1
|
Zablotskii V, Gorobets O, Gorobets S, Polyakova T. Effects of Static and Low-Frequency Magnetic Fields on Gene Expression. J Magn Reson Imaging 2025. [PMID: 39887550 DOI: 10.1002/jmri.29726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Substantial research over the past two decades has established that magnetic fields affect fundamental cellular processes, including gene expression. However, since biological cells and subcellular components exhibit diamagnetic behavior and are therefore subjected to very small magnetic forces that cannot directly compete with the viscoelastic and bioelectric intracellular forces responsible for cellular machinery functions, it becomes challenging to understand cell-magnetic field interactions and to reveal the mechanisms through which these interactions differentially influence gene expression in cells. The limited understanding of the molecular mechanisms underlying biomagnetic effects has hindered progress in developing effective therapeutic applications of magnetic fields. This review examines the expanding body of literature on genetic events during static and low-frequency magnetic field exposure, focusing particularly on how changes in gene expression interact with cellular machinery. To address this, we conducted a systematic review utilizing extensive search strategies across multiple databases. We explore the intracellular mechanisms through which transcription functions may be modified by a magnetic field in contexts where other cellular signaling pathways are also activated by the field. This review summarizes key findings in the field, outlines the connections between magnetic fields and gene expression changes, identifies critical gaps in current knowledge, and proposes directions for future research. LEVEL OF EVIDENCE: NA TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Vitalii Zablotskii
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
- International Magnetobiology Frontier Research Center (iMFRC), Science Island, Hefei, China
| | - Oksana Gorobets
- Faculty of Physics and Mathematics, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | - Svitlana Gorobets
- Faculty of Biotechnology and Biotechnics, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | - Tatyana Polyakova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Dar RA, Tsui TH, Zhang L, Smoliński A, Tong YW, Mohamed Rasmey AH, Liu R. Recent achievements in magnetic-field-assisted anaerobic digestion for bioenergy production. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2025; 207:114902. [DOI: 10.1016/j.rser.2024.114902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Pargoo SS, Baniasadi F, Jasemi VSK, Hajiaghalou S, Gharanfoli M, Fathi R. Effect of Moderate Static Magnetic Fields on Mice Oocyte Vitrification: Calcium-Related Genes Expression. Biopreserv Biobank 2024; 22:441-451. [PMID: 38527284 DOI: 10.1089/bio.2022.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
The ability to cryopreserve oocytes without ultrastructural injury has been a concern in the development and use of methods to preserve female reproduction. The stability of the cell membrane must be preserved to reduce the damage caused by ice crystals during vitrification. One approach that has been explored is the use of static magnetic fields (SMFs), which are believed to influence cell membrane stability. In this study, the in vitro effects of SMF that range between 20-80 mT on the vitrification of mice germinal vesicle (GV) oocytes were studied. The viability and mitochondrial (Mt) membrane potential of both vitrified and nonvitrified oocytes were assessed using Trypan blue and JC1 staining. The high in vitro maturation (IVM) rate and high Mt membrane potential in metaphase II (MII) oocytes were taken into account to determine the optimal magnetic field intensity, that is, 20 mT. None of the SMF conditions resulted in intact spindles in MII oocytes. The study also explored the expression of store-operated calcium entry (Stim1, Orai1, and Ip3r) and meiosis resumption (Ccnb, Cdk) genes in GV and MII oocytes of both vitrified and control groups. The results show that the expressions of Orai1 and Ccnb genes in Vit-MII-SMF oocytes were considerably increased. However, no significant difference in Stim1 expression was observed between the groups. The Vit-MII-SMF group exhibited a significantly higher Ccnb expression compared to other groups. In vitro fertilization (IVF) was performed to evaluate the 2 pronuclear (2PN) rates. The findings demonstrated that using 20 mT SMF improved 2PN rates compared to the nonvitrified groups. This study provides a deeper understanding of the effects of moderate SMF and vitrification on the expression of calcium channel genes in GV and MII oocytes. The results suggest that applying a 20 mT SMF can help prevent cryoinjury and enhance the characteristics of vitrified-warmed oocytes.
Collapse
Affiliation(s)
- Sara Soleimani Pargoo
- Department of Cell and Molecular Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Farzaneh Baniasadi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Vida Sadat Kazemein Jasemi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Samira Hajiaghalou
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohsen Gharanfoli
- Department of Cell and Molecular Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
4
|
Scheau C, Pop CR, Rotar AM, Socaci S, Mălinaș A, Zăhan M, Coldea ȘD, Pop VC, Fit NI, Chirilă F, Criveanu HR, Oltean I. The Influence of Physical Fields (Magnetic and Electric) and LASER Exposure on the Composition and Bioactivity of Cinnamon Bark, Patchouli, and Geranium Essential Oils. PLANTS (BASEL, SWITZERLAND) 2024; 13:1992. [PMID: 39065519 PMCID: PMC11281253 DOI: 10.3390/plants13141992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
In recent years, essential oils (EOs) have received increased attention from the research community, and the EOs of cinnamon, patchouli, and geranium have become highly recognized for their antibacterial, antifungal, antiviral, and antioxidant effects. Due to these properties, they have become valuable and promising candidates for addressing the worldwide threat of antimicrobial resistance and other diseases. Simultaneously, studies have revealed promising new results regarding the effects of physical fields (magnetic and electric) and LASER (MEL) exposure on seed germination, plant growth, biomass accumulation, and the yield and composition of EOs. In this frame, the present study aims to investigate the influence of MEL treatments on cinnamon, patchouli, and geranium EOs, by specifically examining their composition, antimicrobial properties, and antioxidant activities. Results showed that the magnetic influence has improved the potency of patchouli EO against L. monocytogenes, S. enteritidis, and P. aeruginosa, while the antimicrobial activity of cinnamon EO against L. monocytogenes was enhanced by the electric and laser treatments. All exposures have increased the antifungal effect of geranium EO against C. albicans. The antioxidant activity was not modified by any of the treatments. These findings could potentially pave the way for a deeper understanding of the efficiency, the mechanisms of action, and the utilization of EOs, offering new insights for further exploration and application.
Collapse
Affiliation(s)
- Camelia Scheau
- PhD School of Agricultural Engineering Sciences, USAMV Cluj-Napoca, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 64, Floresti Street, 400509 Cluj-Napoca, Romania; (C.R.P.); (A.M.R.); (S.S.)
| | - Ancuța Mihaela Rotar
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 64, Floresti Street, 400509 Cluj-Napoca, Romania; (C.R.P.); (A.M.R.); (S.S.)
| | - Sonia Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 64, Floresti Street, 400509 Cluj-Napoca, Romania; (C.R.P.); (A.M.R.); (S.S.)
| | - Anamaria Mălinaș
- Department of Environmental Protection and Engineering, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Marius Zăhan
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania; (M.Z.); (Ș.D.C.)
| | - Ștefania Dana Coldea
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania; (M.Z.); (Ș.D.C.)
| | - Viorel Cornel Pop
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Nicodim Iosif Fit
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania; (N.I.F.); (F.C.)
| | - Flore Chirilă
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania; (N.I.F.); (F.C.)
| | - Horia Radu Criveanu
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania;
| | - Ion Oltean
- Department of Plant Protection, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
5
|
Guan W, Gao H, Liu Y, Sun S, Li G. Application of magnetism in tissue regeneration: recent progress and future prospects. Regen Biomater 2024; 11:rbae048. [PMID: 38939044 PMCID: PMC11208728 DOI: 10.1093/rb/rbae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 06/29/2024] Open
Abstract
Tissue regeneration is a hot topic in the field of biomedical research in this century. Material composition, surface topology, light, ultrasonic, electric field and magnetic fields (MFs) all have important effects on the regeneration process. Among them, MFs can provide nearly non-invasive signal transmission within biological tissues, and magnetic materials can convert MFs into a series of signals related to biological processes, such as mechanical force, magnetic heat, drug release, etc. By adjusting the MFs and magnetic materials, desired cellular or molecular-level responses can be achieved to promote better tissue regeneration. This review summarizes the definition, classification and latest progress of MFs and magnetic materials in tissue engineering. It also explores the differences and potential applications of MFs in different tissue cells, aiming to connect the applications of magnetism in various subfields of tissue engineering and provide new insights for the use of magnetism in tissue regeneration.
Collapse
Affiliation(s)
- Wenchao Guan
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hongxia Gao
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yaqiong Liu
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Shaolan Sun
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Guicai Li
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Zhang L, Chi M, Cheng Y, Chen Z, Cao Y, Zhao G. Static magnetic field assisted thawing improves cryopreservation of mouse whole ovaries. Bioeng Transl Med 2024; 9:e10613. [PMID: 38193129 PMCID: PMC10771557 DOI: 10.1002/btm2.10613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/19/2023] [Accepted: 10/01/2023] [Indexed: 01/10/2024] Open
Abstract
Ovarian tissue cryopreservation is considered to be the only means to preserve fertility for prepubertal girls and women whose cancer treatment cannot be postponed. However, ovarian tissues are inevitably damaged by oxidative stress during cryopreservation, which threatens follicle survival and development, and thus affects female fertility. Therefore, reducing tissue oxidative stress injury is one of the major challenges to achieving efficient cryopreservation of ovarian tissues, especially for whole ovaries. Here, we proposed a new method to improve the antioxidant capacity of whole ovaries during cryopreservation, static magnetic field assisted thawing. The results demonstrated that the antioxidant capacity of the ovarian tissue was significantly improved by static magnetic field treatment. In addition, ovarian tissue allograft transplantation was carried out, which successfully achieved vascular regeneration and maintained follicular development. The findings of this study not only provide a new reference for the preservation of female fertility, but also is a major step forward in the cryopreservation of tissues and organs. It will have good application prospects in the field of assisted reproduction and cryo-biomedicine.
