected thrips suggest the impact of vectorial capacity will likely be minor for TSWV transmission. As water stress significantly impacts insect-plant-virus dynamics, these studies highlight that all interactions and effects need to be measured to understand thrips-TSWV interactions in their role as viral vector to plants.
Collapse
Affiliation(s)
- Samuel T. Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Alekhya Kondragunta
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Hyojin A. Choi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jinlong Han
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Holly McInnes
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Diane E. Ullman
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, USA
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
11
|
Zhang B, Yang W, He Q, Chen H, Che B, Bai X. Analysis of differential effects of host plants on the gut microbes of Rhoptroceros cyatheae. Front Microbiol 2024; 15:1392586. [PMID: 38962140 PMCID: PMC11221597 DOI: 10.3389/fmicb.2024.1392586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
As an indispensable part of insects, intestinal symbiotic bacteria play a vital role in the growth and development of insects and their adaptability. Rhoptroceros cyatheae, the main pest of the relict plant Alsophila spinulosa, poses a serious threat to the development of the A. spinulosa population. In the present study, 16S rDNA and internal transcribed spacer high-throughput sequencing techniques were used to analyze the structure of intestinal microbes and the diversity of the insect feeding on two different plants, as well as the similarities between the intestinal microorganisms of R. cyatheae. The dominant bacteria of leaf endophytes were also compared based on the sequencing data. The results showed that Proteobacteria, Firmicutes, and Actinobacteria were the dominant phyla of intestinal bacteria, and Ascomycota was the dominant phylum of intestinal fungi. Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Methylobacterium-Methylorubrum, and Enterococcus were the dominant genera in the intestine of R. cyatheae feeding on two plants, and the relative abundance was significantly different between the two groups. Candida was the common dominant genus of intestinal fungi in the two groups, and no significant difference was observed in its abundance between the two groups. This showed that compared with the intestinal fungi of R. cyatheae, the abundance of the intestinal bacteria was greatly affected by food. The common core microbiota between the microorganisms in A. spinulosa leaves and the insect gut indicated the presence of a microbial exchange between the two. The network correlation diagram showed that the gut microbes of R. cyatheae feeding on Gymnosphaera metteniana were more closely related to each other, which could help the host to better cope with the adverse external environment. This study provides a theoretical basis for the adaptation mechanism of R. cyatheae and a new direction for the effective prevention and control of R. cyatheae.
Collapse
Affiliation(s)
- Bingchen Zhang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Weicheng Yang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Qinqin He
- Guizhou Chishui Alsophila National Nature Reserve Administration Bureau, Chishui, Guizhou, China
| | - Hangdan Chen
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Bingjie Che
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Xiaojie Bai
- Guizhou Chishui Alsophila National Nature Reserve Administration Bureau, Chishui, Guizhou, China
| |
Collapse
|
12
|
Clemente-Orta G, Cabello Á, Garzo E, Moreno A, Fereres A. Aphidius colemani Behavior Changes Depending on Volatile Organic Compounds Emitted by Plants Infected with Viruses with Different Modes of Transmission. INSECTS 2024; 15:92. [PMID: 38392512 PMCID: PMC10889700 DOI: 10.3390/insects15020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Natural enemies are an additional component that may interact directly with the plant-virus-vector association, affecting viral dispersion. In our study, we conducted olfactometry assays to explore how single and mixed infections with CMV or/and CABYV modify the attractiveness of A. colemani to aphid-free and aphid-infested melon plants using two melon genotypes. Subsequently, we investigated the influence of CABYV-infected plants infested by A. gossypii on the parasitism rate and emergence of A. colemani in a dual-choice assay under greenhouse conditions. Our study demonstrates that males showed no preference for either infected or non-infected plants. Female parasitoids exhibit a preference for volatiles emitted by CMV and mixed-infected melon plants over clean air but not over mock-inoculated plants, suggesting a response influenced by plant genotype. Female parasitoid responses to CABYV and its interactions with aphids revealed a preference for mock-inoculated plants over CABYV-infected plants and a parasitism rate slightly higher (7.12%) on non-infected plants. Our study revealed that (1) parasitoids may reject olfactory cues from CABYV-infected plants, potentially interfering with the plant's "cry for help" response; (2) in the case of CMV, whether in single or mixed infections, non-infected plants are as attractive as infected ones to parasitoids. Our findings suggest that persistent viruses manipulate aphid parasitoid behavior to their advantage, promoting virus disease in melon crops.
Collapse
Affiliation(s)
- Gemma Clemente-Orta
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), C/Serrano 115 dpdo, 28006 Madrid, Spain
- Departament de Producció Vegetal i Ciència Forestal, AGROTECNIO Center, Universitat de Lleida, Rovira Roure 191, 25198 Lleida, Spain
| | - Ángel Cabello
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), C/Serrano 115 dpdo, 28006 Madrid, Spain
| | - Elisa Garzo
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), C/Serrano 115 dpdo, 28006 Madrid, Spain
| | - Aranzazu Moreno
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), C/Serrano 115 dpdo, 28006 Madrid, Spain
| | - Alberto Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), C/Serrano 115 dpdo, 28006 Madrid, Spain
| |
Collapse
|
13
|
Volpe HXL, Carmo-Sousa M, Luvizotto RAG, de Freitas R, Esperança V, Darolt JC, Pegoraro AAL, Magalhães DM, Favaris AP, Wulff NA, Miranda MP, Bento JMS, Leal WS. The greening-causing agent alters the behavioral and electrophysiological responses of the Asian citrus psyllid to a putative sex pheromone. Sci Rep 2024; 14:455. [PMID: 38172384 PMCID: PMC10764743 DOI: 10.1038/s41598-023-50983-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
The Asian Citrus Psyllid (ACP), Diaphorina citri, is a vector of the pathological bacterium Candidatus Liberibacter asiaticus (CLas), which causes the most devastating disease to the citrus industry worldwide, known as greening or huanglongbing (HLB). Earlier field tests with an acetic acid-based lure in greening-free, 'Valencia' citrus orange groves in California showed promising results. The same type of lures tested in São Paulo, Brazil, showed unsettling results. During the unsuccessful trials, we noticed a relatively large proportion of females in the field, ultimately leading us to test field-collected males and females for Wolbachia and CLas. The results showed high rates of Wolbachia and CLas infection in field populations. We then compared the olfactory responses of laboratory-raised, CLas-free, and CLas-infected males to acetic acid. As previously reported, CLas-uninfected males responded to acetic acid at 1 µg. Surprisingly, CLas-infected males required 50 × higher doses of the putative sex pheromone, thus explaining the failure to capture CLas-infected males in the field. CLas infection was also manifested in electrophysiological responses. Electroantennogram responses from CLas-infected ACP males were significantly higher than those obtained with uninfected males. To the best of our knowledge, this is the first report of a pathogen infection affecting a vector's response to a sex attractant.
Collapse
Affiliation(s)
- Haroldo X L Volpe
- Research and Development Department, Fund for Citrus Protection (Fundecitrus), Vila Melhado, Araraquara, São Paulo, 14807-040, Brazil
| | - Michele Carmo-Sousa
- Research and Development Department, Fund for Citrus Protection (Fundecitrus), Vila Melhado, Araraquara, São Paulo, 14807-040, Brazil
| | - Rejane A G Luvizotto
- Research and Development Department, Fund for Citrus Protection (Fundecitrus), Vila Melhado, Araraquara, São Paulo, 14807-040, Brazil
| | - Renato de Freitas
- Research and Development Department, Fund for Citrus Protection (Fundecitrus), Vila Melhado, Araraquara, São Paulo, 14807-040, Brazil
| | - Victoria Esperança
- Research and Development Department, Fund for Citrus Protection (Fundecitrus), Vila Melhado, Araraquara, São Paulo, 14807-040, Brazil
| | - Josiane C Darolt
- Research and Development Department, Fund for Citrus Protection (Fundecitrus), Vila Melhado, Araraquara, São Paulo, 14807-040, Brazil
| | - Abner A L Pegoraro
- Research and Development Department, Fund for Citrus Protection (Fundecitrus), Vila Melhado, Araraquara, São Paulo, 14807-040, Brazil
| | - Diego M Magalhães
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, São Paulo, 13418-900, Brazil
| | - Arodi P Favaris
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, São Paulo, 13418-900, Brazil
| | - Nelson A Wulff
- Research and Development Department, Fund for Citrus Protection (Fundecitrus), Vila Melhado, Araraquara, São Paulo, 14807-040, Brazil
| | - Marcelo P Miranda
- Research and Development Department, Fund for Citrus Protection (Fundecitrus), Vila Melhado, Araraquara, São Paulo, 14807-040, Brazil
| | - José Maurício S Bento
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, São Paulo, 13418-900, Brazil
| | - Walter S Leal
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA, 95616, USA.
| |
Collapse
|
14
|
Sanches P, De Moraes CM, Mescher MC. Endosymbionts modulate virus effects on aphid-plant interactions. THE ISME JOURNAL 2023; 17:2441-2451. [PMID: 37980433 PMCID: PMC10689485 DOI: 10.1038/s41396-023-01549-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/20/2023]
Abstract
Vector-borne pathogens frequently modify traits of their primary hosts and vectors in ways that influence disease transmission. Such effects can themselves be altered by the presence of other microbial symbionts, yet we currently have limited understanding of these interactions. Here we show that effects of pea enation mosaic virus (PEMV) on interactions between host plants and aphid vectors are modulated by the presence of different aphid endosymbionts. In a series of laboratory assays, we found strong interactive effects of virus infection and endosymbionts on aphid metabolomic profiles, population growth, behavior, and virus transmission during aphid feeding. Furthermore, the strongest effects-and those predicted to favor virus transmission-were most apparent in aphid lines harboring particular endosymbionts. These findings show that virus effects on host-vector interactions can be strongly influenced by other microbial symbionts and suggest a potentially important role for such interactions in disease ecology and evolution.
