1
|
Bagewadi S, Rajendran M, Ganapathisankarakrishnan A, Budharaju H, Sethuraman S, Sundaramurthi D. Preparation of thermoresponsive & enzymatically crosslinkable gelatin-gellan gum bioink: A protein-polysaccharide hydrogel for 3D bioprinting of complex soft tissues. Int J Biol Macromol 2025; 295:139563. [PMID: 39788240 DOI: 10.1016/j.ijbiomac.2025.139563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/29/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Developing superior bioinks present several challenges in achieving ideal properties such as biocompatibility, viscosity, degradation rates & mechanical properties which are required to make functional tissue constructs. Various attempts have been made to prepare excellent bioink compositions that are suitable to address the above challenges. Herein, a versatile combination of gelatin (GL) - gellan gum (GG) bioink was successfully formulated & the bioink 7.5GL/2GG was found to be ideal for printing complex and highly intricate structures with excellent shape fidelity. Two different crosslinkers namely transglutaminase (TG) and calcium chloride (CaCl2) were utilized for crosslinking. The rheological properties of GL/GG bioink indicated that TG and dual (TG + CaCl2) crosslinked constructs had storage modulus equivalent to the that of native skin. Direct and indirect cytotoxicity assays revealed that the developed constructs were cytocompatible as well as hemocompatible. The 3D bioprinted GL/GG constructs crosslinked with only TG showed better cell viability, proliferation, cell spreading and wound healing efficiency in vitro compared to dual crosslinked constructs. In conclusion, TG crosslinking of 7.5GL/2GG bioink was ideal for bioprinting of skin tissue constructs for regenerative medicine applications. By altering the concentrations & printing conditions, this bioink may be tuned for other soft tissue engineering applications.
Collapse
Affiliation(s)
- Shambhavi Bagewadi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Madhumathi Rajendran
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Aiswarya Ganapathisankarakrishnan
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
2
|
Zhao Z, Li J, Bai X, Wang Y, Wang Q, Lv N, Gao H, Guo Z, Zhu H, Guo Q, Li Z. Microfracture Augmentation With Direct In Situ Radial Shockwave Stimulation With Appropriate Energy Has Comparable Repair Performance With Tissue Engineering in the Porcine Osteochondral Defect Model. Am J Sports Med 2022; 50:3660-3670. [PMID: 36190157 DOI: 10.1177/03635465221125936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The first-line clinical strategy for small cartilage/osteochondral defects is microfracture (MF). However, its repair efficacy needs improvement. HYPOTHESIS Appropriate energy radial shockwave stimulation in MF holes would greatly improve repair efficacy in the porcine osteochondral defect model, and it may obtain comparable performance with common tissue engineering techniques. STUDY DESIGN Controlled laboratory study. METHODS Osteochondral defect models (8-mm diameter, 3-mm depth) were established in the weightbearing area of Bama pigs' medial femoral condyles. In total, 25 minipigs were randomly divided into 5 groups: control (Con; without treatment), MF, MF augmentation (MF+; treated with appropriate energy radial shockwave stimulation in MF holes after MF), tissue engineering (TE; treated with compounds of microcarrier and bone marrow mesenchymal stem cells), and sham (as the positive control). After 3 months of intervention, osteochondral specimens were harvested for macroscopic, radiological, biomechanical, and histological evaluations. The statistical data were analyzed using 1-way analysis of variance. RESULTS Based on the macroscopic appearance, the smoothness and integration of the repaired tissue in the MF+ group were improved when compared with the Con and MF groups. The histological staining suggested more abundant cartilaginous matrix deposition in the MF+ group versus the Con and MF groups. The general scores of the macroscopic and histological appearances were comparable in the MF+ and the TE groups. The high signal areas of the osteochondral unit in the magnetic resonance images were significantly decreased in the MF+ group, with no difference with the TE group. The micro-computed tomography data demonstrated the safety of direct in situ radial shockwave performance. Biomechanical tests revealed that the repaired tissue's Young modulus was highest in the MF+ group and not statistically different from that in the TE group. CONCLUSION Direct in situ radial shockwave stimulation with appropriate energy significantly improves the short-term repair efficacy of MF. More encouragingly, the MF+ group in our study obtained repair performance comparable with the TE therapy. CLINICAL RELEVANCE This strategy is easy to perform and can readily be generalized with safety and higher cartilage repair efficacy. Moreover, it is expected to be accomplished under arthroscopy, indicating tremendous clinical transformative value.