Collapse
Affiliation(s)
- Liyuan Zhang
- School of Basic MedicineAnhui Medical UniversityHefeiChina
| | - Mengqiao Chi
- School of Basic MedicineAnhui Medical UniversityHefeiChina
| | - Yue Cheng
- School of Biomedical EngineeringAnhui Medical UniversityHefeiChina
| | - Zhongrong Chen
- School of Biomedical EngineeringAnhui Medical UniversityHefeiChina
| | - Yunxia Cao
- Department of Obstetrics and GynecologyReproductive Medicine Center, The First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University)HefeiChina
| | - Gang Zhao
- School of Basic MedicineAnhui Medical UniversityHefeiChina
- School of Biomedical EngineeringAnhui Medical UniversityHefeiChina
- Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
7
|
Kunwar S, Pandey N, Bhatnagar P, Chadha G, Rawat N, Joshi NC, Tomar MS, Eyvaz M, Gururani P. A concise review on wastewater treatment through microbial fuel cell: sustainable and holistic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6723-6737. [PMID: 38158529 DOI: 10.1007/s11356-023-31696-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Research for alternative sources for producing renewable energy is rising exponentially, and consequently, microbial fuel cells (MFCs) can be seen as a promising approach for sustainable energy production and wastewater purification. In recent years, MFC is widely utilized for wastewater treatment in which the removal efficiency of heavy metal ranges from 75-95%. They are considered as green and sustainable technology that contributes to environmental safety by reducing the demand for fossil fuels, diminishes carbon emissions, and reverses the trend of global warming. Moreover, significant reduction potential can be seen for other parameters such as total carbon oxygen demand (TCOD), soluble carbon oxygen demand (SCOD), total suspended solids (TSS), and total nitrogen (TN). Furthermore, certain problems like economic aspects, model and design of MFCs, type of electrode material, electrode cost, and concept of electro-microbiology limit the commercialization of MFC technology. As a result, MFC has never been accepted as an appreciable competitor in the area of treating wastewater or renewable energy. Therefore, more efforts are still required to develop a useful model for generating safe, clean, and CO2 emission-free renewable energy along with wastewater treatment. The purpose of this review is to provide a deep understanding of the working mechanism and design of MFC technology responsible for the removal of different pollutants from wastewater and generate power density. Existing studies related to the implementation of MFC technology in the wastewater treatment process along with the factors affecting its functioning and power outcomes have also been highlighted.
Collapse
Affiliation(s)
- Saloni Kunwar
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Neha Pandey
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Pooja Bhatnagar
- Algal Research and Bioenergy Laboratory, Department of Food Science & Technology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Gurasees Chadha
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Neha Rawat
- Department of Microbiology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Naveen Chandra Joshi
- Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Mahipal Singh Tomar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, 769008, India
| | - Murat Eyvaz
- Department of Environmental Engineering, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Prateek Gururani
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
8
|
Li W, Tian W, Wu Y, Guo S. A Novel Magnetic Manipulation Promotes Directional Growth of Periodontal Ligament Stem Cells. Tissue Eng Part A 2023; 29:620-632. [PMID: 37603495 DOI: 10.1089/ten.tea.2023.0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
Periodontium is the rally of soft and hard tissues, which will be devastated continuously by the compromise of periodontitis. Current periodontal therapeutic methods cannot effectively reconstruct periodontal ligament (PDL), which is oriented at an angle with tooth root and combined hard tissues to form cementum-PDL-alveolar bone complex. Hence, it is urgent to find new techniques for PDL reconstruction to achieve functional regeneration of periodontium. Herein, we developed a novel method to manipulate the distribution and growth of periodontal ligament stem cells (PDLSCs) by utilizing highly paralleled static magnetic field (SMF) and magnetic nanoparticles (MNPs). PDLSCs were incubated with MNPs in vitro to label with them. Meanwhile, CCK8 and live/dead cell staining assay were used to detect the impact of SMF and MNPs on cell viability. The directional migration and growth of PDLSCs were visualized under microscope. Furthermore, real-time quantitative PCR and western blot were utilized to calculate the expression level of PDL-related genes. The results showed that PDLSCs could rapidly take up MNPs without compromising cell proliferation and viability, consequently endowed with the ability to respond via magnetic force. The cell migration analysis indicated that PDLSCs could move along the magnetic induction line, testifying that SMF exerted forces on PDLSCs that labeled with MNPs. It was demonstrated that collective application of SMF and MNPs not only induced PDLSCs organized and grew directionally, but also initiated elongation of cells and nucleus. Furthermore, the morphological alteration of the nucleus could also effectively enhance the gene and protein expression of Collagen Ⅰα2, Collagen Ⅲ, and Periostin, suggesting the capability of PDLSCs to differentiate into PDL. In conclusion, this study exhibits a new approach for directional reconstruction of PDL to obtain physiological and functional regeneration of periodontium. The Clinical Trial Registration number: WCHSIRB-D-2022-458.
Collapse
Affiliation(s)
- Weiguang Li
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Yafei Wu
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Shujuan Guo
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
9
|
Kafali M, Şahinoğlu OB, Tufan Y, Orsel ZC, Aygun E, Alyuz B, Saritas EU, Erdem EY, Ercan B. Antibacterial properties and osteoblast interactions of microfluidically synthesized chitosan - SPION composite nanoparticles. J Biomed Mater Res A 2023; 111:1662-1677. [PMID: 37232403 DOI: 10.1002/jbm.a.37575] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/28/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
In this research, a multi-step microfluidic reactor was used to fabricate chitosan - superparamagnetic iron oxide composite nanoparticles (Ch - SPIONs), where composite formation using chitosan was aimed to provide antibacterial property and nanoparticle stability for magnetic resonance imaging (MRI). Monodispersed Ch - SPIONs had an average particle size of 8.8 ± 1.2 nm with a magnetization value of 32.0 emu/g. Ch - SPIONs could be used as an MRI contrast agent by shortening T2 relaxation parameter of the surrounding environment, as measured on a 3 T MRI scanner. In addition, Ch - SPIONs with concentrations less than 1 g/L promoted bone cell (osteoblast) viability up to 7 days of culture in vitro in the presence of 0.4 T external static magnetic field. These nanoparticles were also tested against Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa), which are dangerous pathogens that cause infection in tissues and biomedical devices. Upon interaction of Ch - SPIONs with S. aureus and P. aeruginosa at 0.01 g/L concentration, nearly a 2-fold reduction in the number of colonies was observed for both bacteria strains at 48 h of culture. Results cumulatively showed that Ch - SPIONs were potential candidates as a cytocompatible and antibacterial agent that can be targeted to biofilm and imaged using an MRI.
Collapse
Affiliation(s)
- Melisa Kafali
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
| | - O Berkay Şahinoğlu
- Department of Mechanical Engineering, Bilkent University, Ankara, Turkey
| | - Yiğithan Tufan
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
| | - Z Cemre Orsel
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
| | - Elif Aygun
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Beril Alyuz
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Emine Ulku Saritas
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
- Neuroscience Graduate Program, Bilkent University, Ankara, Turkey
| | - E Yegan Erdem
- Department of Mechanical Engineering, Bilkent University, Ankara, Turkey
- National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey
| | - Batur Ercan
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
- Biomedical Engineering Program, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
10
|
McGraw M, Gilmer G, Bergmann J, Seshan V, Wang K, Pekker D, Modo M, Ambrosio F. Mapping the Landscape of Magnetic Field Effects on Neural Regeneration and Repair: A Combined Systematic Review, Mathematical Model, and Meta-Analysis. J Tissue Eng Regen Med 2023; 2023:5038317. [PMID: 40226417 PMCID: PMC11918650 DOI: 10.1155/2023/5038317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 04/15/2025]
Abstract
Magnetic field exposure is a well-established diagnostic tool. However, its use as a therapeutic in regenerative medicine is relatively new. To better understand how magnetic fields affect neural repair in vitro, we started by performing a systematic review of publications that studied neural repair responses to magnetic fields. The 38 included articles were highly heterogeneous, representing 13 cell types, magnetic field magnitudes of 0.0002-10,000 mT with frequencies of 0-150 Hz, and exposure times ranging from one hour to several weeks. Mathematical modeling based on data from the included manuscripts revealed higher magnetic field magnitudes enhance neural progenitor cell (NPC) viability. Finally, for those regenerative processes not influenced by magnitude, frequency, or time, we integrated the data by meta-analyses. Results revealed that magnetic field exposure increases NPC proliferation while decreasing astrocytic differentiation. Collectively, our approach identified neural repair processes that may be most responsive to magnetic field exposure.
Collapse
Affiliation(s)
- Meghan McGraw
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Gabrielle Gilmer
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Cellular and Molecular Pathology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juliana Bergmann
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Biological Sciences in the Dietrich School of Arts & Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vishnu Seshan
- Institute of Quantum Science and Technology, Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kai Wang
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - David Pekker
- Department of Physics & Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fabrisia Ambrosio
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Sadeghzadeh H, Dianat-Moghadam H, Del Bakhshayesh AR, Mohammadnejad D, Mehdipour A. A review on the effect of nanocomposite scaffolds reinforced with magnetic nanoparticles in osteogenesis and healing of bone injuries. Stem Cell Res Ther 2023; 14:194. [PMID: 37542279 PMCID: PMC10403948 DOI: 10.1186/s13287-023-03426-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023] Open
Abstract
Many problems related to disorders and defects of bone tissue caused by aging, diseases, and injuries have been solved by the multidisciplinary research field of regenerative medicine and tissue engineering. Numerous sciences, especially nanotechnology, along with tissue engineering, have greatly contributed to the repair and regeneration of tissues. Various studies have shown that the presence of magnetic nanoparticles (MNPs) in the structure of composite scaffolds increases their healing effect on bone defects. In addition, the induction of osteogenic differentiation of mesenchymal stem cells (MSCs) in the presence of these nanoparticles has been investigated and confirmed by various studies. Therefore, in the present article, the types of MNPs, their special properties, and their application in the healing of damaged bone tissue have been reviewed. Also, the molecular effects of MNPs on cell behavior, especially in osteogenesis, have been discussed. Finally, the present article includes the potential applications of MNP-containing nanocomposite scaffolds in bone lesions and injuries. In summary, this review article highlights nanocomposite scaffolds containing MNPs as a solution for treating bone defects in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Hadi Sadeghzadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daryush Mohammadnejad
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Ren T, Maitusong M, Zhou X, Hong X, Cheng S, Lin Y, Xue J, Xu D, Chen J, Qian Y, Lu Y, Liu X, Zhu Y, Wang J. Programing Cell Assembly via Ink-Free, Label-Free Magneto-Archimedes Based Strategy. ACS NANO 2023; 17:12072-12086. [PMID: 37363813 DOI: 10.1021/acsnano.2c10704] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Tissue engineering raised a high requirement to control cell distribution in defined materials and structures. In "ink"-based bioprintings, such as 3D printing and photolithography, cells were associated with inks for spatial orientation; the conditions suitable for one ink are hard to apply on other inks, which increases the obstacle in their universalization. The Magneto-Archimedes effect based (Mag-Arch) strategy can modulate cell locomotion directly without impelling inks. In a paramagnetic medium, cells were repelled from high magnetic strength zones due to their innate diamagnetism, which is independent of substrate properties. However, Mag-Arch has not been developed into a powerful bioprinting strategy as its precision, complexity, and throughput are limited by magnetic field distribution. By controlling the paramagnetic reagent concentration in the medium and the gaps between magnets, which decide the cell repelling scope of magnets, we created simultaneously more than a hundred micrometer scale identical assemblies into designed patterns (such as alphabets) with single/multiple cell types. Cell patterning models for cell migration and immune cell adhesion studies were conveniently created by Mag-Arch. As a proof of concept, we patterned a tumor/endothelial coculture model within a covered microfluidic channel to mimic epithelial-mesenchymal transition (EMT) under shear stress in a cancer pathological environment, which gave a potential solution to pattern multiple cell types in a confined space without any premodification. Overall, our Mag-Arch patterning presents an alternative strategy for the biofabrication and biohybrid assembly of cells with biomaterials featured in controlled distribution and organization, which can be broadly employed in tissue engineering, regenerative medicine, and cell biology research.