Collapse
Affiliation(s)
- Patricia Sanches
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | | | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
15
|
Wu HY, Li WH, Weng SH, Tsai WS, Tsai CW. Differential Effects of Two Tomato Begomoviruses on the Life History and Feeding Preference of Bemisia tabaci. INSECTS 2023; 14:870. [PMID: 37999069 PMCID: PMC10671868 DOI: 10.3390/insects14110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Tomato yellow leaf curl disease, caused by a group of closely related tomato yellow leaf curl viruses, is a major threat to tomato cultivation worldwide. These viruses are primarily transmitted by the sweet potato whitefly (Bemisia tabaci) in a persistent-circulative manner, wherein the virus circulates in the body of B. tabaci and infects its tissues. The complex relationship between viruses and whiteflies significantly influences virus transmission, with studies showing varying effects of the former on the life history and feeding preference of the latter. Whether these effects are direct or indirect, and whether they are negative, neutral, or positive, appears to depend on the specific interactions between virus and whitefly species. The tomato yellow leaf curl Thailand virus (TYLCTHV) and the tomato leaf curl Taiwan virus (ToLCTV) are two prevalent begomoviruses in fields in Taiwan. This study examined the direct and indirect effects of TYLCTHV and ToLCTV on the life history traits (longevity, fecundity, nymph survival, and nymph developmental time) and feeding preference of B. tabaci Middle East-Asia Minor 1 (MEAM1). The results revealed that TYLCTHV had no effects on these life history traits or the feeding preference of MEAM1 whiteflies. Although ToLCTV did not directly affect the longevity and fecundity of MEAM1 whiteflies, their fecundity and the nymph developmental time were negatively affected by feeding on ToLCTV-infected plants. In addition, ToLCTV infection also altered the feeding preference of MEAM1 whiteflies. The different effects of virus infection may contribute to the lower prevalence of ToLCTV compared to TYLCTHV in fields in Taiwan.
Collapse
Affiliation(s)
- Hsin-Yu Wu
- Department of Entomology, National Taiwan University, Taipei 106319, Taiwan; (H.-Y.W.); (W.-H.L.); (S.-H.W.)
| | - Wei-Hua Li
- Department of Entomology, National Taiwan University, Taipei 106319, Taiwan; (H.-Y.W.); (W.-H.L.); (S.-H.W.)
| | - Sung-Hsia Weng
- Department of Entomology, National Taiwan University, Taipei 106319, Taiwan; (H.-Y.W.); (W.-H.L.); (S.-H.W.)
| | - Wen-Shi Tsai
- Department of Plant Medicine, National Chiayi University, Chiayi 600335, Taiwan;
| | - Chi-Wei Tsai
- Department of Entomology, National Taiwan University, Taipei 106319, Taiwan; (H.-Y.W.); (W.-H.L.); (S.-H.W.)
| |
Collapse
|
16
|
Cui X, Liu Y, Zhang J, Hu P, Zheng Z, Deng X, Xu M. Variation of endosymbiont and citrus tristeza virus (CTV) titers in the Huanglongbing insect vector, Diaphorina citri, on CTV-infected plants. Front Microbiol 2023; 14:1236731. [PMID: 37808301 PMCID: PMC10556519 DOI: 10.3389/fmicb.2023.1236731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
"Candidatus Liberibacter asiaticus" (CLas) is a notorious agent that causes Citrus Huanglongbing (HLB), which is transmitted by Diaphorina citri (D. citri). We recently found that the acquisition and transmission of CLas by D. citri was facilitated by Citrus tristeza virus (CTV), a widely distributed virus in the field. In this study, we further studied whether different CTV strains manipulate the host preference of D. citri, and whether endosymbionts variation is related to CTV strains in D. citri. The results showed that the non-viruliferous D. citri preferred to select the shoots infected with CTV, without strain differences was observed in the selection. However, the viruliferous D. citri prefered to select the mixed strain that is similar to the field's. Furthermore, D. citri effectively acquired the CTV within 2-12 h depending on the strains of the virus. The persistence period of CTV in D. citri was longer than 24 days, without reduction of the CTV titers being observed. These results provide a foundation for understanding the transmission mode of D. citri on CTV. During the process of CTV acquisition and persistence, the titers of main endosymbionts in D. citri showed similar variation trend, but their relative titers were different at different time points. The titers of the "Candidatus Profftella armatura" and CTV tended to be positively correlated, and the titers of Wolbachia and "Candidatus Carsonella ruddii" were mostly negatively related with titers of CT31. These results showed the relationship among D. citri, endosymbionts, and CTV and provided useful information for further research on the interactions between D. citri and CLas, which may benefit the development of approaches for the prevention of CLas transmission and control of citrus HLB.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Meirong Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Hao ZP, Feng ZB, Sheng L, Fei WX, Hou SM. Aphids on Aphid-Susceptible Cultivars Have Easy Access to Turnip Mosaic Virus, and Effective Inoculation on Aphid-Resistant Cultivars of Oilseed Rape ( Brassica napus). PLANTS (BASEL, SWITZERLAND) 2023; 12:1972. [PMID: 37653889 PMCID: PMC10221937 DOI: 10.3390/plants12101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/30/2023] [Accepted: 05/11/2023] [Indexed: 09/02/2023]
Abstract
Plant viruses improve transmission efficiency by directly and indirectly influencing vector behavior, but the impact of plant cultivars on these modifications is rarely studied. Using electropenetrography (EPG) technology, a comparative study of the effects of turnip mosaic virus (TuMV) infection on quantitative probing behaviors of the cabbage aphid (Brevicoryne brassicae) was conducted on two oilseed rape cultivars ('Deleyou6' and 'Zhongshuang11'). Compared to mock-inoculated plants, cabbage aphids on infected plants increased the frequency of brief probing, cell penetration, and salivation. Additionally, aphids on infected 'Deleyou6' prolonged cell penetration time and decreased ingestion, but not on infected 'Zhongshuang11', suggesting that aphids were more likely to acquire and vector TuMV on the aphid-susceptible cultivar 'Deleyou6' than on resistant cultivars. TuMV also affected aphid probing behavior directly. Viruliferous aphids reduced the pathway duration, secreted more saliva, and ingested less sap than non-viruliferous aphids. In comparison with non-viruliferous aphids, viruliferous aphids started the first probe earlier and increased brief probing and cell penetration frequencies on the aphid-resistant cultivar 'Zhongshuang11'. Based on these observations, viruliferous aphids can be inoculated with TuMV more efficiently on 'Zhongshuang11' than on 'Deleyou6'. Although aphid resistance and TuMV infection may influence aphid probing behavior, oilseed rape resistance to aphids does not impede TuMV transmission effectively.
Collapse
Affiliation(s)
| | | | | | | | - Shu-Min Hou
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (Z.-P.H.); (Z.-B.F.); (L.S.); (W.-X.F.)
| |
Collapse
|
18
|
Lin PA, Kansman J, Chuang WP, Robert C, Erb M, Felton GW. Water availability and plant-herbivore interactions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2811-2828. [PMID: 36477789 DOI: 10.1093/jxb/erac481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/04/2022] [Indexed: 06/06/2023]
Abstract
Water is essential to plant growth and drives plant evolution and interactions with other organisms such as herbivores. However, water availability fluctuates, and these fluctuations are intensified by climate change. How plant water availability influences plant-herbivore interactions in the future is an important question in basic and applied ecology. Here we summarize and synthesize the recent discoveries on the impact of water availability on plant antiherbivore defense ecology and the underlying physiological processes. Water deficit tends to enhance plant resistance and escape traits (i.e. early phenology) against herbivory but negatively affects other defense strategies, including indirect defense and tolerance. However, exceptions are sometimes observed in specific plant-herbivore species pairs. We discuss the effect of water availability on species interactions associated with plants and herbivores from individual to community levels and how these interactions drive plant evolution. Although water stress and many other abiotic stresses are predicted to increase in intensity and frequency due to climate change, we identify a significant lack of study on the interactive impact of additional abiotic stressors on water-plant-herbivore interactions. This review summarizes critical knowledge gaps and informs possible future research directions in water-plant-herbivore interactions.
Collapse
Affiliation(s)
- Po-An Lin
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jessica Kansman
- Department of Entomology, the Pennsylvania State University, University Park, PA, USA
| | - Wen-Po Chuang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | | | - Matthias Erb
- Institute of Plant Science, University of Bern, Bern, Switzerland
| | - Gary W Felton
- Department of Entomology, the Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
19
|
Abstract
Prokaryotic and eukaryotic microbial symbiotic communities span through kingdoms. The vast microbial gene pool extends the host genome and supports adaptations to changing environmental conditions. Plants are versatile hosts for the symbionts, carrying microbes on the surface, inside tissues, and even within the cells. Insects are equally abundantly colonized by microbial symbionts on the exoskeleton, in the gut, in the hemocoel, and inside the cells. The insect gut is a prolific environment, but it is selective on the microbial species that enter with food. Plants and insects are often highly dependent on each other and frequently interact. Regardless of the accumulating evidence on the microbiomes of both organisms, it remains unclear how much they exchange and modify each other's microbiomes. In this review, we approach this question from the point of view of herbivores that feed on plants, with a special focus on the forest ecosystems. After a brief introduction to the subject, we concentrate on the plant microbiome, the overlap between plant and insect microbial communities, and how the exchange and modification of microbiomes affects the fitness of each host.
Collapse
|
20
|
Verdier M, Chesnais Q, Pirolles E, Blanc S, Drucker M. The cauliflower mosaic virus transmission helper protein P2 modifies directly the probing behavior of the aphid vector Myzus persicae to facilitate transmission. PLoS Pathog 2023; 19:e1011161. [PMID: 36745680 PMCID: PMC9934384 DOI: 10.1371/journal.ppat.1011161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 01/27/2023] [Indexed: 02/07/2023] Open
Abstract
There is growing evidence that plant viruses manipulate their hosts and vectors in ways that increase transmission. However, to date only few viral components underlying these phenomena have been identified. Here we show that cauliflower mosaic virus (CaMV) protein P2 modifies the feeding behavior of its aphid vector. P2 is necessary for CaMV transmission because it mediates binding of virus particles to the aphid mouthparts. We compared aphid feeding behavior on plants infected with the wild-type CaMV strain Cabb B-JI or with a deletion mutant strain, Cabb B-JIΔP2, which does not produce P2. Only aphids probing Cabb B-JI infected plants doubled the number of test punctures during the first contact with the plant, indicating a role of P2. Membrane feeding assays with purified P2 and virus particles confirmed that these viral products alone are sufficient to cause the changes in aphid probing. The behavior modifications were not observed on plants infected with a CaMV mutant expressing P2Rev5, unable to bind to the mouthparts. These results are in favor of a virus manipulation, where attachment of P2 to a specific region in the aphid stylets-the acrostyle-exercises a direct effect on vector behavior at a crucial moment, the first vector contact with the infected plant, which is essential for virus acquisition.