Collapse
Affiliation(s)
- Zhidong Zhao
- Department of Orthopedics, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Ji Li
- Department of Orthopedics, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiaowei Bai
- Department of Orthopedics, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yuxing Wang
- Department of Orthopedics, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Qi Wang
- Department of Orthopedics, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Ningyu Lv
- Department of Orthopedics, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Huayi Gao
- Department of Orthopedics, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zheng Guo
- Department of Orthopedics, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Heng Zhu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Quanyi Guo
- Department of Orthopedics, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhongli Li
- Department of Orthopedics, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
3
|
Wang Y, Feng Y, Yang X, Wang W, Wang Y. Diagnosis of Atherosclerotic Plaques Using Vascular Endothelial Growth Factor Receptor-2 Targeting Antibody Nano-microbubble as Ultrasound Contrast Agent. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6524592. [PMID: 35572831 PMCID: PMC9098277 DOI: 10.1155/2022/6524592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023]
Abstract
The atherosclerotic plaque is characterized by narrowing of blood vessels and reduced blood flow leading to the insufficient blood supply to the brain. The hemodynamic changes caused by arterial stenosis increase the shearing force of the fibrous cap on the surface of the plaque, thereby reducing the stability of the plaque. Unstable plaques are more likely to promote angiogenesis and increase the risk of patients with cerebrovascular diseases. A timely understanding of the formation and stability of the arterial plaque can guide in taking targeted measures for reducing the risk of acute stroke in patients. It has been confirmed that nano-microbubbles can enter these plaques through the gaps in the patient's vascular endothelial cells, thereby enhancing the acquisition of ultrasound information for plaque visualization. Therefore, we aim to investigate the diagnostic value of targeted nano-microbubbles for atherosclerotic plaques. This study constructed vascular endothelial growth factor receptor-2 (VEGFR-2) targeting antibody nano-microbubbles and compared its diagnostic value with that of blank nano-microbubbles for atherosclerotic plaques. Studies have found that VEGFR-2 targeting antibody nano-microbubbles can accurately detect the position of plaques. Its detection rate, sensitivity, and specificity for plaques are higher than those of blank nano-microbubbles. Similarly, the peak intensity and average transit time of VEGFR-2 targeting antibody nano-microbubbles were greater than those of blank nano-microbubbles. Therefore, we believe that the combination of VEGFR-2 antibody and nano-microbubbles can enhance the acquisition of ultrasound information on atherosclerotic plaque neovascularization, thereby improving the early diagnosis of unstable plaque.
Collapse
Affiliation(s)
- Yi Wang
- Department of Ultrasonography, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei, China
| | - Yujin Feng
- Department of Ultrasonography, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei, China
| | - Xiaoyun Yang
- Department of Ultrasonography, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei, China
| | - Wengang Wang
- Department of Ultrasonography, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei, China
| | - Yueheng Wang
- Department of Ultrasonography, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei, China
| |
Collapse
|
4
|
Transcutaneous ultrasound mediated gene delivery into canine livers achieves therapeutic levels of FVIII expression. Blood Adv 2022; 6:3557-3568. [PMID: 35427415 PMCID: PMC9631573 DOI: 10.1182/bloodadvances.2021006016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/03/2022] [Indexed: 11/24/2022] Open
Abstract
Nonviral UMGD can achieve therapeutic levels of FVIII gene expression in a large animal model. UMGD targeting liver is safe without evidence of any lasting damage.
A safe, effective, and inclusive gene therapy will significantly benefit a large population of patients with hemophilia. We used a minimally invasive transcutaneous ultrasound-mediated gene delivery (UMGD) strategy combined with microbubbles (MBs) to enhance gene transfer into 4 canine livers. A mixture of high-expressing, liver-specific human factor VIII (hFVIII) plasmid and MBs was injected into the hepatic vein via balloon catheter under fluoroscopy guidance with simultaneous transcutaneous UMGD treatment targeting a specific liver lobe. Therapeutic levels of hFVIII expression were achieved in all 4 dogs, and hFVIII levels were maintained at a detectable level in 3 dogs throughout the 60-day experimental period. Plasmid copy numbers correlated with hFVIII antigen levels, and plasmid-derived messenger RNA (mRNA) was detected in treated livers. Liver transaminase levels and histology analysis indicated minimal liver damage and a rapid recovery after treatment. These results indicate that liver-targeted transcutaneous UMGD is promising as a clinically feasible therapy for hemophilia A and other diseases.