Collapse
Affiliation(s)
- Tanchen Ren
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Miribani Maitusong
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Xuhao Zhou
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Xiaoqian Hong
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Si Cheng
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yin Lin
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Junhui Xue
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Dilin Xu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Jinyong Chen
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yi Qian
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yuwen Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Xianbao Liu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Jian'an Wang
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| |
Collapse
|
13
|
Guo Z, Zhu J, Qin G, Jia Y, Liu Z, Yang N, Guo R. Static Magnetic Fields Promote Generation of Muscle Lineage Cells from Pluripotent Stem Cells and Myoblasts. Stem Cell Rev Rep 2023; 19:1402-1414. [PMID: 37000377 DOI: 10.1007/s12015-023-10535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Static magnetic fields (SMFs) exhibit numerous biological effects and regulate the proliferation and differentiation of several adult stem cells. However, the role of SMFs in the self-renewal maintenance and developmental potential of pluripotent embryonic stem cells (ESCs) remains largely uninvestigated. Here, we show that SMFs promote the expression of the core pluripotent markers Sox2 and SSEA-1. Furthermore, SMFs facilitate the differentiation of ESCs into cardiomyocytes and skeletal muscle cells. Consistently, transcriptome analysis reveals that muscle lineage differentiation and skeletal system specification of ESCs are remarkably strengthened by SMF stimuli. Additionally, when treated with SMFs, C2C12 myoblasts exhibit an increased proliferation rate, improved expression of skeletal muscle markers and elevated myogenic differentiation capacity compared with control cells. Together, our data show that SMFs effectively promote muscle cell generation from pluripotent stem cells and myoblasts. The noninvasive and convenient physical stimuli can be used to increase the production of muscle cells in regenerative medicine and the manufacture of cultured meat in cellular agriculture.
Collapse
Affiliation(s)
- Zhaoyuan Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiahao Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guanyu Qin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yumei Jia
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zheng Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Na Yang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- INDUC Scientific Co., Ltd, No. 28-132 Jinshan North Photoelectric Science and Technology Park, Wuxi, 214000, China
| | - Renpeng Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
14
|
Ferrauto G, Terreno E. Compartmentalized agents: A powerful strategy for enhancing the detection sensitivity of chemical exchange saturation transfer contrast. NMR IN BIOMEDICINE 2023; 36:e4791. [PMID: 35731545 DOI: 10.1002/nbm.4791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 05/23/2023]
Abstract
Since the very beginnings of the chemical exchange saturation transfer (CEST) technique, poor overall sensitivity has appeared to be one of its strongest limitations for future applications. Research has therefore focused on designing systems, such as supramolecular and nanosized agents, that contain a high number of magnetically equivalent mobile spins. However, the number of mobile spins offered by these systems is still limited by their composition and surface/volume ratio. The design of compartmentalized agents, that is, systems where an aqueous inner core is separated from the MRI-detected bulk pool via a semipermeable barrier/membrane, is very much a step forward for the technique. These vesicular systems can (i) act as biocompatible and versatile carriers for dia-, para-, and hetero-nuclear CEST probes, thus offering new application options; and (ii) act as CEST probes themselves via the encapsulation of a suitable agent (e.g., a paramagnetic shift reagent) that can change the resonance frequency of the spin pool in the inner compartment only. LipoCEST agents were the pioneers in the latter category, as they are able to grant picomolar sensitivity (in terms of nanoparticle concentration), and paved the way for new applications for CEST agents, especially in the theranostic research area. The use of larger, natural vesicular systems, such as yeasts and cells, in which the huge number of intravesicular spins lowers the detection threshold to a femtomolar limit, is a further step forward in the development of compartmentalized CEST agents. Finally, interesting combinations of nanovesicular and cellular compartmentalized systems have been proposed, thus highlighting how the approach has the potential to drive CEST agents towards completing their journey to mature clinical translation.
Collapse
Affiliation(s)
- Giuseppe Ferrauto
- Center for Molecular and Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Enzo Terreno
- Center for Molecular and Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
15
|
Zhang G, Liu X, Liu Y, Zhang S, Yu T, Chai X, He J, Yin D, Zhang C. The effect of magnetic fields on tumor occurrence and progression: Recent advances. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 179:38-50. [PMID: 37019340 DOI: 10.1016/j.pbiomolbio.2023.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/14/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
Malignancies are the leading human health threat worldwide. Despite rapidly developing treatments, poor prognosis and outcome are still common. Magnetic fields have shown good anti-tumoral effects both in vitro and in vivo, and represent a potential non-invasive treatment; however, the specific underlying molecular mechanisms remain unclear. We here review recent studies on magnetic fields and their effect on tumors at three different levels: organismal, cellular, and molecular. At the organismal level, magnetic fields suppress tumor angiogenesis, microcirculation, and enhance the immune response. At the cellular level, magnetic fields affect tumor cell growth and biological functions by affecting cell morphology, cell membrane structure, cell cycle, and mitochondrial function. At the molecular level, magnetic fields suppress tumors by interfering with DNA synthesis, reactive oxygen species level, second messenger molecule delivery, and orientation of epidermal growth factor receptors. At present, scientific experimental evidence is still lacking; therefore, systematic studies on the biological mechanisms involved are urgently needed for the future application of magnetic fields to tumor treatment.
Collapse
|
16
|
Peng L, Wu F, Cao M, Li M, Cui J, Liu L, Zhao Y, Yang J. Effects of different physical factors on osteogenic differentiation. Biochimie 2023; 207:62-74. [PMID: 36336107 DOI: 10.1016/j.biochi.2022.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Osteoblasts are essential for bone formation and can perceive external mechanical stimuli, which are translated into biochemical responses that ultimately alter cell phenotypes and respond to environmental stimuli, described as mechanical transduction. These cells actively participate in osteogenesis and the formation and mineralisation of the extracellular bone matrix. This review summarises the basic physiological and biological mechanisms of five different physical stimuli, i.e. light, electricity, magnetism, force and sound, to induce osteogenesis; further, it summarises the effects of changing culture conditions on the morphology, structure and function of osteoblasts. These findings may provide a theoretical basis for further studies on bone physiology and pathology at the cytological level and will be useful in the clinical application of bone formation and bone regeneration technology.
Collapse
Affiliation(s)
- Li Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Mengjiao Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Mengxin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Jingyao Cui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Lijia Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Yun Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China.
| |
Collapse
|
17
|
Overview of Antimicrobial Biodegradable Polyester-Based Formulations. Int J Mol Sci 2023; 24:ijms24032945. [PMID: 36769266 PMCID: PMC9917530 DOI: 10.3390/ijms24032945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023] Open
Abstract
As the clinical complications induced by microbial infections are known to have life-threatening side effects, conventional anti-infective therapy is necessary, but not sufficient to overcome these issues. Some of their limitations are connected to drug-related inefficiency or resistance and pathogen-related adaptive modifications. Therefore, there is an urgent need for advanced antimicrobials and antimicrobial devices. A challenging, yet successful route has been the development of new biostatic or biocide agents and biomaterials by considering the indisputable advantages of biopolymers. Polymers are attractive materials due to their physical and chemical properties, such as compositional and structural versatility, tunable reactivity, solubility and degradability, and mechanical and chemical tunability, together with their intrinsic biocompatibility and bioactivity, thus enabling the fabrication of effective pharmacologically active antimicrobial formulations. Besides representing protective or potentiating carriers for conventional drugs, biopolymers possess an impressive ability for conjugation or functionalization. These aspects are key for avoiding malicious side effects or providing targeted and triggered drug delivery (specific and selective cellular targeting), and generally to define their pharmacological efficacy. Moreover, biopolymers can be processed in different forms (particles, fibers, films, membranes, or scaffolds), which prove excellent candidates for modern anti-infective applications. This review contains an overview of antimicrobial polyester-based formulations, centered around the effect of the dimensionality over the properties of the material and the effect of the production route or post-processing actions.
Collapse
|
18
|
Nardini C, Candelise L, Turrini M, Addimanda O. Semi-automated socio-anthropologic analysis of the medical discourse on rheumatoid arthritis: Potential impact on public health. PLoS One 2022; 17:e0279632. [PMID: 36580470 PMCID: PMC9799325 DOI: 10.1371/journal.pone.0279632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The debilitating effects of noncommunicable diseases (NCDs) and the accompanying chronic inflammation represent a significant obstacle for the sustainability of our development, with efforts spreading worldwide to counteract the diffusion of NCDs, as per the United Nations Sustainable Development Goals (SDG 3). In fact, despite efforts of varied intensity in numerous directions (from innovations in biotechnology to lifestyle modifications), the incidence of NCDs remains pandemic. The present work wants to contribute to addressing this major concern, with a specific focus on the fragmentation of medical approaches, via an interdisciplinary analysis of the medical discourse, i.e. the heterogenous reporting that biomedical scientific literature uses to describe the anti-inflammatory therapeutic landscape in NCDs. The aim is to better capture the roots of this compartmentalization and the power relations existing among three segregated pharmacological, experimental and unstandardized biomedical approaches to ultimately empower collaboration beyond medical specialties and possibly tap into a more ample and effective reservoir of integrated therapeutic opportunities. METHOD Using rheumatoid arthritis (RA) as an exemplar disease, twenty-eight articles were manually translated into a nine-dimensional categorical variable of medical socio-anthropological relevance, relating in particular (but not only) to legitimacy, temporality and spatialization. This digitalized picture (9 x 28 table) of the medical discourse was further analyzed by simple automated learning approaches to identify differences and highlight commonalities among the biomedical categories. RESULTS Interpretation of these results provides original insights, including suggestions to: empower scientific communication between unstandardized approaches and basic biology; promote the repurposing of non-pharmacological therapies to enhance robustness of experimental approaches; and align the spatial representation of diseases and therapies in pharmacology to effectively embrace the systemic approach promoted by modern personalized and preventive medicines. We hope this original work can expand and foster interdisciplinarity among public health stakeholders, ultimately contributing to the achievement of SDG3.