Collapse
Affiliation(s)
- Maxime Verdier
- SVQV UMR 1131 INRAE Centre Grand Est–Colmar, Université Strasbourg, Colmar, France
| | - Quentin Chesnais
- SVQV UMR 1131 INRAE Centre Grand Est–Colmar, Université Strasbourg, Colmar, France,* E-mail: (QC); (MD)
| | - Elodie Pirolles
- PHIM, INRAE Centre Occitanie–Montpellier, CIRAD, IRD, Université Montpellier, Institut Agro, Montferrier-sur-Lez, France
| | - Stéphane Blanc
- PHIM, INRAE Centre Occitanie–Montpellier, CIRAD, IRD, Université Montpellier, Institut Agro, Montferrier-sur-Lez, France
| | - Martin Drucker
- SVQV UMR 1131 INRAE Centre Grand Est–Colmar, Université Strasbourg, Colmar, France,* E-mail: (QC); (MD)
| |
Collapse
|
21
|
Hao ZP, Sheng L, Feng ZB, Fei WX, Hou SM. Turnip Mosaic Virus Infection Differentially Modifies Cabbage Aphid Probing Behavior in Spring and Winter Oilseed Rape ( Brassica napus). INSECTS 2022; 13:791. [PMID: 36135492 PMCID: PMC9505805 DOI: 10.3390/insects13090791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Direct and indirect effects of plant virus infection on vector behavior have been discovered to improve virus transmission efficiency, but the impact of plant cultivars in virus-vector-plant interactions has received little attention. Electropenetrography (EPG) allows real-time tracking and quantification of stylet penetration behaviors, pathogen transmission, and plant resistance mechanisms. Quantitative probing behaviors on a spring oilseed rape cultivar, 'Xinyou17', and a winter oilseed rape cultivar, 'Zheping4', were investigated using EPG to compare turnip mosaic virus (TuMV) regulation of cabbage aphid probing behavior. Results for indirect effects showed that compared to mock-inoculated plants, cabbage aphids on infected plants increased brief probing frequency, cell penetration frequency, intracellular probing time, and decreased time to first probe and pathway time, potentially promoting viral acquisition. TuMV also directly influences aphid probing behavior. Viruliferous aphids had reduced pathway time, increased cell penetration frequency, increased intracellular probing time, increased salivation frequency, and ingested less sap than non-viruliferous aphids, primed for viral infection. Although oilseed rape cultivars can also influence aphid behavior, the main effect of cultivars was not significant on TuMV-infected plants.
Collapse
|
22
|
Grauby S, Ferrer A, Tolon V, Roume A, Wezel A, Jacquot E. Can Mixed Intercropping Protect Cereals from Aphid-Borne Viruses? An Experimental Approach. INSECTS 2022; 13:insects13060521. [PMID: 35735858 PMCID: PMC9225097 DOI: 10.3390/insects13060521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
Intercropping, i.e., association of two or more species, is promising to reduce insect populations in fields. The cereal aphid Rhopalosiphum padi, a vector of the Barley yellow dwarf virus PAV (BYDV-PAV), represents a major threat for cereal grain production. In this study, we tested the potential of winter barley intercropped with clover to reduce the size of R. padi populations and to lower the BYDV-PAV incidence in fields. We used arenas (i.e., sets of 36 barley plants) intercropped with or without clover plants (at different sown densities). In each arena, a single viruliferous founder, R. padi, (with an alate or a wingless morph) was deposited to introduce aphids and viruses in the experiment. Thirteen days later, the number of aphids in the arena, the percentage of plants hosting aphids and the infection rates were monitored. Data produced through this experimental design showed that clover alters the distribution of the aphid progeny (lower aphid spread) produced by an alate founder morph. Moreover, clover reduces the size of aphid populations produced by a wingless founder morph. However, despite the effects of clover on biological parameters of R. padi, the presence of clover in barley arena did not modify BYDV infections, suggesting complex mechanisms between partners of the BYDV pathosystem for plant-to-plant virus spread.
Collapse
Affiliation(s)
- Sarah Grauby
- ISARA, Agroecology and Environment Research Unit, 23 Rue Jean Baldassini, 69364 Lyon, France; (A.F.); (V.T.); (A.R.); (A.W.)
- Correspondence: (S.G.); (E.J.)
| | - Aurélie Ferrer
- ISARA, Agroecology and Environment Research Unit, 23 Rue Jean Baldassini, 69364 Lyon, France; (A.F.); (V.T.); (A.R.); (A.W.)
| | - Vincent Tolon
- ISARA, Agroecology and Environment Research Unit, 23 Rue Jean Baldassini, 69364 Lyon, France; (A.F.); (V.T.); (A.R.); (A.W.)
| | - Anthony Roume
- ISARA, Agroecology and Environment Research Unit, 23 Rue Jean Baldassini, 69364 Lyon, France; (A.F.); (V.T.); (A.R.); (A.W.)
| | - Alexander Wezel
- ISARA, Agroecology and Environment Research Unit, 23 Rue Jean Baldassini, 69364 Lyon, France; (A.F.); (V.T.); (A.R.); (A.W.)
| | - Emmanuel Jacquot
- PHIM Plant Health Institute Montpellier, University of Montpellier, INRAE, CIRAD, Institut Agro, IRD, CEDEX 5, 34398 Montpellier, France
- Correspondence: (S.G.); (E.J.)
| |
Collapse
|
23
|
Manipulation of Insect Vectors’ Host Selection Behavior by Barley Yellow Dwarf Virus Is Dependent on the Host Plant Species and Viral Co-Infection. Life (Basel) 2022; 12:life12050644. [PMID: 35629312 PMCID: PMC9142937 DOI: 10.3390/life12050644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Previous studies have shown that vector-borne viruses can manipulate the host selection behavior of insect vectors, yet the tripartite interactions of pathogens, host plants and insect vectors have been documented only in a limited number of pathosystems. Here, we report that the host selection behavior of the insect vector of barley yellow dwarf virus-PAV (BYDV-PAV) and cereal yellow dwarf virus-RPS (CYDV-RPS) is dependent on the host plant species and viral co-infection. This study shows that a model cereal plant, Brachypodium distachyon, is a suitable host plant for examining tripartite interactions with BYDV-PAV and CYDV-RPS. We reveal that BYDV-PAV has a different effect on the host selection behavior of its insect vector depending on the host plant species. Viruliferous aphids significantly prefer non-infected plants to virus-infected wheat plants, whereas viral infection on a novel host plant, B. distachyon, is not implicated in the attraction of either viruliferous or nonviruliferous aphids. Furthermore, our findings show that multiple virus infections of wheat with BYDV-PAV and CYDV-RPS alter the preference of their vector aphid. This result indicates that BYDV-PAV acquisition alters the insect vector’s host selection, thereby varying the spread of multiple viruses.
Collapse
|
24
|
Zhao Y, Cao X, Zhong W, Zhou S, Li Z, An H, Liu X, Wu R, Bohora S, Wu Y, Liang Z, Chen J, Yang X, Zhou G, Zhang T. A viral protein orchestrates rice ethylene signaling to coordinate viral infection and insect vector-mediated transmission. MOLECULAR PLANT 2022; 15:689-705. [PMID: 35032687 DOI: 10.1016/j.molp.2022.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/19/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Arthropod-borne viruses cause serious threats to human health and global agriculture by rapidly spreading via insect vectors. Southern rice black-streaked dwarf virus (SRBSDV) is the most damaging rice-infecting virus that is frequently transmitted by planthoppers. However, the molecular mechanisms underlying its propagation in the host plants and epidemics in the field are largely unknown. Here, we showed that the SRBSDV-encoded P6 protein is a key effector that regulates rice ethylene signaling to coordinate viral infection and transmission. In early SRBSDV infection, P6 interacts with OsRTH2 in the cytoplasm to activate ethylene signaling and enhance SRBSDV proliferation; this also repels the insect vector to reduce infestation. In late infection, P6 enters the nucleus, where it interacts with OsEIL2, a key transcription factor of ethylene signaling. The P6-OsEIL2 interaction suppresses ethylene signaling by preventing the dimerization of OsEIL2, thereby facilitating viral transmission by attracting the insect vector. Collectively, these findings reveal a novel molecular mechanism by which an arbovirus modulates the host defense system to promote viral infection and transmission.
Collapse
Affiliation(s)
- Yaling Zhao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xue Cao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Weihua Zhong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shunkang Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhanbiao Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hong An
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Xiahua Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ruifeng Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Surakshya Bohora
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhenyi Liang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
25
|
Ontiveros I, López-Moya JJ, Díaz-Pendón JA. Coinfection of Tomato Plants with Tomato yellow leaf curl virus and Tomato chlorosis virus Affects the Interaction with Host and Whiteflies. PHYTOPATHOLOGY 2022; 112:944-952. [PMID: 34698541 DOI: 10.1094/phyto-08-21-0341-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Susceptible plants infected by single or multiple viruses can differ in symptoms and other alterations influencing virus dissemination. Furthermore, behavior of viruliferous vectors may be altered in certain cases to favor acquisition and inoculation processes conductive to virus transmission. We explored single and mixed infections frequently occurring in tomato crops, caused by two viruses transmitted by the whitefly Bemisia tabaci: Tomato yellow leaf curl virus (TYLCV, Begomovirus, Geminiviridae) and Tomato chlorosis virus (ToCV, Crinivirus, Closteroviridae). Coinfection of both viruses in tomato plants showed more severe symptoms at late stages compared with single infections, although at earlier stages the interaction began with attenuation. This asymmetric synergism correlated with the dynamics of ToCV accumulation and expression of the salicylic acid responsive gene PR-P6. Visual and olfactory cues in whitefly preference were evaluated under controlled conditions in choice assays, testing viruliferous and nonviruliferous adult whiteflies. In experiments allowing both visual and olfactory cues, whiteflies preferred symptomatic leaflets from plants infected either with TYLCV alone or with TYLCV and ToCV, over those infected with ToCV alone or noninfected leaflets, suggesting that TYLCV drove host selection. Odor cues tested in Y-tube olfactometer assays showed neutral effects on whiteflies' preference, and bioassays comparing the attractiveness of colored sticky cards confirmed preference for sectors colored to mimic TYLCV symptomatic leaves compared with asymptomatic leaves. Our results show that the presence of coinfecting viruses affect the host and could alter the behavior of insect vectors.