Collapse
|
5
|
Rich J, Tian Z, Huang TJ. Sonoporation: Past, Present, and Future. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2100885. [PMID: 35399914 PMCID: PMC8992730 DOI: 10.1002/admt.202100885] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Indexed: 05/09/2023]
Abstract
A surge of research in intracellular delivery technologies is underway with the increased innovations in cell-based therapies and cell reprogramming. Particularly, physical cell membrane permeabilization techniques are highlighted as the leading technologies because of their unique features, including versatility, independence of cargo properties, and high-throughput delivery that is critical for providing the desired cell quantity for cell-based therapies. Amongst the physical permeabilization methods, sonoporation holds great promise and has been demonstrated for delivering a variety of functional cargos, such as biomolecular drugs, proteins, and plasmids, to various cells including cancer, immune, and stem cells. However, traditional bubble-based sonoporation methods usually require special contrast agents. Bubble-based sonoporation methods also have high chances of inducing irreversible damage to critical cell components, lowering the cell viability, and reducing the effectiveness of delivered cargos. To overcome these limitations, several novel non-bubble-based sonoporation mechanisms are under development. This review will cover both the bubble-based and non-bubble-based sonoporation mechanisms being employed for intracellular delivery, the technologies being investigated to overcome the limitations of traditional platforms, as well as perspectives on the future sonoporation mechanisms, technologies, and applications.
Collapse
Affiliation(s)
- Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
6
|
Zeng F, Du M, Chen Z. Nanosized Contrast Agents in Ultrasound Molecular Imaging. Front Bioeng Biotechnol 2021; 9:758084. [PMID: 34912789 PMCID: PMC8666542 DOI: 10.3389/fbioe.2021.758084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Applying nanosized ultrasound contrast agents (nUCAs) in molecular imaging has received considerable attention. nUCAs have been instrumental in ultrasound molecular imaging to enhance sensitivity, identification, and quantification. nUCAs can achieve high performance in molecular imaging, which was influenced by synthetic formulations and size. This review presents an overview of nUCAs from different synthetic formulations with a discussion on imaging and detection technology. Then we also review the progress of nUCAs in preclinical application and highlight the recent challenges of nUCAs.
Collapse
Affiliation(s)
- Fengyi Zeng
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, China.,Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China.,Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meng Du
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, China.,Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhiyi Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, China.,Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
7
|
Qin D, Zou Q, Lei S, Wang W, Li Z. Nonlinear dynamics and acoustic emissions of interacting cavitation bubbles in viscoelastic tissues. ULTRASONICS SONOCHEMISTRY 2021; 78:105712. [PMID: 34391164 PMCID: PMC8363877 DOI: 10.1016/j.ultsonch.2021.105712] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 05/14/2023]
Abstract
The cavitation-mediated bioeffects are primarily associated with the dynamic behaviors of bubbles in viscoelastic tissues, which involves complex interactions of cavitation bubbles with surrounding bubbles and tissues. The radial and translational motions, as well as the resultant acoustic emissions of two interacting cavitation bubbles in viscoelastic tissues were numerically investigated. Due to the bubble-bubble interactions, a remarkable suppression effect on the small bubble, whereas a slight enhancement effect on the large one were observed within the acoustic exposure parameters and the initial radii of the bubbles examined in this paper. Moreover, as the initial distance between bubbles increases, the strong suppression effect is reduced gradually and it could effectively enhance the nonlinear dynamics of bubbles, exactly as the bifurcation diagrams exhibit a similar mode of successive period doubling to chaos. Correspondingly, the resultant acoustic emissions present a progressive evolution of harmonics, subharmonics, ultraharmonics and broadband components in the frequency spectra. In addition, with the elasticity and/or viscosity of the surrounding medium increasing, both the nonlinear dynamics and translational motions of bubbles were reduced prominently. This study provides a comprehensive insight into the nonlinear behaviors and acoustic emissions of two interacting cavitation bubbles in viscoelastic media, it may contribute to optimizing and monitoring the cavitation-mediated biomedical applications.