Collapse
Affiliation(s)
- Christine Nardini
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo "Mauro Picone", Roma, Italy
- * E-mail: (CN); (LC); (MT)
| | - Lucia Candelise
- ISS, Istitut Sciences Sociales, Université de Lausanne, Lausanne, Switzerland
- CEPED, Centre Population et Développement, Université de Paris, Paris, France
- * E-mail: (CN); (LC); (MT)
| | - Mauro Turrini
- Institute of Public Goods and Policies (IPP), Spanish National Research Council (CSIC), Madrid, Spain
- * E-mail: (CN); (LC); (MT)
| | - Olga Addimanda
- UOC Medicina Interna ad Indirizzo Reumatologico, Ospedale Maggiore, AUSL Bologna, Bologna, Italy
| |
Collapse
|
19
|
Intermittent ELF-MF Induce an Amplitude-Window Effect on Umbilical Cord Blood Lymphocytes. Int J Mol Sci 2022; 23:ijms232214391. [PMID: 36430865 PMCID: PMC9699011 DOI: 10.3390/ijms232214391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
In a previous study of the effects of intermittent extremely low frequency (ELF) magnetic fields (MF) on umbilical cord blood lymphocytes (UCBL), we evaluated MF amplitudes between 6 µT and 24 µT and found an effect only for those below 13 µT. This suggested the existence of an amplitude window. In this brief communication, we further tested this hypothesis. UCBLs from healthy newborns were isolated and exposed for 72 h to an intermittent ELF-MF (triangular, 7.8 Hz, 250 s ON/250 s OFF) with 6 different amplitudes between 3 µT and 12 µT, utilizing an oblong coil. Percentage of viable, early apoptotic (EA), and late apoptotic/necrotic (LAN) cells were determined by flow cytometry. Moreover, reactive oxygen species (ROS) were determined at 1 h and 3 h of the exposure. Like in our previous work, neither EA, nor LAN, nor ROS were statistically significantly affected by the intermittent ELF-MF. However, the percentage of viable cells was decreased by exposure to the fields with intensities of 6.5 µT and 12 µT (p < 0.05; and p = 0.057 for 8.5 µT). ELF-MF decreased the percentage of viable cells for fields down to 6.5 µT, but not for 5 µT, 4 µT, or 3 µT. Combined with our previous findings, the results reported here indicate an amplitude window effect between 6 µT and 13 µT. The obtained data are in line with a notion of amplitude and frequency windows, which request scanning of both amplitude and frequency while studying the ELF-MF effects.
Collapse
|
20
|
Multidisciplinary and Nonpharmacological Management of Pain in Temporomandibular Disorders (TMDs). Pain Res Manag 2022; 2022:3604386. [PMID: 36267665 PMCID: PMC9578907 DOI: 10.1155/2022/3604386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/06/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
Temporomandibular joint dysfunction (TMD) is not a single diagnosis, but a term covering a group of conditions that involve pain and dysfunction of the masticatory muscles within the temporomandibular joint (TMJ) and associated structures. It is a set of disease entities comprising various ailments and clinical symptoms. One of the most distressing symptoms for TMD patients is pain. Pain is subjective and always unpleasant. The VAS (visual analogue scale) was used in this research. The aim of this study was to assess the influence of physical stimuli, namely extremely low frequency magnetic field (ELF-MF) and LED light, on the experience of pain caused by increased tension in the masticatory muscles in adults. Out of 150 people examined, 104 were enrolled in the study after meeting the eligibility criteria. The study group was divided into 4 subgroups. Each subgroup received physical therapy treatment using a different physical stimulus. The effects of four therapeutic modalities were compared. In terms of VAS scores, pain attenuation was observed in all subgroups. The study confirmed the analgesic effect of the selected physical therapy methods. The authors focused on the analysis of the results obtained for each subgroup, comparing the effects of individual modalities on pain intensity (according to VAS scores). After the treatment, pain relief was observed in each of the studied subgroups. Treatment using ELF-MF and ELF-MF in combination with LED light in the course of TMD brings about a significant improvement in the subjective pain experience expressed in VAS pain scores. The use of selected physical stimuli and their beneficial effect on pain symptoms during mandibular movements has important implications for patients' daily life and work. Incorporation of therapeutic methods can help enhance patient satisfaction and comfort during manual TMJ therapy and lengthy dental procedures.
Collapse
|
21
|
Smith CS, Orkwis JA, Bryan AE, Xu Z, Harris GM. The impact of physical, biochemical, and electrical signaling on Schwann cell plasticity. Eur J Cell Biol 2022; 101:151277. [PMID: 36265214 DOI: 10.1016/j.ejcb.2022.151277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 12/14/2022] Open
Abstract
Peripheral nervous system (PNS) injuries are an ongoing health care concern. While autografts and allografts are regarded as the current clinical standard for traumatic injury, there are inherent limitations that suggest alternative remedies should be considered for therapeutic purposes. In recent years, nerve guidance conduits (NGCs) have become increasingly popular as surgical repair devices, with a multitude of various natural and synthetic biomaterials offering potential to enhance the design of conduits or supplant existing technologies entirely. From a cellular perspective, it has become increasingly evident that Schwann cells (SCs), the primary glia of the PNS, are a predominant factor mediating nerve regeneration. Thus, the development of severe nerve trauma therapies requires a deep understanding of how SCs interact with their environment, and how SC microenvironmental cues may be engineered to enhance regeneration. Here we review the most recent advancements in biomaterials development and cell stimulation strategies, with a specific focus on how the microenvironment influences the behavior of SCs and can potentially lead to functional repair. We focus on microenvironmental cues that modulate SC morphology, proliferation, migration, and differentiation to alternative phenotypes. Promotion of regenerative phenotypic responses in SCs and other non-neuronal cells that can augment the regenerative capacity of multiple biomaterials is considered along with innovations and technologies for traumatic injury.
Collapse
Affiliation(s)
- Corinne S Smith
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jacob A Orkwis
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Andrew E Bryan
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Zhenyuan Xu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Greg M Harris
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
22
|
Fadeyev FA, Blyakhman FA, Safronov AP, Melnikov GY, Nikanorova AD, Novoselova IP, Kurlyandskaya GV. Biological Impact of γ-Fe 2O 3 Magnetic Nanoparticles Obtained by Laser Target Evaporation: Focus on Magnetic Biosensor Applications. BIOSENSORS 2022; 12:627. [PMID: 36005023 PMCID: PMC9405828 DOI: 10.3390/bios12080627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022]
Abstract
The biological activity of γ-Fe2O3 magnetic nanoparticles (MNPs), obtained by the laser target evaporation technique, was studied, with a focus on their possible use in biosensor applications. The biological effect of the MNPs was investigated in vitro on the primary cultures of human dermal fibroblasts. The effects of the MNPs contained in culture medium or MNPs already uptaken by cells were evaluated for the cases of the fibroblast's proliferation and secretion of cytokines and collagen. For the tests related to the contribution of the constant magnetic field to the biological activity of MNPs, a magnetic system for the creation of the external magnetic field (having no commercial analogues) was designed, calibrated, and used. It was adapted to the size of standard 24-well cell culture plates. At low concentrations of MNPs, uptake by fibroblasts had stimulated their proliferation. Extracellular MNPs stimulated the release of pro-inflammatory cytokines (Interleukin-6 (IL-6) and Interleukin-8 (IL-8) or chemokine (C-X-C motif) ligand 8 (CXCL8)) in a concentration-dependent manner. However, the presence of MNPs did not increase the collagen secretion. The exposure to the uniform constant magnetic field (H ≈ 630 or 320 Oe), oriented in the plane of the well, did not cause considerable changes in fibroblasts proliferation and secretion, regardless of presence of MNPs. Statistically significant differences were detected only in the levels of IL-8/CXCL8 release.
Collapse
Affiliation(s)
- Fedor A. Fadeyev
- Department of Biomedical Physics and Engineering, Ural State Medical University, 620028 Ekaterinburg, Russia
- Institute of Medical Cell Technologies, 620026 Ekaterinburg, Russia
| | - Felix A. Blyakhman
- Department of Biomedical Physics and Engineering, Ural State Medical University, 620028 Ekaterinburg, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
| | - Alexander P. Safronov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
- Institute of Electrophysics UB RAS, 620016 Ekaterinburg, Russia
| | - Grigory Yu. Melnikov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
| | | | - Iuliia P. Novoselova
- Institute of Human Genetics, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Galina V. Kurlyandskaya
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
- Departamento de Electricidad y Electrónica, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain
| |
Collapse
|
23
|
Zhang Y, Zeng L, Wei Y, Zhang M, Pan W, Sword GA, Yang F, Chen F, Wan G. Reliable reference genes for gene expression analyses under the hypomagnetic field in a migratory insect. Front Physiol 2022; 13:954228. [PMID: 36003646 PMCID: PMC9393789 DOI: 10.3389/fphys.2022.954228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Manipulating the hypomagnetic field (HMF), which is the absence or significant weakening (<5 μT) of the geomagnetic field (GMF), offers a unique tool to investigate magnetic field effects on organismal physiology, development, behavior and life history. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) has been utilized to study changes in gene expression associated with exposure to the HMF. However, selecting appropriate reference genes (RGs) with confirmed stable expression across environments for RT-qPCR is often underappreciated. Using three algorithms (BestKeeper, NormFinder, and GeNorm), we investigated the expression stability of eight candidate RGs when exposed to the HMF condition versus local GMF during developmental from juveniles to adults in the migratory insect pest, the brown planthopper Nilaparvata lugens. During the nymphal stage, RPL5 & α-TUB1, EF1-α & ARF1, RPL5 & AK, EF1-α & RPL5, and ARF1 & AK were suggested as the most stable RG sets in the 1st to 5th instars, respectively. For 1- to 3-day-old adults, AK & ARF1, AK & α-TUB1, AK & ARF1 and EF1-α & RPL5, AK & α-TUB1, AK & EF1-α were the optimal RG sets for macropterous and brachypterous females, respectively. ACT1 & RPL5, RPL5 & EF1-α, α-TUB1 & ACT1 and EF1-α & RPL5, ARF1 & ACT1, ACT1 & ARF1 were the optimal RG sets for macropterous and brachypterous males, respectively. These results will facilitate accurate gene expression analyses under the HMF in N. lugens. The verification approach illustrated in this study highlights the importance of identifying reliable RGs for future empirical studies of magnetobiology (including magnetoreception) that involve magnetic field intensity as a factor.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
| | - Luying Zeng
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
| | - Yongji Wei
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
| | - Ming Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
| | - Weidong Pan
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Gregory A. Sword
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
| | - Guijun Wan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Guijun Wan,
| |
Collapse
|
24
|
Markowska-Szczupak A, Wesołowska A, Borowski T, Sołoducha D, Paszkiewicz O, Kordas M, Rakoczy R. Effect of pine essential oil and rotating magnetic field on antimicrobial performance. Sci Rep 2022; 12:9712. [PMID: 35690675 PMCID: PMC9188566 DOI: 10.1038/s41598-022-13908-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/30/2022] [Indexed: 11/15/2022] Open
Abstract
This work presents the results ofa study which concerns the influence of rotating magnetic field (RMF) on the antibacterial performance of commercial pine essential oil. A suspension of essential oil in saline solution and Escherichia coli were exposed to the rotating magnetic Afield (the frequency of electrical current supplied by a RMF generator f = 1–50 Hz; the averaged values of magnetic induction in the cross-section of the RMF generator B = 13.13 to − 19.92 mT, time of exposure t = 160 min, temperature of incubation 37 °C). The chemical composition of pine (Pinus sylvestris L.) essential oil was determined by gas chromatography coupled with mass spectrometry (GC–MS). The main constituents were α-pinene (28.58%), β-pinene (17.79%), δ-3-carene (14.17%) and limonene (11.58%). The present study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of pine oil. We have shown that rotating magnetic fields (RMF) at a frequency, f, between 25 Hz to and 50 Hz increased the antimicrobial efficiency of oil a concentration lower than 50%.