Collapse
Affiliation(s)
- Irene Ontiveros
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora," E-29750 Algarrobo-Costa, Málaga, Spain
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Juan Antonio Díaz-Pendón
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora," E-29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
26
|
Kwon SJ, Han SJ, Kim MH, Jang SY, Choi JS, Seo JK. Ethylene emitted by viral pathogen-infected pepper ( Capsicum annuum L.) plants is a volatile chemical cue that attracts aphid vectors. FRONTIERS IN PLANT SCIENCE 2022; 13:994314. [PMID: 36247604 PMCID: PMC9559363 DOI: 10.3389/fpls.2022.994314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/07/2022] [Indexed: 05/22/2023]
Abstract
Plant viruses are obligate intracellular pathogens, and most depend on insect vectors for transmission between plants. Viral infection causes various physiological and metabolic changes in host traits, which subsequently influence the behavior and fitness of the insect vectors. Cucumber mosaic virus (CMV), one of the most widespread pathogens in pepper (Capsicum annuum L.), is transmitted by aphid vectors in a non-persistent manner. Here, we examined whether CMV infection in pepper affects the behavior of aphid vectors (Myzus persicae and Aphis glycines) in pepper. Aphid preference test revealed that significantly more aphids were attracted to CMV-infected pepper plants than to healthy plants. Comparative transcriptome analysis revealed a significant activation of the ethylene biosynthesis pathway in CMV-infected pepper plants. Indeed, gas chromatography analysis demonstrated that ethylene emission was significantly increased by CMV infection in pepper plants. Elevated ethylene emission in ethephon-treated healthy pepper increased their attractiveness to aphids. In contrast, aphid preference decreased after chemical inhibition of ethylene biosynthesis in CMV-infected pepper plants. Our results suggest that the ethylene emitted by CMV infection is a volatile cue that regulates the attractiveness of pepper plants to M. persicae and A. glycines.
Collapse
Affiliation(s)
- Sun-Jung Kwon
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
| | - Soo-Jung Han
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
| | - Myung-Hwi Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Seok-Yeong Jang
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
| | - Ji-Soo Choi
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
| | - Jang-Kyun Seo
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Integrated Major in Global Smart Farm, Seoul National University, Seoul, South Korea
- *Correspondence: Jang-Kyun Seo,
| |
Collapse
|
27
|
Cunniffe NJ, Taylor NP, Hamelin FM, Jeger MJ. Epidemiological and ecological consequences of virus manipulation of host and vector in plant virus transmission. PLoS Comput Biol 2021; 17:e1009759. [PMID: 34968387 PMCID: PMC8754348 DOI: 10.1371/journal.pcbi.1009759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/12/2022] [Accepted: 12/15/2021] [Indexed: 12/25/2022] Open
Abstract
Many plant viruses are transmitted by insect vectors. Transmission can be described as persistent or non-persistent depending on rates of acquisition, retention, and inoculation of virus. Much experimental evidence has accumulated indicating vectors can prefer to settle and/or feed on infected versus noninfected host plants. For persistent transmission, vector preference can also be conditional, depending on the vector’s own infection status. Since viruses can alter host plant quality as a resource for feeding, infection potentially also affects vector population dynamics. Here we use mathematical modelling to develop a theoretical framework addressing the effects of vector preferences for landing, settling and feeding–as well as potential effects of infection on vector population density–on plant virus epidemics. We explore the consequences of preferences that depend on the host (infected or healthy) and vector (viruliferous or nonviruliferous) phenotypes, and how this is affected by the form of transmission, persistent or non-persistent. We show how different components of vector preference have characteristic effects on both the basic reproduction number and the final incidence of disease. We also show how vector preference can induce bistability, in which the virus is able to persist even when it cannot invade from very low densities. Feedbacks between plant infection status, vector population dynamics and virus transmission potentially lead to very complex dynamics, including sustained oscillations. Our work is supported by an interactive interface https://plantdiseasevectorpreference.herokuapp.com/. Our model reiterates the importance of coupling virus infection to vector behaviour, life history and population dynamics to fully understand plant virus epidemics. Plant virus diseases–which cause devastating epidemics in plant populations worldwide–are most often transmitted by insect vectors. Recent experimental evidence indicates how vectors do not choose between plants at random, but instead can be affected by whether plants are infected (or not). Virus infection can cause plants to “smell” different, because they produce different combinations of volatile chemicals, or “taste” different, due to chemical changes in infected tissues. Vector reproduction rates can also be affected when colonising infected versus uninfected plants. Potential effects on epidemic spread through a population of plants are not yet entirely understood. There are also interactions with the mode of virus transmission. Some viruses can be transmitted after only a brief probe by a vector, whereas others are only picked up after an extended feed on an infected plant. Furthermore there are differences in how long vectors remain able to transmit the virus. This ranges from a matter of minutes, right up to the entire lifetime of the insect, depending on the plant-virus-vector combination under consideration. Here we use mathematical modelling to synthesise all this complexity into a coherent theoretical framework. We illustrate our model via an online interface https://plantdiseasevectorpreference.herokuapp.com/.
Collapse
Affiliation(s)
- Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Nick P. Taylor
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Michael J. Jeger
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| |
Collapse
|
28
|
Mhlanga NM, Murphy AM, Wamonje FO, Cunniffe NJ, Caulfield JC, Glover BJ, Carr JP. An Innate Preference of Bumblebees for Volatile Organic Compounds Emitted by Phaseolus vulgaris Plants Infected With Three Different Viruses. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.626851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cucumber mosaic virus (CMV)-infected tomato (Solanum lycopersicum L.) plants emit volatile organic compounds (VOCs) attractive to bumblebees (Bombus terrestris L.), which are important tomato pollinators, but which do not transmit CMV. We investigated if this effect was unique to the tomato-CMV pathosystem. In two bean (Phaseolus vulgaris L.) cultivars, infection with the potyviruses bean common mosaic virus (BCMV) or bean common mosaic necrosis virus (BCMNV), or with the cucumovirus CMV induced quantitative changes in VOC emission detectable by coupled gas chromatography–mass spectrometry. In free-choice olfactometry assays bumblebees showed an innate preference for VOC blends emitted by virus-infected non-flowering bean plants and flowering CMV-infected bean plants, over VOCs emitted by non-infected plants. Bumblebees also preferred VOCs of flowering BCMV-infected plants of the Wairimu cultivar over non-infected plants, but the preference was not significant for BCMV-infected plants of the Dubbele witte cultivar. Bumblebees did not show a significant preference for VOCs from BCMNV-infected flowering bean plants but differential conditioning olfactometric assays showed that bumblebees do perceive differences between VOC blends emitted by flowering BCMNV-infected plants over non-infected plants. These results are consistent with the concept that increased pollinator attraction may be a virus-to-host payback, and show that virus-induced changes in bee-attracting VOC emission is not unique to one virus-host combination.
Collapse
|
29
|
Crowley-Gall A, Rering CC, Rudolph AB, Vannette RL, Beck JJ. Volatile microbial semiochemicals and insect perception at flowers. CURRENT OPINION IN INSECT SCIENCE 2021; 44:23-34. [PMID: 33096275 DOI: 10.1016/j.cois.2020.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Many plant-associated microbial communities produce volatile signals that influence insect responses, yet the impact of floral microorganisms has received less attention than other plant microbiomes. Floral microorganisms alter plant and floral odors by adding their own emissions or modifying plant volatiles. These contextual and microbe species-specific changes in floral signaling are detectable by insects and can modify their behavior. Opportunities for future work in floral systems include identifying specific microbial semiochemicals that underlie insect behavioral responses and examining if insect species vary in their responses to microbial volatiles. Examining if documented patterns are consistent across diverse plant-microbe-insect interactions and in realistic plant-based studies will improve our understanding of how microbes mediate pollination interactions in complex system.
Collapse
Affiliation(s)
- Amber Crowley-Gall
- Department of Entomology and Nematology, University of California Davis, 43 Briggs Hall, Davis, CA 95616, USA.
| | - Caitlin C Rering
- Chemistry Research Unit, Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL 32608, USA
| | - Arthur B Rudolph
- Chemistry Research Unit, Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL 32608, USA
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California Davis, 43 Briggs Hall, Davis, CA 95616, USA
| | - John J Beck
- Chemistry Research Unit, Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL 32608, USA
| |
Collapse
|
30
|
Staniek ME, Hamilton JGC. Odour of domestic dogs infected with Leishmania infantum is attractive to female but not male sand flies: Evidence for parasite manipulation. PLoS Pathog 2021; 17:e1009354. [PMID: 33735302 PMCID: PMC7971543 DOI: 10.1371/journal.ppat.1009354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/02/2021] [Indexed: 11/18/2022] Open
Abstract
Globally visceral leishmaniasis (VL) causes thousands of human deaths every year. In South America, the etiologic agent, Leishmania infantum, is transmitted from an infected canine reservoir to human hosts by the bite of the sand fly vector; predominantly Lutzomyia longipalpis. Previous evidence from model rodent systems have suggested that the odour of infected hosts is altered by the parasite making them more attractive to the vector leading to an increased biting rate and improved transmission prospects for the pathogen. However, there has been no assessment of the effect of Le infantum infection on the attractiveness of dogs, which are the natural reservoirs for human infection. Hair collected from infected and uninfected dogs residing in a VL endemic city in Brazil was entrained to collect the volatile chemical odours present in the headspace. Female and male Lu. longipalpis sand flies were offered a choice of odour entrained from infected and uninfected dogs in a series of behavioural experiments. Odour of uninfected dogs was equally attractive to male or female Lu. longipalpis when compared to a solvent control. Female Lu. longipalpis were significantly more attracted to infected dog odour than uninfected dog odour in all 15 experimental replicates (average 45.7±0.87 females attracted to infected odour; 23.9±0.82 to uninfected odour; paired T-test, P = 0.000). Male Lu. longipalpis did not significantly prefer either infected or uninfected odour (average 36.1±0.4 males to infected odour; 35.7±0.6 to uninfected odour; paired T-test, P = 0.722). A significantly greater proportion of females chose the infected dog odour compared to the males (paired T-test, P = 0.000). The results showed that the odour of dogs infected with Le. infantum was significantly more attractive to blood-seeking female sand flies than it was to male sand flies. This is strong evidence for parasite manipulation of the host odour in a natural transmission system and indicates that infected dogs may have a disproportionate significance in maintaining infection in the canine and human population.