Collapse
Affiliation(s)
- Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China.
| | - Qingqin Zou
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Shuang Lei
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Wei Wang
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Zhangyong Li
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China.
| |
Collapse
|
8
|
Wang R, Zhang L, Xie M, Wang L, Jin Q, Chen Y, Xie Y, He M, Zhu Y, Xu L, Han Z, Chen D. Biogenic Gas Vesicles for Ultrasound Imaging and Targeted Therapeutics. Curr Med Chem 2021; 29:1316-1330. [PMID: 34225604 DOI: 10.2174/0929867328666210705145642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/01/2021] [Accepted: 05/15/2021] [Indexed: 11/22/2022]
Abstract
Ultrasound is not only the most widely used medical imaging mode for diagnostics owing to its real-time, non-radiation, portable, and low-cost merits, but also a promising targeted drug/gene delivery technique by exhibiting a series of powerful bioeffects. The development of micron-sized or nanometer-sized ultrasound agents or delivery carriers further makes ultrasound a distinctive modality in accurate diagnosis and effective treatment. In this review, we introduce one kind of unique biogenic gas-filled protein nanostructures called gas vesicles, presenting some unique characteristics than the conventional microbubbles. Gas vesicles can not only serve as ultrasound contrast agents with innovative imaging methods such as cross-amplitude modulation harmonic imaging but also can further be adjusted and optimized via genetic engineering techniques. Moreover, they could not only serve as acoustic gene reporters, acoustic biosensors to monitor the cell metabolism, but also serve as cavitation nuclei and drug carriers for therapeutic purposes. In this study, we focus on the latest development and applications in the area of ultrasound imaging and targeted therapeutics, and also provide a brief introduction of the corresponding mechanisms. In summary, these biogenic gas vesicles show some advantages over conventional MBs that deserve more efforts to promote their development.
Collapse
Affiliation(s)
- Rui Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lufang Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiaofeng Jin
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihan Chen
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuji Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengrong He
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Zhu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Xu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyang Han
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Chen
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Egorova KS, Posvyatenko AV, Larin SS, Ananikov V. Ionic liquids: prospects for nucleic acid handling and delivery. Nucleic Acids Res 2021; 49:1201-1234. [PMID: 33476366 PMCID: PMC7897475 DOI: 10.1093/nar/gkaa1280] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Operations with nucleic acids are among the main means of studying the mechanisms of gene function and developing novel methods of molecular medicine and gene therapy. These endeavours usually imply the necessity of nucleic acid storage and delivery into eukaryotic cells. In spite of diversity of the existing dedicated techniques, all of them have their limitations. Thus, a recent notion of using ionic liquids in manipulations of nucleic acids has been attracting significant attention lately. Due to their unique physicochemical properties, in particular, their micro-structuring impact and tunability, ionic liquids are currently applied as solvents and stabilizing media in chemical synthesis, electrochemistry, biotechnology, and other areas. Here, we review the current knowledge on interactions between nucleic acids and ionic liquids and discuss potential advantages of applying the latter in delivery of the former into eukaryotic cells.
Collapse
Affiliation(s)
- Ksenia S Egorova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexandra V Posvyatenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
- Molecular Immunology Laboratory, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela St 1, Moscow 117997, Russia
| | - Sergey S Larin
- Molecular Immunology Laboratory, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela St 1, Moscow 117997, Russia
| | - Valentine P Ananikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| |
Collapse
|
10
|