Collapse
Affiliation(s)
- Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland.
| | - Aneta Wesołowska
- Department of Organic and Physical Chemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Tomasz Borowski
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Dawid Sołoducha
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Marian Kordas
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| |
Collapse
|
25
|
Wang M, Li J, Ning S, Fu X, Wang X, Tan L. Simultaneously enhanced treatment efficiency of simulated hypersaline azo dye wastewater and membrane antifouling by a novel static magnetic field membrane bioreactor (SMFMBR). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153452. [PMID: 35093373 DOI: 10.1016/j.scitotenv.2022.153452] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Operation performance and membrane fouling of a novel static magnetic field membrane bioreactor (SMFMBR) for treatment of hypersaline azo dye wastewater was investigated. The results showed that SMFMBRs possessed higher efficiency of dye decolorization, COD removal and detoxification than the control MBR without SMF. The (3#) SMFMBR equipped with 305.0 mT (the highest intensity) SMF displayed the best treatment performance among all the four reactors (named as 0#-3#, equipped with SMFs of 0 mT, 95.0 mT, 206.3 mT and 305.0 mT, respectively). Potentially effective microbes belonging to Rhodanobacter, Saccharibacteria genera incertae sedis, Defluviimonas, Cellulomonas, Cutaneotrichosporon, Candida and Pichia were enriched in three SMFMBRs, in both of suspended sludge and bio-cakes. The relative abundance of Candida and Pichia in suspended sludge of 3# SMFMBR was the highest among all the four reactors, suggesting their successful colonization and potentially persistent effect of bioaugmentation. On the other hand, SMF of higher intensity effectively mitigated membrane fouling. Less production of soluble microbial products (SMP) and extracellular polymeric substances (EPS), lower protein/polysaccharide (PN/PS) ratio in SMP and EPS, looser structure of bio-cakes on membrane surface, as well as lower relative abundance of potential fouling causing microbes (mainly bacteria) in microbial communities were determined in 3# SMFMBR than the other three groups.
Collapse
Affiliation(s)
- Meining Wang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Jiamin Li
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Shuxiang Ning
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Xinmei Fu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiaohan Wang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Liang Tan
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China.
| |
Collapse
|
26
|
Effect of an Extremely Low-Frequency Electromagnetic Field on the Concentration of Salivary Immunoglobulin A. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19105786. [PMID: 35627323 PMCID: PMC9141657 DOI: 10.3390/ijerph19105786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023]
Abstract
Extremely Low-Frequency Electromagnetic Field (ELF MF) therapy is effective in the treatment of injury, inflammation and postoperative complications. Its clinical applications relate to bone unification, pain reduction, soft tissue oedema and the decrease of electric potentials in the oral cavity. It enhances regeneration of periapical bone lesions. It is obvious that cells (leukocytes, platelets, keratinocytes, osteoblasts) and proteins (fibrin, collagen, elastin and growth factors) exhibit alterations when exposed to an Extremely Low-Frequency Electromagnetic Field. The aim of the study was to evaluate the effect of an Extremely Low-Frequency Electromagnetic Field (ELF MF) on the parotid gland on the concentration of salivary immunoglobulin A. The study group consisted of 24 patients, aged 14–16, who underwent ELF MF on the parotid gland region. The control group comprised 25 matching persons. The IgA concentration in saliva samples was established using radial immunodiffusion. Following ELF MF, a statistically significant increase in the concentration of secretory immunoglobulin A was found in the study group, whereas in the control group, no statistically significant differences were noted. It can be concluded that an Extremely Low-Frequency Electromagnetic Field increases the activity of the immune system of the parotid gland.
Collapse
|
27
|
Liu Y, Sun Q, Hao M, Tan WS, Cai H. A novel magnetically controlled bioreactor for ex vivo expansion of NK-92 cells. BIORESOUR BIOPROCESS 2022; 9:50. [PMID: 38647827 PMCID: PMC10992792 DOI: 10.1186/s40643-022-00537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
The application of natural killer (NK) cells as potential antitumor effector cells appears to be valuable for immunotherapies. However, the clinical use of NK cells is limited because the technical difficulties associated with mass production NK cells at sufficiently high numbers represents a great challenge. Ex vivo expansion of NK cells is a key technology for cell therapy. Bioreactor systems can generate homogeneous culture condition and modulate the environmental and biochemical cues. In this study, a novel magnetically controlled bioreactor was developed for supporting NK cells ex vivo expansion. Using synthetic magnetic beads, the stirring device of the magnetically controlled bioreactor generated reduced shearing force. The intermittent magnetic field was applied for magnetic beads movement to homogenize the culture system. NK-92 cells were cultured in the magnetically controlled bioreactor and the expansion and function of expanded cells were investigated on day 8. The results showed that the expansion of NK-92 cells in the bioreactor was 67.71 ± 10.60-fold, which was significantly higher than that of the T25 culture flask (P < 0.05). Moreover, the proportions of CD3-CD56+ cells and cell killing activity of expanded cells in the bioreactor did not reveal any differences compared to T25 flasks. Taken together, this study demonstrated the possibility of magnetically controlled bioreactor as a potent strategy in NK cells production for facilitating cancer immunotherapy.
Collapse
Affiliation(s)
- Yangyang Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qihao Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mengyang Hao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
28
|
Chen Y, Hou S. Application of magnetic nanoparticles in cell therapy. Stem Cell Res Ther 2022; 13:135. [PMID: 35365206 PMCID: PMC8972776 DOI: 10.1186/s13287-022-02808-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
Fe3O4 magnetic nanoparticles (MNPs) are biomedical materials that have been approved by the FDA. To date, MNPs have been developed rapidly in nanomedicine and are of great significance. Stem cells and secretory vesicles can be used for tissue regeneration and repair. In cell therapy, MNPs which interact with external magnetic field are introduced to achieve the purpose of cell directional enrichment, while MRI to monitor cell distribution and drug delivery. This paper reviews the size optimization, response in external magnetic field and biomedical application of MNPs in cell therapy and provides a comprehensive view.
Collapse
Affiliation(s)
- Yuling Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China. .,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| |
Collapse
|
29
|
Filippi M, Garello F, Yasa O, Kasamkattil J, Scherberich A, Katzschmann RK. Engineered Magnetic Nanocomposites to Modulate Cellular Function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104079. [PMID: 34741417 DOI: 10.1002/smll.202104079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Magnetic nanoparticles (MNPs) have various applications in biomedicine, including imaging, drug delivery and release, genetic modification, cell guidance, and patterning. By combining MNPs with polymers, magnetic nanocomposites (MNCs) with diverse morphologies (core-shell particles, matrix-dispersed particles, microspheres, etc.) can be generated. These MNCs retain the ability of MNPs to be controlled remotely using external magnetic fields. While the effects of these biomaterials on the cell biology are still poorly understood, such information can help the biophysical modulation of various cellular functions, including proliferation, adhesion, and differentiation. After recalling the basic properties of MNPs and polymers, and describing their coassembly into nanocomposites, this review focuses on how polymeric MNCs can be used in several ways to affect cell behavior. A special emphasis is given to 3D cell culture models and transplantable grafts, which are used for regenerative medicine, underlining the impact of MNCs in regulating stem cell differentiation and engineering living tissues. Recent advances in the use of MNCs for tissue regeneration are critically discussed, particularly with regard to their prospective involvement in human therapy and in the construction of advanced functional materials such as magnetically operated biomedical robots.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Francesca Garello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino, 10126, Italy
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Jesil Kasamkattil
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, Basel, 4031, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, Basel, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, Allschwil, 4123, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
30
|
The Effect of Magnetic Field Gradient and Gadolinium-Based MRI Contrast Agent Dotarem on Mouse Macrophages. Cells 2022; 11:cells11050757. [PMID: 35269379 PMCID: PMC8909262 DOI: 10.3390/cells11050757] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Magnetic resonance imaging (MRI) is widely used in diagnostic medicine. MRI uses the static magnetic field to polarize nuclei spins, fast-switching magnetic field gradients to generate temporal and spatial resolution, and radiofrequency (RF) electromagnetic waves to control the spin orientation. All these forms of magnetic static and electromagnetic RF fields interact with human tissue and cells. However, reports on the MRI technique's effects on the cells and human body are often inconsistent or contradictory. In both research and clinical MRI, recent progress in improving sensitivity and resolution is associated with the increased magnetic field strength of MRI magnets. Additionally, to improve the contrast of the images, the MRI technique often employs contrast agents, such as gadolinium-based Dotarem, with effects on cells and organs that are still disputable and not fully understood. Application of higher magnetic fields requires revisiting previously observed or potentially possible bio-effects. This article focuses on the influence of a static magnetic field gradient with and without a gadolinium-based MRI contrast agent (Dotarem) and the cellular and molecular effects of Dotarem on macrophages.
Collapse
|
31
|
Dwivedi KA, Huang SJ, Wang CT, Kumar S. Fundamental understanding of microbial fuel cell technology: Recent development and challenges. CHEMOSPHERE 2022; 288:132446. [PMID: 34653488 DOI: 10.1016/j.chemosphere.2021.132446] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
The research on microbial fuel cells (MFCs) is rising tremendously but its commercialization is restricted by several microbiological, material, and economic constraints. Hence, a systematic assessment of the research articles published previously focusing on potential upcoming directions in this field is necessary. A detailed multi-perspective analysis of various techniques for enhancing the efficiency of MFC in terms of electric power production is presented in this paper. A brief discussion on the central aspects of different issues are preceded by an extensive analysis of the strategies that can be introduced to optimize power generation and reduce energy losses. Various applications of MFCs in a broad spectrum ranging from biomedical to underwater monitoring rather than electricity production and wastewater treatment are also presented followed by relevant possible case studies. Mathematical modeling is used to understand the concepts that cannot be understood experimentally. These methods relate electrode geometries to microbiological reactions occurring inside the MFC chamber, which explains the system's behavior and can be improved. Finally, directions for future research in the field of MFCs have been suggested. This article can be beneficial for engineers and researchers concerned about the challenges faced in the application of MFC.