Collapse
Affiliation(s)
- Monica E. Staniek
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancashire, United Kingdom
| | - James G. C. Hamilton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancashire, United Kingdom
| |
Collapse
|
31
|
Cruzado-Gutiérrez RK, Sadeghi R, Prager SM, Casteel CL, Parker J, Wenninger EJ, Price WJ, Bosque-Pérez NA, Karasev AV, Rashed A. Interspecific interactions within a vector-borne complex are influenced by a co-occurring pathosystem. Sci Rep 2021; 11:2242. [PMID: 33500488 PMCID: PMC7838419 DOI: 10.1038/s41598-021-81710-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 11/25/2022] Open
Abstract
Potato virus Y (PVY) and zebra chip (ZC) disease are major threats to solanaceous crop production in North America. PVY can be spread by aphid vectors and through vegetative propagation in potatoes. ZC is associated with "Candidatus Liberibacter solanacearum" (Lso), which is transmitted by the tomato/potato psyllid, Bactericera cockerelli Šulc (Hemiptera: Triozidae). As these two pathosystems may co-occur, we studied whether the presence of one virus strain, PVY°, affected the host preference, oviposition, and egg hatch rate of Lso-free or Lso-carrying psyllids in tomato plants. We also examined whether PVY infection influenced Lso transmission success by psyllids, Lso titer and plant chemistry (amino acids, sugars, and phytohormones). Lso-carrying psyllids showed a preference toward healthy hosts, whereas the Lso-free psyllids preferentially settled on the PVY-infected tomatoes. Oviposition of the Lso-carrying psyllids was lower on PVY-infected than healthy tomatoes, but Lso transmission, titer, and psyllid egg hatch were not significantly affected by PVY. The induction of salicylic acid and its related responses, and not nutritional losses, may explain the reduced attractiveness of the PVY-infected host to the Lso-carrying psyllids. Although our study demonstrated that pre-existing PVY infection can reduce oviposition by the Lso-carrying vector, the preference of the Lso-carrying psyllids to settle on healthy hosts could contribute to Lso spread to healthy plants in the presence of PVY infection in a field.
Collapse
Affiliation(s)
- Regina K Cruzado-Gutiérrez
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Aberdeen R&E Center, Aberdeen, ID, 83210, USA
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA
| | - Rohollah Sadeghi
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA
| | - Sean M Prager
- Department of Plant Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Clare L Casteel
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jessica Parker
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA
| | - Erik J Wenninger
- Department of Entomology, Plant Pathology and Nematology, Kimberly Research & Extension Center, University of Idaho, Kimberly, ID, 83341, USA
| | - William J Price
- College of Agricultural and Life Sciences, Statistical Programs, University of Idaho, Moscow, ID, 83844, USA
| | - Nilsa A Bosque-Pérez
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA
| | - Alexander V Karasev
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA
| | - Arash Rashed
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Aberdeen R&E Center, Aberdeen, ID, 83210, USA.
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
32
|
Fingu-Mabola JC, Bawin T, Francis F. Direct and Indirect Effect via Endophytism of Entomopathogenic Fungi on the Fitness of Myzus persicae and Its Ability to Spread PLRV on Tobacco. INSECTS 2021; 12:insects12020089. [PMID: 33494162 PMCID: PMC7909804 DOI: 10.3390/insects12020089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/30/2020] [Accepted: 01/19/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Aphids are major crop pests that are feeding on plant sap and transmitting plant viruses, thus inducing high yield losses worldwide. As chemical pesticides are decreasingly used in plant protection, fungi that cause disease to insects (entomopathogenic fungi) are one of the promising alternatives. They are commonly applied by spraying plants to protect them against herbivores. When applied, some fungi penetrate and live within plant tissues, thus helping to internally protect from insect attacks and other plant diseases. The aim of our study was to assess the effects of entomopathogenic fungi (EPF) applied firstly by contact after insect direct spraying, secondly by endophytic plant inoculation, and thirdly by associated both methods assessing the green peach aphid performances. The impact of the presence of endophytic entomopathogenic fungi (EEPF) in plant tissues on virus transmission by aphids was also considered. We found that the EPF Beauveria bassiana killed the green peach aphid and reduced its fecundity regardless of the application method. On fungal-inoculated plants, there was also a high mortality of aphid nymphs and infection by the potato leafroll virus (PLRV) was delayed by about a week with the EEPF treatment compared to fungal-free plants. This study showed that spraying plant leaves with EPF not only has a direct insecticidal effect against insects but could also have beneficial side effects for the plant against viruses. Abstract Aphids are major crop pests that transmit more than half of all insect-vectored plant viruses responsible for high yield losses worldwide. Entomopathogenic fungi (EPF) are biological control agents mainly used by foliar application to control herbivores, including sap-sucking pests such as aphids. Their ability to colonize plant tissues and to interact with diverse plant pathogenic microorganisms have been reported. In our study, we evaluated the effectiveness of Beauveria bassiana ((Balsamo-Crivelli) Vuillemin) directly applied by contact or/and indirectly via endophytism in tobacco plants (Nicotiana tabacum L.) against the virus vector Myzus persicae (Sulzer) carrying the Potato leafroll virus (PLRV) or not. We found that both contact treatment and endophytic colonization of leaves significantly increased aphid mortality and decreased the fecundity rate when compared to control plants. In addition, on fungal-colonized leaves, viruliferous aphids were more negatively impacted than virus-free ones and nymph mortality was significantly higher than on fungal-free plants. Furthermore, we assessed PLRV transmission by M. persicae on tobacco plants inoculated with either B. bassiana or Metarhizium acridum ((Driver and Milner) JF Bischoff, Rehner, and Humber) as source or/and recipient plants. Myzus persicae was found to acquire and transmit PLRV regardless of the treatment. Nevertheless, the infection rate of endophytically colonized plants was lower at a seven-day incubation period and had increased to almost 100% after fifteen days. These results suggest that B. bassiana is effective against aphids, both by contact and via endophytism, and both B. bassiana and M. acridum delayed PLRV infection in tobacco.
Collapse
Affiliation(s)
- Junior Corneille Fingu-Mabola
- Entomologie Fonctionnelle et Évolutive, Terra, Gembloux Agro-Bio Tech, Liège-Université, Passage des Déportés 2, 5030 Gembloux, Belgium;
- Correspondence:
| | - Thomas Bawin
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Framstredet 39, 2019 Tromsø, Norway;
| | - Frédéric Francis
- Entomologie Fonctionnelle et Évolutive, Terra, Gembloux Agro-Bio Tech, Liège-Université, Passage des Déportés 2, 5030 Gembloux, Belgium;
| |
Collapse
|
33
|
Mertens D, Boege K, Kessler A, Koricheva J, Thaler JS, Whiteman NK, Poelman EH. Predictability of Biotic Stress Structures Plant Defence Evolution. Trends Ecol Evol 2021; 36:444-456. [PMID: 33468354 DOI: 10.1016/j.tree.2020.12.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022]
Abstract
To achieve ecological and reproductive success, plants need to mitigate a multitude of stressors. The stressors encountered by plants are highly dynamic but typically vary predictably due to seasonality or correlations among stressors. As plants face physiological and ecological constraints in responses to stress, it can be beneficial for plants to evolve the ability to incorporate predictable patterns of stress in their life histories. Here, we discuss how plants predict adverse conditions, which plant strategies integrate predictability of biotic stress, and how such strategies can evolve. We propose that plants commonly optimise responses to correlated sequences or combinations of herbivores and pathogens, and that the predictability of these patterns is a key factor governing plant strategies in dynamic environments.
Collapse
Affiliation(s)
- Daan Mertens
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Karina Boege
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-275, Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Julia Koricheva
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | | | - Noah K Whiteman
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
34
|
Watt LG, Crawshaw S, Rhee SJ, Murphy AM, Canto T, Carr JP. The cucumber mosaic virus 1a protein regulates interactions between the 2b protein and ARGONAUTE 1 while maintaining the silencing suppressor activity of the 2b protein. PLoS Pathog 2020; 16:e1009125. [PMID: 33270799 PMCID: PMC7738167 DOI: 10.1371/journal.ppat.1009125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 12/15/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
The cucumber mosaic virus (CMV) 2b viral suppressor of RNA silencing (VSR) is a potent counter-defense and pathogenicity factor that inhibits antiviral silencing by titration of short double-stranded RNAs. It also disrupts microRNA-mediated regulation of host gene expression by binding ARGONAUTE 1 (AGO1). But in Arabidopsis thaliana complete inhibition of AGO1 is counterproductive to CMV since this triggers another layer of antiviral silencing mediated by AGO2, de-represses strong resistance against aphids (the insect vectors of CMV), and exacerbates symptoms. Using confocal laser scanning microscopy, bimolecular fluorescence complementation, and co-immunoprecipitation assays we found that the CMV 1a protein, a component of the viral replicase complex, regulates the 2b-AGO1 interaction. By binding 2b protein molecules and sequestering them in P-bodies, the 1a protein limits the proportion of 2b protein molecules available to bind AGO1, which ameliorates 2b-induced disease symptoms, and moderates induction of resistance to CMV and to its aphid vector. However, the 1a protein-2b protein interaction does not inhibit the ability of the 2b protein to inhibit silencing of reporter gene expression in agroinfiltration assays. The interaction between the CMV 1a and 2b proteins represents a novel regulatory system in which specific functions of a VSR are selectively modulated by another viral protein. The finding also provides a mechanism that explains how CMV, and possibly other viruses, modulates symptom induction and manipulates host-vector interactions.