Zhao Z, Wang Y, Wang Q, Liang J, Hu W, Zhao S, Li P, Zhu H, Li Z. Radial extracorporeal shockwave promotes subchondral bone stem/progenitor cell self-renewal by activating YAP/TAZ and facilitates cartilage repair in vivo. Stem Cell Res Ther 2021; 12:19. [PMID: 33413606 PMCID: PMC7792202 DOI: 10.1186/s13287-020-02076-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Radial extracorporeal shockwave (r-ESW), an innovative and noninvasive technique, is gaining increasing attention in regenerative medicine due to its mechanobiological effects. Subchondral bone stem/progenitor cells (SCB-SPCs), originating from the pivotal zone of the osteochondral unit, have been shown to have multipotency and self-renewal properties. However, thus far, little information is available regarding the influences of r-ESW on the biological properties of SCB-SPCs and their therapeutic effects in tissue regeneration. METHODS SCB-SPCs were isolated from human knee plateau osteochondral specimens and treated with gradient doses of r-ESW in a suspension stimulation system. The optimized parameters for SCB-SPC self-renewal were screened out by colony-forming unit fibroblast assay (CFU-F). Then, the effects of r-ESW on the proliferation, apoptosis, and multipotency of SCB-SPCs were evaluated. Moreover, the repair efficiency of radial shockwave-preconditioned SCB-SPCs was evaluated in vivo via an osteochondral defect model. Potential mechanisms were explored by western blotting, confocal laser scanning, and high-throughput sequencing. RESULTS The CFU-F data indicate that r-ESW could augment the self-renewal of SCB-SPCs in a dose-dependent manner. The CCK-8 and flow cytometry results showed that the optimized shockwave markedly promoted SCB-SPC proliferation but had no significant influence on cell apoptosis. Radial shockwave exerted no significant influence on osteogenic capacity but strongly suppressed adipogenic ability in the current study. For chondrogenic potentiality, the treated SCB-SPCs were mildly enhanced, while the change was not significant. Importantly, the macroscopic scores and further histological analysis strongly demonstrated that the in vivo therapeutic effects of SCB-SPCs were markedly improved post r-ESW treatment. Further analysis showed that the cartilage-related markers collagen II and proteoglycan were expressed at higher levels compared to their counterpart group. Mechanistic studies suggested that r-ESW treatment strongly increased the expression of YAP and promoted YAP nuclear translocation in SCB-SPCs. More importantly, self-renewal was partially blocked by the YAP-specific inhibitor verteporfin. Moreover, the high-throughput sequencing data indicated that other self-renewal-associated pathways may also be involved in this process. CONCLUSION We found that r-ESW is capable of promoting the self-renewal of SCB-SPCs in vitro by targeting YAP activity and strengthening its repair efficiency in vivo, indicating promising application prospects.
Collapse
Affiliation(s)
- Zhidong Zhao
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yuxing Wang
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Qian Wang
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Jiawu Liang
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Wei Hu
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Sen Zhao
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Peilin Li
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Heng Zhu
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China. .,Graduate School of Anhui Medical University, No. 81 Meishan Road, Shu Shan District, Hefei, 230032, Anhui Province, China.
| | - Zhongli Li
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
11
|
Molecular Ultrasound Imaging. NANOMATERIALS 2020; 10:nano10101935. [PMID: 32998422 PMCID: PMC7601169 DOI: 10.3390/nano10101935] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
In the last decade, molecular ultrasound imaging has been rapidly progressing. It has proven promising to diagnose angiogenesis, inflammation, and thrombosis, and many intravascular targets, such as VEGFR2, integrins, and selectins, have been successfully visualized in vivo. Furthermore, pre-clinical studies demonstrated that molecular ultrasound increased sensitivity and specificity in disease detection, classification, and therapy response monitoring compared to current clinically applied ultrasound technologies. Several techniques were developed to detect target-bound microbubbles comprising sensitive particle acoustic quantification (SPAQ), destruction-replenishment analysis, and dwelling time assessment. Moreover, some groups tried to assess microbubble binding by a change in their echogenicity after target binding. These techniques can be complemented by radiation force ultrasound improving target binding by pushing microbubbles to vessel walls. Two targeted microbubble formulations are already in clinical trials for tumor detection and liver lesion characterization, and further clinical scale targeted microbubbles are prepared for clinical translation. The recent enormous progress in the field of molecular ultrasound imaging is summarized in this review article by introducing the most relevant detection technologies, concepts for targeted nano- and micro-bubbles, as well as their applications to characterize various diseases. Finally, progress in clinical translation is highlighted, and roadblocks are discussed that currently slow the clinical translation.