Collapse
Affiliation(s)
- Kavya Arun Dwivedi
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Song-Jeng Huang
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chin-Tsan Wang
- Department of Mechanical and Electromechanical Engineering, National I Lan University, I Lan, 26047, Taiwan; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, India.
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India.
| |
Collapse
|
32
|
Ćejić D, de L. The effect of static magnetic field on bone mineral content in aging rats. MEDICINSKI PODMLADAK 2022. [DOI: 10.5937/mp73-33441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction: Aging is defined as a consequence of progressive accumulation of metabolic waste, which results in development of various disorders in the structure and function of cells over a number of years. It is followed by loss of bone tissue, where bones become less firm. The cycle of bone remodeling with age becomes longer, and the degree of bone mineralization decreases. Static magnetic fields (SMF) are stable magnetic fields that can be natural or artificial. Their moderate intensity (1mT-1T) affects physiological processes, cells, genetic material, behavior and development. So far, numerous studies have shown different effects of static magnetic fields on cell cultures, experimental animals, and the human population. Aim: Aim of this study was to determine the effect of static magnetic field (SMF) on bone mineral content (BMC) values in aging rats. Material and methods: Male Wistar rats, 3 years old, were used in the experiment. A total of 18 animals were divided into two groups: exposed (experimental group) and unexposed (control group). Nine animals from the experimental group were exposed to 30mT intensity static magnetic field for 10 weeks, while nine control rats were not exposed to the static magnetic field. Bone mineral content was measured by DXA (Dual-Energy X-Ray Absorptiometry. Results: Based on the experiment, it was found that after the exposure to the static magnetic field, in the experimental group, there is a statistically significant increase in the value of BMC in the trunk region and ribs region. In all other regions of interest: head, legs, pelvic bone, spine, total BMC - there were no statistically significant changes in BMC values. Conclusion: In the conducted experiment, a higher increase in the value of BMC was found in animals exposed to the SMF, compared to animals that were not exposed to the static magnetic field.
Collapse
|
33
|
Zablotskii V, Polyakova T, Dejneka A. Effects of High Magnetic Fields on the Diffusion of Biologically Active Molecules. Cells 2021; 11:cells11010081. [PMID: 35011642 PMCID: PMC8750908 DOI: 10.3390/cells11010081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 12/16/2022] Open
Abstract
The diffusion of biologically active molecules is a ubiquitous process, controlling many mechanisms and the characteristic time scales for pivotal processes in living cells. Here, we show how a high static magnetic field (MF) affects the diffusion of paramagnetic and diamagnetic species including oxygen, hemoglobin, and drugs. We derive and solve the equation describing diffusion of such biologically active molecules in the presence of an MF as well as reveal the underlying mechanism of the MF’s effect on diffusion. We found that a high MF accelerates diffusion of diamagnetic species while slowing the diffusion of paramagnetic molecules in cell cytoplasm. When applied to oxygen and hemoglobin diffusion in red blood cells, our results suggest that an MF may significantly alter the gas exchange in an erythrocyte and cause swelling. Our prediction that the diffusion rate and characteristic time can be controlled by an MF opens new avenues for experimental studies foreseeing numerous biomedical applications.
Collapse
Affiliation(s)
- Vitalii Zablotskii
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (T.P.); (A.D.)
- International Magnetobiology Frontier Research Center, Hefei 230031, China
- Correspondence:
| | - Tatyana Polyakova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (T.P.); (A.D.)
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (T.P.); (A.D.)
| |
Collapse
|
34
|
Rekena A, Livkisa D, Kamolins E, Vanags J, Loca D. Biopharmaceutical-Type Chinese Hamster Ovary Cell Cultivation Under Static Magnetic Field Exposure: A Study of Genotoxic Effect. Front Bioeng Biotechnol 2021; 9:751538. [PMID: 34900956 PMCID: PMC8656418 DOI: 10.3389/fbioe.2021.751538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/28/2021] [Indexed: 12/04/2022] Open
Abstract
The lack of a sufficient research base is the reason for the ongoing discussion regarding the genotoxic effect of magnetic field (MF) exposure on mammalian cell cultures. Chinese hamster ovary (CHO) suspension-type cells, which are widely used for biopharmaceutical production, are potentially subjected to an increased MF when cultivated in bioreactors equipped with bottom-placed magnetically coupled stirring mechanisms. The main challenge for conducting research in this field remains the availability of a suitable experimental setup that generates an appropriate MF for the raised research question. In the present study, a simple and cost-effective experimental setup was developed that generated a static MF, similar to what has been modeled in large-scale bioreactors and, at the same time, was suitable for experimental cell cultivation in laboratory conditions. The measured maximum magnetic flux density to which the cells were exposed was 0.66 T. To assess the possible genotoxic effect, cells were continuously subcultivated in laboratory petri dishes for a period of 14 days, corresponding to a typical duration of a biopharmaceutical production process in a conventional fed-batch regime. The genotoxic effect was assessed using the cytokinesis-block micronucleus assay with fluorescent staining. Results showed that a 0.66-T static MF exposure had no significant long-term effect on cell viability and chromosomal damage but demonstrated a short-term effect on cell apoptosis. Significant increase in nuclear bud formation was observed. These findings may encourage other researchers in future studies investigating cellular responses to MF exposure and contribute relevant data for comparison.
Collapse
Affiliation(s)
- Alina Rekena
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Riga, Latvia
| | - Dora Livkisa
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Riga, Latvia
| | - Edmunds Kamolins
- Institute of Physical Energetics, Riga, Latvia.,Institute of Industrial Electronics and Electrical Engineering, Riga Technical University, Riga, Latvia
| | - Juris Vanags
- Bioengineering Laboratory, Latvian State Institute of Wood Chemistry, Riga, Latvia
| | - Dagnija Loca
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Riga, Latvia.,Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
35
|
Lew WZ, Feng SW, Lee SY, Huang HM. The Review of Bioeffects of Static Magnetic Fields on the Oral Tissue-Derived Cells and Its Application in Regenerative Medicine. Cells 2021; 10:cells10102662. [PMID: 34685642 PMCID: PMC8534790 DOI: 10.3390/cells10102662] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022] Open
Abstract
Magnets have been widely used in dentistry for orthodontic tooth movement and denture retention. Nevertheless, criticisms have arisen regarding the biosafety of static magnetic field (SMF) effects on surrounding tissues. Various controversial pieces of evidence have been discussed regarding SMFs on cellular biophysics, but little consensus has been reached, especially in the field of dentistry. Thus, the present paper will first review the safe use of SMFs in the oral cavity and as an additive therapy to orthodontic tooth movement and periodontium regeneration. Then, studies regarding SMF-incorporated implants are reviewed to investigate the advantageous effects of SMFs on osseointegration and the underlying mechanisms. Finally, a review of current developments in dentistry surrounding the combination of magnetic nanoparticles (MNPs) and SMFs is made to clarify potential future clinical applications.
Collapse
Affiliation(s)
- Wei-Zhen Lew
- School of Dentistry, Collage of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (W.-Z.L.); (S.-W.F.); (S.-Y.L.)
| | - Sheng-Wei Feng
- School of Dentistry, Collage of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (W.-Z.L.); (S.-W.F.); (S.-Y.L.)
- Department of Dentistry, Division of Prosthodontics, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Sheng-Yang Lee
- School of Dentistry, Collage of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (W.-Z.L.); (S.-W.F.); (S.-Y.L.)
| | - Haw-Ming Huang
- School of Dentistry, Collage of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (W.-Z.L.); (S.-W.F.); (S.-Y.L.)
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
36
|
Al-Hindi AI, El-Khozondar HJ, Tabaza W, Alreefi M, Al Afifi AM, Kassem D, Al-Bahri R, Abu Haseera G. Effect of magnetic field on the growth of the cultured Entamoeba histolytica isolated from patients in Palestine. Exp Parasitol 2021; 226-227:108126. [PMID: 34246635 DOI: 10.1016/j.exppara.2021.108126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/09/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Static magnetic field (SMF) is generated in vicinity of moving charge or current passing through conductor. In this study, we aimed to investigate the effect of SMF on the growth of the cultured Entamoeba histolytica (E. histolytica) trophozoites. Different SMF strengths with maximum value equals 30 mT (mT) was applied on the E.histolytica for different periods of times: 0 h, 24 h, 48 h, and 72 h. A modified diphasic liver infusion agar medium was used for culturing E. histolytica in vitro. The results showed the successful stabilization of culture of E. histolytica trophozoites. If we kept the sample for longer time, e. g. 14 days, the growth rate decreases to zero. When applying 10 mT and 15 mT SMF on the sample, it is found that the cultivated E. histolytica trophozoites dies after 4 and 2 days respectively. The experiments suggested that the SMF inhibited the growth and the propagation of E. histolytica cells. In addition, it completely killed all the cells in a short time interval which depend on the SMF strength. It is concluded that the SMFs inhibits the growth of E. histolytica and change the morphology of these cells. Thus, we recommend to use SMF as treatment to mitigate the growth of E. histolytica.