Collapse
Affiliation(s)
- Lewis G. Watt
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sam Crawshaw
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sun-Ju Rhee
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alex M. Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Tomás Canto
- Department of Microbial and Plant Biotechnology, Center for Biological Research, Madrid, Spain
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Post-COVID-19 Action: Guarding Africa's Crops against Viral Epidemics Requires Research Capacity Building That Unifies a Trio of Transdisciplinary Interventions. Viruses 2020; 12:v12111276. [PMID: 33182262 PMCID: PMC7695315 DOI: 10.3390/v12111276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/20/2020] [Accepted: 10/30/2020] [Indexed: 01/15/2023] Open
Abstract
The COVID-19 pandemic has shown that understanding the genomics of a virus, diagnostics and breaking virus transmission is essential in managing viral pandemics. The same lessons can apply for plant viruses. There are plant viruses that have severely disrupted crop production in multiple countries, as recently seen with maize lethal necrosis disease in eastern and southern Africa. High-throughput sequencing (HTS) is needed to detect new viral threats. Equally important is building local capacity to develop the tools required for rapid diagnosis of plant viruses. Most plant viruses are insect-vectored, hence, biological insights on virus transmission are vital in modelling disease spread. Research in Africa in these three areas is in its infancy and disjointed. Despite intense interest, uptake of HTS by African researchers is hampered by infrastructural gaps. The use of whole-genome information to develop field-deployable diagnostics on the continent is virtually inexistent. There is fledgling research into plant-virus-vector interactions to inform modelling of viral transmission. The gains so far have been modest but encouraging, and therefore must be consolidated. For this, I propose the creation of a new Research Centre for Africa. This bold investment is needed to secure the future of Africa’s crops from insect-vectored viral diseases.
Collapse
|
36
|
Mou DF, Lee CC, Hahn PG, Soto N, Humphries AR, Helmick EE, Bahder BW. Effects of Lethal Bronzing Disease, Palm Height, and Temperature on Abundance and Monitoring of Haplaxius crudus. INSECTS 2020; 11:E748. [PMID: 33143096 PMCID: PMC7692074 DOI: 10.3390/insects11110748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 11/25/2022]
Abstract
Insect vector feeding preference and behavior play important roles in pathogen transmission, especially for pathogens that solely rely on insect vector transmission. This study aims to examine the effects of the 16SrIV-D phytoplasma, the causal agent of lethal bronzing (LB) disease of palms, on associated auchenorrhynchan insects. The numbers of auchenorrhynchans collected during weekly surveys during a yearlong study using yellow sticky traps were analyzed. The cumulative number of H. crudus was 4.5 times greater on phytoplasma-infected relative to non-infected palms. Other auchenorrhynchans showed no difference between phytoplasma-infected and non-infected palms or were greater on non-infected rather than on infected palms. Furthermore, we examined the effects of LB, palm height, temperature, and the interactive effects of these factors on H. crudus abundance. When the palms were infected with LB, at low temperature, H. crudus was more abundant on shorter than taller palms; however, H. crudus was more abundant on taller than shorter palms at the median and higher temperatures. These results may indicate that H. crudus prefers LB-infected palms over non-infected palms. The interactive effects of LB, palm heights, and temperature further suggest that vector monitoring and disease management should be optimized according to seasonal variation in temperature.
Collapse
Affiliation(s)
- De-Fen Mou
- Fort Lauderdale Research and Education Center, Department of Entomology and Nematology, University of Florida, 3205 College Ave., Ft. Lauderdale, FL 33314, USA; (N.S.); (A.R.H.); (E.E.H.); (B.W.B.)
| | - Chih-Chung Lee
- School of Biological Sciences, University of Nebraska-Lincoln, 412 Manter Hall, Lincoln, NE 68588, USA;
| | - Philip G. Hahn
- Department of Entomology and Nematology, University of Florida, 1881 Natural Area Dr., Gainesville, FL 32608, USA;
| | - Noemi Soto
- Fort Lauderdale Research and Education Center, Department of Entomology and Nematology, University of Florida, 3205 College Ave., Ft. Lauderdale, FL 33314, USA; (N.S.); (A.R.H.); (E.E.H.); (B.W.B.)
| | - Alessandra R. Humphries
- Fort Lauderdale Research and Education Center, Department of Entomology and Nematology, University of Florida, 3205 College Ave., Ft. Lauderdale, FL 33314, USA; (N.S.); (A.R.H.); (E.E.H.); (B.W.B.)
| | - Ericka E. Helmick
- Fort Lauderdale Research and Education Center, Department of Entomology and Nematology, University of Florida, 3205 College Ave., Ft. Lauderdale, FL 33314, USA; (N.S.); (A.R.H.); (E.E.H.); (B.W.B.)
| | - Brian W. Bahder
- Fort Lauderdale Research and Education Center, Department of Entomology and Nematology, University of Florida, 3205 College Ave., Ft. Lauderdale, FL 33314, USA; (N.S.); (A.R.H.); (E.E.H.); (B.W.B.)
| |
Collapse
|
37
|
Post-acquisition effects of viruses on vector behavior are important components of manipulation strategies. Oecologia 2020; 194:429-440. [PMID: 32996004 DOI: 10.1007/s00442-020-04763-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
A growing number of studies suggest that plant viruses manipulate host plant phenotypes to increase transmission-conducive behaviors by vectors. Studies on this phenomenon frequently omit examination of interactions that occur after vectors acquire virions, which provides an incomplete understanding of the ecology of plant virus manipulation. Here, by taking a full factorial approach that considered both the infection status of the host (Montia perfoliata) and viruliferous status of the aphid (Myzus persicae), we explored the effects of a circulative, non-propagative virus (Turnip yellows virus [TuYV]) on a suite of behavior and performance metrics that are relevant for virus transmission. Our results demonstrate that viruliferous aphids exhibited an increased velocity of movement and increased activity levels in locomotor and dispersal-retention assays. They also had increased fecundity and showed a capacity to more efficiently exploit resources by taking less time to reach the phloem and ingesting more sap, regardless of plant infection status. In contrast, non-viruliferous aphids only exhibited enhanced fecundity and biomass on TuYV-infected hosts, and had overall reduced dispersal and locomotor activity relative to viruliferous aphids. In this pathosystem, post-acquisition effects were stronger and more conducive to virus transmission than the purely pre-acquisition effects mediated by virus effects on the host plant. Our study provides additional support for the hypothesis that virus manipulation of vector behavior includes both pre- and post-acquisition effects and demonstrates the importance of considering both components when studying putative virus manipulation strategies.
Collapse
|
38
|
Görg LM, Gallinger J, Gross J. The phytopathogen ‘Candidatus Phytoplasma mali’ alters apple tree phloem composition and affects oviposition behavior of its vector Cacopsylla picta. CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-020-00326-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractApple proliferation disease is caused by the phloem-dwelling bacterium ‘Candidatus Phytoplasma mali’, inducing morphological changes in its host plant apple, such as witches’ broom formation. Furthermore, it triggers physiological alterations like emission of volatile organic compounds or phytohormone levels in the plant. In our study, we assessed phytoplasma-induced changes in the phloem by sampling phloem sap from infected and non-infected apple plants. In infected plants, the soluble sugar content increased and the composition of phloem metabolites differed significantly between non-infected and infected plants. Sugar and sugar alcohol levels increased in diseased plants, while organic and amino acid content remained constant. As ‘Ca. P. mali’ is vectored by the phloem-feeding insect Cacopsylla picta (Foerster, 1848), we assessed whether the insect–plant interaction was affected by ‘Ca. P. mali’ infection of the common host plant Malus domestica Borkh. Binary-choice oviposition bioassays between infected and non-infected apple leaves revealed C. picta’s preference for non-infected leaves. It is assumed and discussed that the changes in vector behavior are attributable to plant-mediated effects of the phytoplasma infection.
Collapse
|
39
|
Ramos A, Esteves MB, Cortés MTB, Lopes JRS. Maize Bushy Stunt Phytoplasma Favors Its Spread by Changing Host Preference of the Insect Vector. INSECTS 2020; 11:insects11090600. [PMID: 32899467 PMCID: PMC7565095 DOI: 10.3390/insects11090600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 01/20/2023]
Abstract
Simple Summary Phytopathogenic bacteria such as phytoplasmas induce physiological changes in their host plants that may modulate the behavior of an insect vector in favor of their own spread. In this study we investigate changes in the host selection behavior of the leafhopper vector, Dalbulus maidis (DeLong and Wolcott), in choice tests between healthy vs. maize bushy stunt phytoplasma (MBSP)-infected maize leaves (Zea mays L.), for insects previously exposed to infected plants (named “bacteriliferous”) or not (naive). The results showed that males and naive females of D. maids did not distinguish the treatments when infected leaves were still asymptomatic, whereas bacteriliferous females prefer to settle on healthy leaves, a behavior that favors pathogen inoculation and primary spread at early crop stages. During the symptomatic phase of maize infection, naive males and females were initially attracted to infected leaves, favoring pathogen acquisition; interestingly, the females tend to move towards healthy leaves a few hours later, a behavioral shift that promotes secondary spread. Overall, this study presents evidences that MBSP optimizes its spread in maize crops by influencing the host selection behavior of the leafhopper vector. Abstract Plant pathogenic bacteria may influence vector behavior by inducing physiological changes in host plants, with implications for their spread. Here, we studied the effects of maize bushy stunt phytoplasma (MBSP) on the host selection behavior of the leafhopper vector, Dalbulus maidis (DeLong and Wolcott). Choice assays contrasting leaves of healthy (mock-inoculated) vs. infected maize (Zea mays L.) were conducted during the asymptomatic and symptomatic phases of plant infection, with leafhopper males or females previously exposed to infected plants (bacteriliferous insects) or not. In each assay, 40 adults were released in choice arenas where only the leaves of two plants from each treatment were offered and visible, and the insects landed on the leaves were counted 1, 2, 3, 5, 7, 9, 11 and 23 h after release. During the asymptomatic phase of plant infection, an effect was observed only on bacteriliferous females, who preferred leaves of healthy plants 5 h after release or later. The symptomatic phase triggered a pull–push effect on non-bacteriliferous females, who were first attracted to symptomatic leaves but hours later moved to healthy leaves. Non-bacteriliferous males initially preferred symptomatic leaves (up to 5 h after release) and later became equally distributed between treatments. Bacteriliferous males and females initially did not discriminate between healthy and symptomatic leaves, but only the females tended to move to healthy leaves 9 h after release. Oviposition was drastically reduced on symptomatic leaves. The changes in vector behavior induced by MBSP favor its primary spread, since bacteriliferous females prefer healthy leaves at early (asymptomatic) stages of the crop. At later stages, secondary spread may be favored because non-bacteriliferous females are initially attracted to infected (symptomatic) leaves, allowing pathogen acquisition and subsequent transmission as they move to healthy plants.