Collapse
|
12
|
Du M, Chen Y, Tu J, Liufu C, Yu J, Yuan Z, Gong X, Chen Z. Ultrasound Responsive Magnetic Mesoporous Silica Nanoparticle-Loaded Microbubbles for Efficient Gene Delivery. ACS Biomater Sci Eng 2020; 6:2904-2912. [PMID: 33463299 DOI: 10.1021/acsbiomaterials.0c00014] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Meng Du
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Duo Bao Road 63, Guangzhou 510150, China
| | - Yuhao Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Duo Bao Road 63, Guangzhou 510150, China
| | - Jiawei Tu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Duo Bao Road 63, Guangzhou 510150, China
| | - Chun Liufu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Duo Bao Road 63, Guangzhou 510150, China
| | - Jinsui Yu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Duo Bao Road 63, Guangzhou 510150, China
| | - Zhen Yuan
- Cancer Center, Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China
| | - Xiaojing Gong
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, China
| | - ZhiYi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Duo Bao Road 63, Guangzhou 510150, China
| |
Collapse
|
13
|
Tharkar P, Varanasi R, Wong WSF, Jin CT, Chrzanowski W. Nano-Enhanced Drug Delivery and Therapeutic Ultrasound for Cancer Treatment and Beyond. Front Bioeng Biotechnol 2019; 7:324. [PMID: 31824930 PMCID: PMC6883936 DOI: 10.3389/fbioe.2019.00324] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022] Open
Abstract
While ultrasound is most widely known for its use in diagnostic imaging, the energy carried by ultrasound waves can be utilized to influence cell function and drug delivery. Consequently, our ability to use ultrasound energy at a given intensity unlocks the opportunity to use the ultrasound for therapeutic applications. Indeed, in the last decade ultrasound-based therapies have emerged with promising treatment modalities for several medical conditions. More recently, ultrasound in combination with nanomedicines, i.e., nanoparticles, has been shown to have substantial potential to enhance the efficacy of many treatments including cancer, Alzheimer disease or osteoarthritis. The concept of ultrasound combined with drug delivery is still in its infancy and more research is needed to unfold the mechanisms and interactions of ultrasound with different nanoparticles types and with various cell types. Here we present the state-of-art in ultrasound and ultrasound-assisted drug delivery with a particular focus on cancer treatments. Notably, this review discusses the application of high intensity focus ultrasound for non-invasive tumor ablation and immunomodulatory effects of ultrasound, as well as the efficacy of nanoparticle-enhanced ultrasound therapies for different medical conditions. Furthermore, this review presents safety considerations related to ultrasound technology and gives recommendations in the context of system design and operation.
Collapse
Affiliation(s)
- Priyanka Tharkar
- Faculty of Medicine and Health, Sydney School of Pharmacy, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Ramya Varanasi
- Faculty of Medicine and Health, Sydney School of Pharmacy, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Wu Shun Felix Wong
- School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Craig T Jin
- Faculty of Engineering, School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Wojciech Chrzanowski
- Faculty of Medicine and Health, Sydney School of Pharmacy, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
14
|
Liufu C, Li Y, Tu J, Zhang H, Yu J, Wang Y, Huang P, Chen Z. Echogenic PEGylated PEI-Loaded Microbubble As Efficient Gene Delivery System. Int J Nanomedicine 2019; 14:8923-8941. [PMID: 31814720 PMCID: PMC6863126 DOI: 10.2147/ijn.s217338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are responsible for cancer therapeutic resistance and metastasis. To date, in addition to surgery, chemotherapy, and radiotherapy, gene delivery has emerged as a potential therapeutic modality for ovarian cancer. Efficient and safe targeted gene delivery is complicated due to the tumor heterogeneity barrier. Ultrasound (US)-stimulated microbubbles (MBs) have demonstrated a method of enabling non-invasive targeted gene delivery. PURPOSE The purpose of our study was to show the utility of poly(ethylene glycol)-SS-polyethylenimine-loaded microbubbles (PSP@MB) as an ultrasound theranostic and redox-responsive agent in a gene delivery system. PATIENTS AND METHODS PSP nanoparticles were conjugated to the MB surface through biotin-avidin linkage, increasing the gene-loading efficiency of MB. The significant increase in the release of genes from the PSP@MB complexes was achieved upon ultrasound exposure. The positive surface charge in PSP@MB can condense the plasmid through electrostatic interactions; agarose-gel electrophoresis further confirmed the ability of PSP@MB to condense plasmids. The morphology, particle sizes and zeta potential of PSP@MB were characterized by transmission electron microscopy and dynamic light scattering. RESULTS Laser confocal microscopy showed that the combination of ultrasound with PSP@MB could promote the cellular uptake of plasmids. Plasmids which encode enhanced green fluorescence protein (EGFP) reporter genes or luciferase reporter genes were delivered to CSCs in vitro and to subcutaneous xenografts in vivo via the combination of ultrasound with PSP@MB. Gene transfection efficiency was evaluated by fluorescence microscopy and In Vivo Imaging Systems. This study demonstrated that the combination of ultrasound with PSP@MB can remarkably promote gene delivery to solid tumors as well as diminishing the toxicity towards normal tissues in vivo. The combination of PSP@MB and the use of ultrasound can efficiently enhance accumulation, extravasation and penetration into solid tumors. CONCLUSION Taken together, our study showed that this novel PSP@MB and ultrasound-mediated gene delivery system could efficiently target CSCs.