Collapse
Affiliation(s)
- Adnan I Al-Hindi
- Medical Laboratory Sciences Department, Faculty of Health Sciences, Islamic University of Gaza, P.O. Box 108, Gaza, Palestine.
| | - Hala J El-Khozondar
- Electrical Engineering and Smart Systems Department, Faculty of Engineering, Islamic University of Gaza, P.O. Box 108, Gaza, Palestine.
| | - Wael Tabaza
- Physics Department, Faculty of Science, Islamic University of Gaza, P.O. Box 108, Gaza, Palestine.
| | - Mariam Alreefi
- Biology Department, Faculty of Science, Israa University, Gaza, Palestine.
| | - Ahmed M Al Afifi
- Microbiology Department, Al-Naser Pediatric Hospital, Ministry of Health, Gaza, Palestine.
| | - Doha Kassem
- Graduates Students from Medical Laboratory Sciences Department, Faculty of Health Sciences, Islamic University of Gaza, P.O. Box 108, Gaza, Palestine. kassem-gaza-@hotmail.com
| | - Reham Al-Bahri
- Graduates Students from Medical Laboratory Sciences Department, Faculty of Health Sciences, Islamic University of Gaza, P.O. Box 108, Gaza, Palestine.
| | - Ghadeer Abu Haseera
- Graduates Students from Medical Laboratory Sciences Department, Faculty of Health Sciences, Islamic University of Gaza, P.O. Box 108, Gaza, Palestine.
| |
Collapse
|
37
|
Static Magnetic Fields Effects on Polysaccharides Production by Different Microalgae Strains. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microalgae are able to produce many valuable biomolecules, such as polysaccharides, that presents a large diversity of biochemical structures and functions as antioxidant, antifungal, anticancer, among others. Static magnetic fields (SMF) influence the metabolism of microorganisms and has been shown as an alternative to increase microalgae biomass, yield and compounds production. Especially, some studies have highlighted that SMF application could enhance carbohydrate content. This study aimed to evaluate different conditions of SMF on Spirulina and Chlorella in indoor and outdoor conditions, in order to confirm the influence of SMF on polysaccharides production, evaluating which polysaccharidic fraction could be enhanced by SMF and highlighting a possible modification in EPS composition. Starch from Chlorella and exopolysaccharides (EPS) from Spirulina were quantified and characterized. SMF increased the starch content in Chorella fusca biomass. EPS productions from A. platensis and Spirulina sp. were not significantly increased, and global composition appeared similar to the controls (constituted basically of 80–86% neutral sugars and 13–19% uronic acids). However, the monosaccharide composition analysis revealed a significant modification of composition, i.e., the amount of fucose, arabinose, rhamnose, galactose and glucuronic acid was increased, while the glucose content was decreased. SMF application led to significant modification of polysaccharides production and this study demonstrate that combining the outdoor conditions with SMF, the starch content and EPS composition was positively affected.
Collapse
|
38
|
Shan Y, Han H, Zhu J, Yan X, Zhang X, Long H, Jian F, Li X, Wang Y, Lai W. The Effects of Static Magnetic Field on Orthodontic Tooth Movement in Mice. Bioelectromagnetics 2021; 42:398-406. [PMID: 34033679 DOI: 10.1002/bem.22346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/13/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
The application of static magnetic field (SMF) has been considered an effective and noninvasive method to accelerate orthodontic tooth movement. The objective of this study was to explore the effects of SMF on orthodontic tooth movement in mice. A total of 105 Balb/c mice (body mass: 25-30 g) were divided into experimental group (SMF + force, 48), control group (force only, 48), and blank group (neither SMF nor force, 9). After the placement of orthodontic appliances, the experimental group was exposed to the SMF environment generated by Neodymium-iron-boron (NdFeB) magnets with an intensity of 20-204 mT. At 1, 3, 7, 14, 21, and 28 days after appliance insertion, eight animals in both experimental and control groups were sacrificed and the left maxillae were dissected to measure the distance of tooth movement, respectively. Meanwhile, the width of periodontal ligament (PDL), length of hyalinized zone, and the number of osteoclasts were evaluated by hematoxylin-eosin and tartrate-resistant acid phosphatase staining. We finally found that the experimental group demonstrated an enhanced rate and greater cumulative amount of tooth movement than the control group (0.2887 ± 0.0041 mm vs. 0.2114 ± 0.0089 mm, P < 0.05). On Days 7, 14, and 28, the experimental group also displayed a significantly greater width of PDL. Earlier formation and removal of the hyalinized zone, and significantly more osteoclasts were observed in the experimental group as well. The results suggested that SMF may be a promising nonsurgical intervention to accelerate orthodontic tooth movement. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Yue Shan
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Han Han
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingyi Zhu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyu Yan
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoqi Zhang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Long
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fan Jian
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaolong Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Samaneh Kamalipooya, Sabet A, Jouni FJ, Satari M, Abdolmaleki P, Soleimani H. Effect of Co-Treatment with Static Magnetic Fieldand Cis-diamminedichloroplatinum(II) on Apoptosis and Cell Cycle Progression in HeLa Cell Line and Hu02. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Wang Y, Xu B, Ning S, Shi S, Tan L. Magnetically stimulated azo dye biodegradation by a newly isolated osmo-tolerant Candida tropicalis A1 and transcriptomic responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111791. [PMID: 33360211 DOI: 10.1016/j.ecoenv.2020.111791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
A recently isolated osmo-tolerant yeast Candida tropicalis A1, which could decolorize various azo dyes under high-salinity conditions, was systematically characterized in the present study. Stimulating dye-decolorization effectiveness and osmo-tolerance of the yeast by static magnetic field (SMF) was investigated and transcriptomic responses of the yeast to SMF was analyzed to propose possible mechanisms. The results demonstrated that the yeast A1 effectively decolorized (≥ 97.50% within 12 h) and detoxified (from high toxicity to low toxicity within 24 h) 70 mg/L Acid Red B (ARB) under the optimized conditions through a series of steps including naphthalene-amidine bond cleavage, reductive or oxidative deamination/desulfurization, open-loop of hydroxy-substituted naphthalene or benzene and TCA cycle. Moreover, dye decolorization performance and osmo-tolerance of the yeast A1 were further improved by 24.6 mT SMF. Genes encoding high-affinity hexose/glucose transporter proteins and NADH-ubiquinone oxidoreductase were up-regulated by 24.6 mT SMF, which might be responsible for the increase of dye decolorization. Significant up-regulation of glycerol-3-phosphate dehydrogenase and cell wall protein RHD3 suggested that osmo-tolerance was enhanced by 24.6 mT SMF through promoting production and intracellular accumulation of glycerol as compatible solute, as well as regulation of cell wall component. In conclusion, 24.6 mT SMF led to the up-regulation of related genes resulting in enhanced dye biodegradation efficiency and osmo-tolerance of the yeast A1.
Collapse
Affiliation(s)
- Yumeng Wang
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Bingwen Xu
- Institute of Agricultural Products and Aquatic Products Inspection and Testing, Dalian Center for Certification and Food and Drug Control, Dalian 116037, PR China
| | - Shuxiang Ning
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Shengnan Shi
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Liang Tan
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China.
| |
Collapse
|
41
|
The Effect of Static Magnetic Field on Methanogenesis in the Anaerobic Digestion of Municipal Sewage Sludge. ENERGIES 2021. [DOI: 10.3390/en14030590] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present study aimed to determine the effect of a 17.6 mT static magnetic field (SMF) on the efficiency of anaerobic digestion (AD) of municipal sewage sludge (MSS). The SMF had a significant impact on methane (CH4) production efficiency, the levels of fermentation rate (ηFMSS) vs. removal rate (ηVS), and the structure of the anaerobic bacteria consortium, but it did not affect cumulative biogas production. The highest CH4 yield (431 ± 22 dm3CH4/kgVS) and the highest methane content in the biogas (66.1% ± 1.9%) were found in the variant in which the SMF exposure time was 144 min/day. This variant also produced the highest ηFMSS and ηVS values, reaching 73.8% ± 2.3% and ηVS 36.9% ± 1.6%, respectively. Longer anaerobic sludge retention time in the SMF area significantly decreased AD efficiency and caused a significant reduction in the number of methanogens in the anaerobic bacteria community. The lowest values were observed for SMF exposure time of 432 min/day, which produced only 54.8 ± 1.9% CH4 in the biogas. A pronounced reduction was recorded in the Archaea (ARC915) and Methanosaeta (MX825) populations in the anaerobic sludge, i.e., to 20% ± 11% and 6% ± 2%, respectively.
Collapse
|
42
|
Tasić T, Lozić M, Glumac S, Stanković M, Milovanovich I, Djordjevich DM, Trbovich AM, Japundžić-Žigon N, De Luka SR. Static magnetic field on behavior, hematological parameters and organ damage in spontaneously hypertensive rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111085. [PMID: 32898814 DOI: 10.1016/j.ecoenv.2020.111085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Previous studies showed contradictory results of static magnetic field (SMF) influence on behavior, hematological parameters and organ damage. The aim of this study was to investigate influence of subchronic continuous exposure to upward and downward oriented SMF of moderate intensity on behavior, hematological characteristics, heart and kidney tissue of spontaneously hypertensive rats. SH rats exposed to downward oriented SMF demonstrated lack of anxious-like behavior. SMF of either orientation caused decrease in the number of platelets in peripheral blood, granulocytes in the spleen and bone marrow and increase in the number of erythrocytes in the spleen, in both exposed groups. We also demonstrated that spontaneously hypertensive rats exposed to upward oriented SMF exhibited decreased lymphocytes count in blood, decreased bone marrow erythrocytes count and rats exposed to downward oriented SMF had increased lymphocytes count in bone marrow. The results showed adverse effect of differently oriented SMF on hematological parameters of spontaneously hypertensive rats. Also, exposure to different oriented SMF didn't affect their heart and kidney morphological characteristics.
Collapse
Affiliation(s)
- Tatjana Tasić
- Faculty of Dental Medicine, University of Belgrade, Serbia
| | - Maja Lozić
- Faculty of Medicine, University of Belgrade, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ashta A, Motalleb G, Ahmadi-Zeidabadi M. Evaluation of frequency magnetic field, static field, and Temozolomide on viability, free radical production and gene expression (p53) in the human glioblastoma cell line (A172). Electromagn Biol Med 2020; 39:298-309. [PMID: 32666844 DOI: 10.1080/15368378.2020.1793171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/31/2020] [Indexed: 12/18/2022]
Abstract
Thirteen million cancer deaths and 21.7 million new cancer cases are expected in the world by 2030. Glioblastoma is the most common primary malignant tumor of the central nervous system which is the most lethal type of primary brain tumor in adults with the survival time of 12-15 months after the initial diagnosis. Glioblastoma is the most common and most malignant type of brain tumor, and despite surgery, chemotherapy and radiation treatment, the average survival of patients is about 14 months. The current research showed that the frequency magnetic field (FMF) and static magnetic field (SMF) can influence cancer cell proliferation and coupled with anticancer drugs may provide a new strategy for cancer therapy. At the present study, we investigated the effects of FMF (10 Hz, 50 G), SMF (50 G) and Temozolomide (200 μm) on viability, free radical production, and p53 followed by p53 protein expression in the human glioblastoma cell line (A172) by MTT, NBT, RT-PCR and Western blot. Results showed that the effect of Temozolomide (TMZ) with SMF and FMF together increased the cytotoxicity, free radical production, and p53 followed by p53 protein expression in the human glioblastoma cell line (A172).