Collapse
Affiliation(s)
- Anderson Ramos
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Avenida Padua Dias, 11, Piracicaba 13418-900, Brazil
| | - Mariana Bossi Esteves
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Avenida Padua Dias, 11, Piracicaba 13418-900, Brazil
| | - Mayerli Tatiana Borbón Cortés
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Avenida Padua Dias, 11, Piracicaba 13418-900, Brazil
| | - João Roberto Spotti Lopes
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Avenida Padua Dias, 11, Piracicaba 13418-900, Brazil
| |
Collapse
|
40
|
Gallinger J, Gross J. Phloem Metabolites of Prunus Sp. Rather than Infection with Candidatus Phytoplasma Prunorum Influence Feeding Behavior of Cacopsylla pruni Nymphs. J Chem Ecol 2020; 46:756-770. [PMID: 31965396 PMCID: PMC7429536 DOI: 10.1007/s10886-020-01148-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/11/2019] [Accepted: 01/08/2020] [Indexed: 10/29/2022]
Abstract
Phytoplasmas are specialized small bacteria restricted to the phloem tissue and spread by hemipterans feeding on plant sieve tube elements. As for many other plant pathogens, it is known that phytoplasmas alter the chemistry of their hosts. Most research on phytoplasma-plant interactions focused on the induction of plant volatiles and phytohormones. Little is known about the influence of phytoplasma infections on the nutritional composition of phloem and consequences on vector behavior and development. The plum psyllid Cacopsylla pruni transmits 'Candidatus Phytoplasma prunorum', the causing agent of European Stone Fruit Yellows (ESFY). While several Prunus species are susceptible for psyllid feeding, they show different responses to the pathogen. We studied the possible modulation of plant-insect interactions by bacteria-induced changes in phloem sap chemistry. Therefore, we sampled phloem sap from phytoplasma-infected and non-infected Prunus persica and Prunus insititia plants, which differ in their susceptibility to ESFY and psyllid feeding. Furthermore, the feeding behavior and development of C. pruni nymphs was compared on infected and non-infected P. persica and P. insititia plants. Phytoplasma infection did not affect phloem consumption by C. pruni nymphs nor their development time. In contrast, the study revealed significant differences between P. insititia and P. persica in terms of both phloem chemistry and feeding behavior of C. pruni nymphs. Phloem feeding phases were four times longer on P. insititia than on P. persica, resulting in a decreased development time and higher mortality of vector insects on P. persica plants. These findings explain the low infestation rates of peach cultivars with plum psyllids commonly found in field surveys.
Collapse
Affiliation(s)
- Jannicke Gallinger
- Laboratory of Applied Chemical Ecology, Institute for Plant Protection in Fruit Crops and Viticulture, Federal Research Centre for Cultivated Plants, Julius Kühn-Institut, Dossenheim, Germany
- Plant Chemical Ecology, Technical University of Darmstadt, Schnittspahnstr. 4, 64287, Darmstadt, Germany
| | - Jürgen Gross
- Laboratory of Applied Chemical Ecology, Institute for Plant Protection in Fruit Crops and Viticulture, Federal Research Centre for Cultivated Plants, Julius Kühn-Institut, Dossenheim, Germany.
- Plant Chemical Ecology, Technical University of Darmstadt, Schnittspahnstr. 4, 64287, Darmstadt, Germany.
| |
Collapse
|
41
|
Wang S, Guo H, Ge F, Sun Y. Apoptotic neurodegeneration in whitefly promotes the spread of TYLCV. eLife 2020; 9:56168. [PMID: 32729829 PMCID: PMC7392610 DOI: 10.7554/elife.56168] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/12/2020] [Indexed: 01/04/2023] Open
Abstract
The mechanism by which plant viruses manipulate the behavior of insect vectors has largely been described as indirect manipulation through modifications of the host plant. However, little is known about the direct interaction of the plant virus on the nervous system of its insect vector, and the substantial behavioral effect on virus transmission. Using a system consisting of a Tomato yellow leaf curl virus (TYLCV) and its insect vector whitefly, we found that TYLCV caused caspase-dependent apoptotic neurodegeneration with severe vacuolar neuropathological lesions in the brain of viruliferous whitefly by inducing a putative inflammatory signaling cascade of innate immunity. The sensory defects caused by neurodegeneration removed the steady preference of whitefly for virus-infected plants, thereby enhancing the probability of the virus to enter uninfected hosts, and eventually benefit TYLCV spread among the plant community. These findings provide a neuromechanism for virus transmission to modify its associated insect vector behavior. When a plant becomes infected by a virus, its defenses get weakened, which attracts insects that are looking for an easy meal. Insects detect which plants are infected based on the color of the sickened plant and the smell of chemicals it releases. Once an insect leaves the infected plant, it may carry the virus to new plants, allowing the virus to spread. Insects, however, prefer the easy pickings of plants that are already infected, making them less likely to spread the virus. Plant viruses have found ways to overcome this preference, but how they do this was not fully understood. Learning more about how plant viruses manipulate insects into helping them spread could allow scientists to develop new ways of protecting food crops from viral diseases. Viruses that infect insects can trigger excessive immune system responses that damage insects’ nerves and cause them to behave differently. For example, their senses may become impaired, they may move less, or be less able to remember things. This has led scientists to wonder whether plant viruses that use insects to spread might manipulate the insects’ behaviors using a similar mechanism. Now, Wang et al. have investigated whether the tomato yellow leaf curl virus –TYLCV for short – changes the behavior of whiteflies, which are known to spread the virus. The experiments showed that whiteflies typically prefer tomato plants infected with the virus, but after carrying TYLCV, they displayed equal preference for both infected and uninfected plants. Analyzing which genes were active in the whiteflies revealed that TYLCV triggers a harmful immune response which turns on genes that cause cells in the brain to die. This impairs the whiteflies' sight and sense of smell, making it harder for them to distinguish between infected and uninfected plants. These findings suggest that the immune response triggered by the virus may be essential for the spread of TYLCV. It also identified a protein that causes the death of brain cells, leading to behavioral changes in the whiteflies. This suggests that targeting this protein, or other steps in this process, could help stop the spread of TYLCV in tomato plants.
Collapse
Affiliation(s)
- Shifan Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.,Maoming Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Maoming, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Does the Infectious Status of Aphids Influence Their Preference Towards Healthy, Virus-Infected and Endophytically Colonized Plants? INSECTS 2020; 11:insects11070435. [PMID: 32664588 PMCID: PMC7412421 DOI: 10.3390/insects11070435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/26/2020] [Accepted: 07/08/2020] [Indexed: 01/26/2023]
Abstract
Aphids (Hemiptera: Aphididae) cause significant damage and transmit viruses to various crop plants. We aimed to evaluate how the infectious status of aphids influences their interaction with potential hosts. Two aphid (Myzus persicae and Rhopalosiphum padi) and plant (Nicotiana tabacum and Triticum aestivum) species were used. The preferences of aphids towards healthy, virus-infected (Potato Leafroll Virus (PLRV) and Barley Yellow Dwarf virus (BYDV)), and endophytic entomopathogenic fungi (EEPF)-inoculated (Beauveria bassiana and Metarhizium acridum) plants were investigated in dual-choice tests. The headspace volatiles of the different plant modalities were also sampled and analyzed. Viruliferous and non-viruliferous aphids were more attracted to EEPF-inoculated plants compared to uninoculated plants. However, viruliferous aphids were more attracted to EEPF-inoculated plants compared to virus-infected plants, while non-viruliferous insects exhibited no preference. Fungal-inoculated plants released higher amounts of aldehydes (i.e., heptanal, octanal, nonanal and decanal) compared to other plants, which might explain why viruliferous and non-viruliferous aphids were more abundant in EEPF-inoculated plants. Our study provides an interesting research perspective on how EEPF are involved in behavior of virus vector, depending on the infectious status of the latter.
Collapse
|
43
|
Wamonje FO, Donnelly R, Tungadi TD, Murphy AM, Pate AE, Woodcock C, Caulfield J, Mutuku JM, Bruce TJA, Gilligan CA, Pickett JA, Carr JP. Different Plant Viruses Induce Changes in Feeding Behavior of Specialist and Generalist Aphids on Common Bean That Are Likely to Enhance Virus Transmission. FRONTIERS IN PLANT SCIENCE 2020; 10:1811. [PMID: 32082355 PMCID: PMC7005137 DOI: 10.3389/fpls.2019.01811] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/27/2019] [Indexed: 05/23/2023]
Abstract
Bean common mosaic virus (BCMV), bean common mosaic necrosis virus (BCMNV), and cucumber mosaic virus (CMV) cause serious epidemics in common bean (Phaseolus vulgaris), a vital food security crop in many low-to-medium income countries, particularly in Sub-Saharan Africa. Aphids transmit these viruses "non-persistently," i.e., virions attach loosely to the insects' stylets. Viruses may manipulate aphid-host interactions to enhance transmission. We used direct observation and electrical penetration graph measurements to see if the three viruses induced similar or distinct changes in feeding behaviors of two aphid species, Aphis fabae and Myzus persicae. Both aphids vector BCMV, BCMNV, and CMV but A. fabae is a legume specialist (the dominant species in bean fields) while M. persicae is a generalist that feeds on and transmits viruses to diverse plant hosts. Aphids of both species commenced probing epidermal cells (behavior optimal for virus acquisition and inoculation) sooner on virus-infected plants than on mock-inoculated plants. Infection with CMV was especially disruptive of phloem feeding by the bean specialist aphid A. fabae. A. fabae also experienced mechanical stylet difficulty when feeding on virus-infected plants, and this was also exacerbated for M. persicae. Overall, feeding on virus-infected host plants by specialist and generalist aphids was affected in different ways but all three viruses induced similar effects on each aphid type. Specifically, non-specialist (M. persicae) aphids encountered increased stylet difficulties on plants infected with BCMV, BCMNV, or CMV, whereas specialist aphids (A. fabae) showed decreased phloem ingestion on infected plants. Probing and stylet pathway activity (which facilitate virus transmission) were not decreased by any of the viruses for either of the aphid species, except in the case of A. fabae on CMV-infected bean, where these activities were increased. Overall, these virus-induced changes in host-aphid interactions are likely to enhance non-persistent virus transmission, and data from this work will be useful in epidemiological modeling of non-persistent vectoring of viruses by aphids.