Collapse
Affiliation(s)
- Chun Liufu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Experimental Center, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong510000, People’s Republic of China
| | - Yue Li
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Experimental Center, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong510000, People’s Republic of China
| | - Jiawei Tu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Experimental Center, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong510000, People’s Republic of China
| | - Hui Zhang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Experimental Center, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong510000, People’s Republic of China
| | - Jinsui Yu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Experimental Center, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong510000, People’s Republic of China
| | - Yi Wang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Experimental Center, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong510000, People’s Republic of China
| | - Pintong Huang
- Department of Ultrasound, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Experimental Center, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong510000, People’s Republic of China
| |
Collapse
|
15
|
Tayier B, Deng Z, Wang Y, Wang W, Mu Y, Yan F. Biosynthetic nanobubbles for targeted gene delivery by focused ultrasound. NANOSCALE 2019; 11:14757-14768. [PMID: 31348476 DOI: 10.1039/c9nr03402a] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ultrasound-targeted microbubble destruction (UTMD) has recently drawn considerable attention in biomedicine applications due to its great potential to locally enhance gene delivery. However, conventional microbubbles have a microscale particle size and polydisperse particle size distribution, which makes it difficult for them to directly come into contact with tumor cells and to efficiently deliver therapeutic genes via ultrasound cavitation effects. In the current study, we developed a kind of novel cationic biosynthetic nanobubble (CBNB) as an ultrasonic gene delivery carrier through coating PEI on the surface of these biosynthetic nanobubbles (BNBs). The BNBs, produced from an extremely halophilic archaeon (Halobacterium NRC-1), possess a nanoscale size and can produce stable contrast signals both in vitro and in vivo. Surface modification with PEI polymer greatly increased the DNA loading capability of BNBs, leading to significantly improved gene transfection efficiency when combining with ultrasound. To our knowledge, this is the first report to apply biosynthetic bubbles as non-viral gene carriers which can effectively deliver genes into tumor cells with the aid of ultrasound cavitation. Our study provides a powerful tool for image-guided and efficient gene delivery using biosynthetic nanoscale contrast agents.
Collapse
Affiliation(s)
- Baihetiya Tayier
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| | | | | | | | | | | |
Collapse
|
16
|
Li H, Wang Z, Zhang J, Yuan C, Zhang H, Hou X, Zhang D. Enhanced shRNA delivery by the combination of polyethylenimine, ultrasound, and nanobubbles in liver cancer. Technol Health Care 2019; 27:263-272. [PMID: 31045545 PMCID: PMC6597992 DOI: 10.3233/thc-199025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Traditional cancer treatments such as surgery, radiation, and chemotherapy destroy both cancer and normal cells, which limit their clinical application. It is difficult to achieve the best results for any liver cancer patients using any single treatment method. Gene therapy for HCC demands non-invasive, efficient, targeted and safe gene transfection strategies. OBJECTIVE In this study, a nonviral shRNA gene delivery system utilizing a combination of PEI, US, and NBs was developed for targeting survivin in liver Cancer. METHODS AND RESULTS The PEI-shRNA-NBs cumulated in the tumor tissue because of the EPR effect. By exposure to the US, micelles shRNA may be released from PEI-shRNA-NBs in tumor tissues and the shRNA then transmitted efficiently to cancer cells. Considerably enhanced therapeutic outcome was obtained with the gene silencing effect enhanced. CONCLUSIONS PEI-shRNA-NBs possess the potential to become promising tools intended for shRNA delivery.
Collapse
Affiliation(s)
- Hongbo Li
- Department of Ultrasonography, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Medical School, Southeast University, Nanjing, China
| | - Ziyu Wang
- Department of Ultrasonography, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, Medical School, Southeast University, Nanjing, China
| | - Chenyan Yuan
- Jiangsu Key Laboratory for Biomaterials and Devices, Medical School, Southeast University, Nanjing, China
| | - Hao Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, Medical School, Southeast University, Nanjing, China
| | - Xinxin Hou
- Jiangsu Key Laboratory for Biomaterials and Devices, Medical School, Southeast University, Nanjing, China
| | - Dongsheng Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, Medical School, Southeast University, Nanjing, China
| |
Collapse
|