Collapse
Affiliation(s)
- Ahmad Ashta
- Division of Cell and Molecular Biology, Department of Biology, Faculty of Science, University of Zabol , Zabol, Iran
| | - Gholamreza Motalleb
- Division of Cell and Molecular Biology, Department of Biology, Faculty of Science, University of Zabol , Zabol, Iran
| | - Meysam Ahmadi-Zeidabadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman, Iran
| |
Collapse
|
44
|
Synergetic magnetic field and loaded Fe3O4 for simultaneous efficient acetate production and Cr(VI) removal in microbial electrosynthesis systems. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
45
|
Castro N, Ribeiro S, Fernandes MM, Ribeiro C, Cardoso V, Correia V, Minguez R, Lanceros‐Mendez S. Physically Active Bioreactors for Tissue Engineering Applications. ACTA ACUST UNITED AC 2020; 4:e2000125. [DOI: 10.1002/adbi.202000125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/15/2020] [Indexed: 01/09/2023]
Affiliation(s)
- N. Castro
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures University of the Basque Country UPV/EHU Science Park Leioa E‐48940 Spain
| | - S. Ribeiro
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- Centre of Molecular and Environmental Biology (CBMA) University of Minho Campus de Gualtar Braga 4710‐057 Portugal
| | - M. M. Fernandes
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- CEB – Centre of Biological Engineering University of Minho Braga 4710‐057 Portugal
| | - C. Ribeiro
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- CEB – Centre of Biological Engineering University of Minho Braga 4710‐057 Portugal
| | - V. Cardoso
- CMEMS‐UMinho Universidade do Minho Campus de Azurém Guimarães 4800‐058 Portugal
| | - V. Correia
- Algoritmi Research Centre University of Minho Campus de Azurém Guimarães 4800‐058 Portugal
| | - R. Minguez
- Department of Graphic Design and Engineering Projects University of the Basque Country UPV/EHU Bilbao E‐48013 Spain
| | - S. Lanceros‐Mendez
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures University of the Basque Country UPV/EHU Science Park Leioa E‐48940 Spain
- IKERBASQUE Basque Foundation for Science Bilbao E‐48013 Spain
| |
Collapse
|
46
|
Grant A, Metzger GJ, Van de Moortele PF, Adriany G, Olman C, Zhang L, Koopermeiners J, Eryaman Y, Koeritzer M, Adams ME, Henry TR, Uğurbil K. 10.5 T MRI static field effects on human cognitive, vestibular, and physiological function. Magn Reson Imaging 2020; 73:163-176. [PMID: 32822819 DOI: 10.1016/j.mri.2020.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/21/2020] [Accepted: 08/14/2020] [Indexed: 01/18/2023]
Abstract
PURPOSE To perform a pilot study to quantitatively assess cognitive, vestibular, and physiological function during and after exposure to a magnetic resonance imaging (MRI) system with a static field strength of 10.5 Tesla at multiple time scales. METHODS A total of 29 subjects were exposed to a 10.5 T MRI field and underwent vestibular, cognitive, and physiological testing before, during, and after exposure; for 26 subjects, testing and exposure were repeated within 2-4 weeks of the first visit. Subjects also reported sensory perceptions after each exposure. Comparisons were made between short and long term time points in the study with respect to the parameters measured in the study; short term comparison included pre-vs-isocenter and pre-vs-post (1-24 h), while long term compared pre-exposures 2-4 weeks apart. RESULTS Of the 79 comparisons, 73 parameters were unchanged or had small improvements after magnet exposure. The exceptions to this included lower scores on short term (i.e. same day) executive function testing, greater isocenter spontaneous eye movement during visit 1 (relative to pre-exposure), increased number of abnormalities on videonystagmography visit 2 versus visit 1 and a mix of small increases (short term visit 2) and decreases (short term visit 1) in blood pressure. In addition, more subjects reported metallic taste at 10.5 T in comparison to similar data obtained in previous studies at 7 T and 9.4 T. CONCLUSION Initial results of 10.5 T static field exposure indicate that 1) cognitive performance is not compromised at isocenter, 2) subjects experience increased eye movement at isocenter, and 3) subjects experience small changes in vital signs but no field-induced increase in blood pressure. While small but significant differences were found in some comparisons, none were identified as compromising subject safety. A modified testing protocol informed by these results was devised with the goal of permitting increased enrollment while providing continued monitoring to evaluate field effects.
Collapse
Affiliation(s)
- Andrea Grant
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States.
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | | | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Cheryl Olman
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | - Lin Zhang
- School of Public Health Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Joseph Koopermeiners
- School of Public Health Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Yiğitcan Eryaman
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Margaret Koeritzer
- M Health Fairview, Department of Audiology, Minneapolis, MN, United States
| | - Meredith E Adams
- Department of Otolaryngology, Head and Neck Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Thomas R Henry
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Kamil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
47
|
Zhang C, Cai YZ, Lin XJ, Wang Y. Magnetically Actuated Manipulation and Its Applications for Cartilage Defects: Characteristics and Advanced Therapeutic Strategies. Front Cell Dev Biol 2020; 8:526. [PMID: 32695782 PMCID: PMC7338659 DOI: 10.3389/fcell.2020.00526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022] Open
Abstract
For the fact that articular cartilage is a highly organized and avascular tissue, cartilage defects are limited to spontaneously heal, which would subsequently progress to osteoarthritis. Many methods have been developed to enhance the ability for cartilage regeneration, among which magnetically actuated manipulation has attracted interests due to its biocompatibility and non-invasive manipulation. Magnetically actuated manipulation that can be achieved by introducing magnetic nanoparticles and magnetic field. This review summarizes the cutting-edge research on the chondrogenic enhancements via magnetically actuated manipulation, including cell labeling, cell targeting, cell assembly, magnetic seeding and tissue engineering strategies.
Collapse
Affiliation(s)
- Chi Zhang
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - You-Zhi Cai
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang-Jin Lin
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Wang
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
48
|
Wang X, Wang Y, Ning S, Shi S, Tan L. Improving Azo Dye Decolorization Performance and Halotolerance of Pichia occidentalis A2 by Static Magnetic Field and Possible Mechanisms Through Comparative Transcriptome Analysis. Front Microbiol 2020; 11:712. [PMID: 32431675 PMCID: PMC7216737 DOI: 10.3389/fmicb.2020.00712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
A halotolerant yeast, Pichia occidentalis A2, was recently isolated that can decolorize various azo dyes. The azo dye decolorization performance of this strain was characterized, including the degradation pathway and detoxification effects of this yeast. Additionally, the effect of static magnetic field (SMF) on this decolorization process was investigated. Activities of key enzymes were analyzed to estimate the change of metabolic activity. Furthermore, possible mechanisms were analyzed through detecting differentially expressed genes between yeast A2 in the absence and presence of SMF. The results indicated that yeast A2 displayed the optimal decolorization performance when the concentrations (in g/L) of glucose, (NH4)2SO4, yeast extract, and NaCl were 4.0, 1.0, 0.1, and ≤30.0, respectively. Meanwhile, the optimal rotation speed, temperature, and pH were 160 rpm, 30°C, and 5.0, respectively. Acid Red B was decolorized and detoxified by yeast A2 through successive steps, including cleavage of the naphthalene-amidine bond, reductive deamination, oxidative deamination/desulfurization, open-loop of hydroxy-substituted naphthalene, and tricarboxylic acid cycle. The dye decolorization efficiency and halotolerance of yeast A2 were enhanced by 206.3 mT SMF. The activities of manganese peroxidase, and laccase were elevated 1.37- and 1.16-fold by 206.3 mT SMF, but lignin peroxidase activity showed little change. It was suggested from the transcriptome sequence that the enhanced halotolerance might be related to the upregulated genes encoding the enzymes or functional proteins related to intracellular synthesis and accumulation of glycerol.
Collapse
Affiliation(s)
| | | | | | | | - Liang Tan
- School of Life Sciences, Liaoning Normal University, Dalian, China
| |
Collapse
|
49
|
Seelbinder B, Scott AK, Nelson I, Schneider SE, Calahan K, Neu CP. TENSCell: Imaging of Stretch-Activated Cells Reveals Divergent Nuclear Behavior and Tension. Biophys J 2020; 118:2627-2640. [PMID: 32407683 DOI: 10.1016/j.bpj.2020.03.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/08/2020] [Accepted: 03/13/2020] [Indexed: 12/22/2022] Open
Abstract
Mechanisms of cellular and nuclear mechanosensation are unclear, partially because of a lack of methods that can reveal dynamic processes. Here, we present a new concept for a low-cost, three-dimensionally printed device that enables high-magnification imaging of cells during stretch. We observed that nuclei of mouse embryonic skin fibroblasts underwent rapid (within minutes) and divergent responses, characterized by nuclear area expansion during 5% strain but nuclear area shrinkage during 20% strain. Only responses to low strain were dependent on calcium signaling, whereas actin inhibition abrogated all nuclear responses and increased nuclear strain transfer and DNA damage. Imaging of actin dynamics during stretch revealed similar divergent trends, with F-actin shifting away from (5% strain) or toward (20% strain) the nuclear periphery. Our findings emphasize the importance of simultaneous stimulation and data acquisition to capture mechanosensitive responses and suggest that mechanical confinement of nuclei through actin may be a protective mechanism during high mechanical stretch or loading.
Collapse
Affiliation(s)
- Benjamin Seelbinder
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Adrienne K Scott
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Isabel Nelson
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Stephanie E Schneider
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Kristin Calahan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Corey P Neu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
50
|
Combination Design of Time-Dependent Magnetic Field and Magnetic Nanocomposites to Guide Cell Behavior. NANOMATERIALS 2020; 10:nano10030577. [PMID: 32235724 PMCID: PMC7153399 DOI: 10.3390/nano10030577] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
The concept of magnetic guidance is still challenging and has opened a wide range of perspectives in the field of tissue engineering. In this context, magnetic nanocomposites consisting of a poly(ε-caprolactone) (PCL) matrix and iron oxide (Fe3O4) nanoparticles were designed and manufactured for bone tissue engineering. The mechanical properties of PCL/Fe3O4 (80/20 w/w) nanocomposites were first assessed through small punch tests. The inclusion of Fe3O4 nanoparticles improved the punching properties as the values of peak load were higher than those obtained for the neat PCL without significantly affecting the work to failure. The effect of a time-dependent magnetic field on the adhesion, proliferation, and differentiation of human mesenchymal stem cells (hMSCs) was analyzed. The Alamar Blue assay, confocal laser scanning microscopy, and image analysis (i.e., shape factor) provided information on cell adhesion and viability over time, whereas the normalized alkaline phosphatase activity (ALP/DNA) demonstrated that the combination of a time-dependent field with magnetic nanocomposites (PCL/Fe3O4 Mag) influenced cell differentiation. Furthermore, in terms of extracellular signal-regulated kinase (ERK)1/2 phosphorylation, an insight into the role of the magnetic stimulation was reported, also demonstrating a strong effect due the combination of the magnetic field with PCL/Fe3O4 nanocomposites (PCL/Fe3O4 Mag).
Collapse
|