Collapse
Affiliation(s)
- Francis O. Wamonje
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ruairí Donnelly
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Trisna D. Tungadi
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alex M. Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Adrienne E. Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Christine Woodcock
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - John Caulfield
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - J. Musembi Mutuku
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Toby J. A. Bruce
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | | | - John A. Pickett
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
44
|
Islam W, Noman A, Naveed H, Alamri SA, Hashem M, Huang Z, Chen HYH. Plant-insect vector-virus interactions under environmental change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:135044. [PMID: 31726403 DOI: 10.1016/j.scitotenv.2019.135044] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Insects play an important role in the spread of viruses from infected plants to healthy hosts through a variety of transmission strategies. Environmental factors continuously influence virus transmission and result in the establishment of infection or disease. Plant virus diseases become epidemic when viruses successfully dominate the surrounding ecosystem. Plant-insect vector-virus interactions influence each other; pushing each other for their benefit and survival. These interactions are modulated through environmental factors, though environmental influences are not readily predictable. This review focuses on exploiting the diverse relationships, embedded in the plant-insect vector-virus triangle by highlighting recent research findings. We examined the interactions between viruses, insect vectors, and host plants, and explored how these interactions affect their behavior.
Collapse
Affiliation(s)
- Waqar Islam
- College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China; Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38000, Pakistan
| | - Hassan Naveed
- College of Life Science, Leshan Normal University, Leshan, Sichuan 614004, China
| | - Saad A Alamri
- King Khalid University, Faculty of Science, Biological Science Department, P.O. Box 10255, Abha 61321, Saudi Arabia; Prince Sultan Ben Abdulaziz Center for Environmental and Tourism Research and Studies, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Hashem
- King Khalid University, Faculty of Science, Biological Science Department, P.O. Box 10255, Abha 61321, Saudi Arabia; Assiut University, Faculty of Science, Botany Department, Assiut 71516, Egypt
| | - Zhiqun Huang
- College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China; Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China.
| | - Han Y H Chen
- College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China; Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
45
|
Raffa KF, Bonello P, Orrock JL. Why do entomologists and plant pathologists approach trophic relationships so differently? Identifying biological distinctions to foster synthesis. THE NEW PHYTOLOGIST 2020; 225:609-620. [PMID: 31494947 DOI: 10.1111/nph.16181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Plant interactions with herbivores and pathogens are among the most widespread ecological relationships, and show many congruent properties. Despite these similarities, general models describing how plant defenses function in ecosystems, and the prioritization of responses to emerging challenges such as climate change, invasive species and habitat alteration, often differ markedly between entomologists and plant pathologists. We posit that some fundamental distinctions between how insects and pathogens interact with plants underlie these differences. We propose a conceptual framework to help incorporate these distinctions into robust models and research priorities. The most salient distinctions include features of host-searching behavior, evasion of plant defenses, plant tolerance to utilization, and sources of insect and microbial population regulation. Collectively, these features lead to relatively more diffuse and environmentally mediated plant-insect interactions, and more intimate and genetically driven plant-pathogen interactions. Specific features of insect vs pathogen life histories can also yield different patterns of spatiotemporal dynamics. These differences can become increasingly pronounced when scaling from controlled laboratory to open ecological systems. Integrating these differences alongside similarities can foster improved models and research approaches to plant defense, trophic interactions, coevolutionary dynamics, food security and resource management, and provide guidance as traditional departments increase collaborations, or merge into larger units.
Collapse
Affiliation(s)
- Kenneth F Raffa
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Pierluigi Bonello
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - John L Orrock
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
46
|
Abstract
The pathological importance of mixed viral infections in plants might be underestimated except for a few well-characterized synergistic combinations in certain crops. Considering that the host ranges of many viruses often overlap and that most plant species can be infected by several unrelated viruses, it is not surprising to find more than one virus simultaneously in the same plant. Furthermore, dispersal of the majority of plant viruses relies on efficient transmission mechanisms mediated by vector organisms, mainly but not exclusively insects, which can contribute to the occurrence of multiple infections in the same plant. Recent work using different experimental approaches has shown that mixed viral infections can be remarkably frequent, up to the point that they could be considered the rule more than the exception. The purpose of this review is to describe the impact of multiple infections not only on the participating viruses themselves but also on their vectors and on the common host. From this standpoint, mixed infections arise as complex events that involve several cross-interacting players, and they consequently require a more general perspective than the analysis of single-virus/single-host approaches for a full understanding of their relevance.
Collapse
Affiliation(s)
- Ana Beatriz Moreno
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
47
|
Wamonje FO, Tungadi TD, Murphy AM, Pate AE, Woodcock C, Caulfield JC, Mutuku JM, Cunniffe NJ, Bruce TJA, Gilligan CA, Pickett JA, Carr JP. Three Aphid-Transmitted Viruses Encourage Vector Migration From Infected Common Bean ( Phaseolus vulgaris) Plants Through a Combination of Volatile and Surface Cues. FRONTIERS IN PLANT SCIENCE 2020; 11:613772. [PMID: 33381144 PMCID: PMC7767818 DOI: 10.3389/fpls.2020.613772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/19/2020] [Indexed: 05/14/2023]
Abstract
Bean common mosaic virus (BCMV), bean common mosaic necrosis virus (BCMNV), and cucumber mosaic virus (CMV) are important pathogens of common bean (Phaseolus vulgaris), a crop vital for food security in sub-Saharan Africa. These viruses are vectored by aphids non-persistently, with virions bound loosely to stylet receptors. These viruses also manipulate aphid-mediated transmission by altering host properties. Virus-induced effects on host-aphid interactions were investigated using choice test (migration) assays, olfactometry, and analysis of insect-perceivable volatile organic compounds (VOCs) using gas chromatography (GC)-coupled mass spectrometry, and GC-coupled electroantennography. When allowed to choose freely between infected and uninfected plants, aphids of the legume specialist species Aphis fabae, and of the generalist species Myzus persicae, were repelled by plants infected with BCMV, BCMNV, or CMV. However, in olfactometer experiments with A. fabae, only the VOCs emitted by BCMNV-infected plants repelled aphids. Although BCMV, BCMNV, and CMV each induced distinctive changes in emission of aphid-perceivable volatiles, all three suppressed emission of an attractant sesquiterpene, α-copaene, suggesting these three different viruses promote migration of virus-bearing aphids in a similar fashion.
Collapse
Affiliation(s)
- Francis O. Wamonje
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Trisna D. Tungadi
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alex M. Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Adrienne E. Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | - J. Musembi Mutuku
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: John P. Carr, ;
| |
Collapse
|
48
|
Grunseich JM, Thompson MN, Aguirre NM, Helms AM. The Role of Plant-Associated Microbes in Mediating Host-Plant Selection by Insect Herbivores. PLANTS (BASEL, SWITZERLAND) 2019; 9:E6. [PMID: 31861487 PMCID: PMC7020435 DOI: 10.3390/plants9010006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 02/05/2023]
Abstract
There is increasing evidence that plant-associated microorganisms play important roles in shaping interactions between plants and insect herbivores. Studies of both pathogenic and beneficial plant microbes have documented wide-ranging effects on herbivore behavior and performance. Some studies, for example, have reported enhanced insect-repellent traits or reduced performance of herbivores on microbe-associated plants, while others have documented increased herbivore attraction or performance. Insect herbivores frequently rely on plant cues during foraging and oviposition, suggesting that plant-associated microbes affecting these cues can indirectly influence herbivore preference. We review and synthesize recent literature to provide new insights into the ways pathogenic and beneficial plant-associated microbes alter visual, olfactory, and gustatory cues of plants that affect host-plant selection by insect herbivores. We discuss the underlying mechanisms, ecological implications, and future directions for studies of plant-microbial symbionts that indirectly influence herbivore behavior by altering plant traits.
Collapse
Affiliation(s)
- John M. Grunseich
- Department of Entomology, Texas A&M University, College Station, TX 77840, USA; (J.M.G.); (M.N.T.)
| | - Morgan N. Thompson
- Department of Entomology, Texas A&M University, College Station, TX 77840, USA; (J.M.G.); (M.N.T.)
| | - Natalie M. Aguirre
- Ecology and Evolutionary Biology Program, Texas A&M University; College Station, TX 77840, USA;
| | - Anjel M. Helms
- Department of Entomology, Texas A&M University, College Station, TX 77840, USA; (J.M.G.); (M.N.T.)
- Ecology and Evolutionary Biology Program, Texas A&M University; College Station, TX 77840, USA;
| |
Collapse
|
49
|
Moeini P, Afsharifar A, Izadpanah K, Sadeghi SE, Eigenbrode SD. Maize Iranian mosaic virus (family Rhabdoviridae) improves biological traits of its vector Laodelphax striatellus. Arch Virol 2019; 165:169-178. [PMID: 31773326 DOI: 10.1007/s00705-019-04450-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/27/2019] [Indexed: 11/29/2022]
Abstract
Plant viruses can alter the behavior or performance of their arthropod vectors, either indirectly (through effects of virus infection on the host plant) or directly (from virus acquisition by the vector). Given the diversity of plant viruses and their arthropod vectors, the effects for any specific system are not possible to predict. Here, we present experimental evidence that acquisition of maize Iranian mosaic virus (MIMV, genus Nucleorhabdovirus, family Rhabdoviridae) modifies the biological traits of its insect vector, the small brown planthopper (SBPH) Laodelphax striatellus. MIMV is an economically important virus of maize and several other grass species. It is transmitted by SBPHs in a persistent-propagative manner. We evaluated the effects of MIMV acquisition by SBPH on its life history when reared on healthy barley plants (Hordeum vulgare). We conclude that 1) MIMV acquisition by SBPHs increases female fecundity, duration of the nymph stage, adult longevity, and survival of SBPHs, (2) the mortality rate and female-to-male sex ratio are reduced in MIMV-infected planthoppers, and (3) MIMV infection increases the concentration of some biochemical components of the infected plants, including carbohydrates, some amino acids, and total protein, which might influence the life traits of its insect vector. The results indicate the potential of MIMV to improve the ecological fitness of its vector, SBPH, through direct or indirect effects, with the potential to increase the spread of the virus.
Collapse
Affiliation(s)
- Pedram Moeini
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Alireza Afsharifar
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran.
| | | | - Seyed Ebrahim Sadeghi
- Department of Plant Protection, Faculty of Agriculture, University of Tehran, Karaj, 31587-77871, Iran
| | - Sanford D Eigenbrode
- Department of Entomology, Plant Pathology and Nematology, College of Agricultural and Life Sciences, University of Idaho, Moscow, USA
| |
Collapse
|
50
|
Szczepaniec A, Finke D. Plant-Vector-Pathogen Interactions in the Context of Drought Stress. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00262] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|