1
|
Woodhams LG, Guo J, Schuftan D, Boyle JJ, Pryse KM, Elson EL, Huebsch N, Genin GM. Virtual blebbistatin: A robust and rapid software approach to motion artifact removal in optical mapping of cardiomyocytes. Proc Natl Acad Sci U S A 2023; 120:e2212949120. [PMID: 37695908 PMCID: PMC10515162 DOI: 10.1073/pnas.2212949120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 07/31/2023] [Indexed: 09/13/2023] Open
Abstract
Fluorescent reporters of cardiac electrophysiology provide valuable information on heart cell and tissue function. However, motion artifacts caused by cardiac muscle contraction interfere with accurate measurement of fluorescence signals. Although drugs such as blebbistatin can be applied to stop cardiac tissue from contracting by uncoupling calcium-contraction, their usage prevents the study of excitation-contraction coupling and, as we show, impacts cellular structure. We therefore developed a robust method to remove motion computationally from images of contracting cardiac muscle and to map fluorescent reporters of cardiac electrophysiological activity onto images of undeformed tissue. When validated on cardiomyocytes derived from human induced pluripotent stem cells (iPSCs), in both monolayers and engineered tissues, the method enabled efficient and robust reduction of motion artifact. As with pharmacologic approaches using blebbistatin for motion removal, our algorithm improved the accuracy of optical mapping, as demonstrated by spatial maps of calcium transient decay. However, unlike pharmacologic motion removal, our computational approach allowed direct analysis of calcium-contraction coupling. Results revealed calcium-contraction coupling to be more uniform across cells within engineered tissues than across cells in monolayer culture. The algorithm shows promise as a robust and accurate tool for optical mapping studies of excitation-contraction coupling in heart tissue.
Collapse
Affiliation(s)
- Louis G Woodhams
- Department of Mechanical Engineering and Material Science, Washington University in Saint Louis, St. Louis, MO 63130
| | - Jingxuan Guo
- Department of Mechanical Engineering and Material Science, Washington University in Saint Louis, St. Louis, MO 63130
| | - David Schuftan
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130
| | - John J Boyle
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130
| | - Kenneth M Pryse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Elliot L Elson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in Saint Louis, St. Louis, MO 63130
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in Saint Louis, St. Louis, MO 63130
| | - Guy M Genin
- Department of Mechanical Engineering and Material Science, Washington University in Saint Louis, St. Louis, MO 63130
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in Saint Louis, St. Louis, MO 63130
| |
Collapse
|
2
|
Almasri RM, Ladouceur F, Mawad D, Esrafilzadeh D, Firth J, Lehmann T, Poole-Warren LA, Lovell NH, Al Abed A. Emerging trends in the development of flexible optrode arrays for electrophysiology. APL Bioeng 2023; 7:031503. [PMID: 37692375 PMCID: PMC10491464 DOI: 10.1063/5.0153753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Optical-electrode (optrode) arrays use light to modulate excitable biological tissues and/or transduce bioelectrical signals into the optical domain. Light offers several advantages over electrical wiring, including the ability to encode multiple data channels within a single beam. This approach is at the forefront of innovation aimed at increasing spatial resolution and channel count in multichannel electrophysiology systems. This review presents an overview of devices and material systems that utilize light for electrophysiology recording and stimulation. The work focuses on the current and emerging methods and their applications, and provides a detailed discussion of the design and fabrication of flexible arrayed devices. Optrode arrays feature components non-existent in conventional multi-electrode arrays, such as waveguides, optical circuitry, light-emitting diodes, and optoelectronic and light-sensitive functional materials, packaged in planar, penetrating, or endoscopic forms. Often these are combined with dielectric and conductive structures and, less frequently, with multi-functional sensors. While creating flexible optrode arrays is feasible and necessary to minimize tissue-device mechanical mismatch, key factors must be considered for regulatory approval and clinical use. These include the biocompatibility of optical and photonic components. Additionally, material selection should match the operating wavelength of the specific electrophysiology application, minimizing light scattering and optical losses under physiologically induced stresses and strains. Flexible and soft variants of traditionally rigid photonic circuitry for passive optical multiplexing should be developed to advance the field. We evaluate fabrication techniques against these requirements. We foresee a future whereby established telecommunications techniques are engineered into flexible optrode arrays to enable unprecedented large-scale high-resolution electrophysiology systems.
Collapse
Affiliation(s)
- Reem M. Almasri
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | | | - Damia Mawad
- School of Materials Science and Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Josiah Firth
- Australian National Fabrication Facility, UNSW, Sydney, NSW 2052, Australia
| | - Torsten Lehmann
- School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052, Australia
| | | | | | - Amr Al Abed
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Bowman AJ, Huang C, Schnitzer MJ, Kasevich MA. Wide-field fluorescence lifetime imaging of neuron spiking and subthreshold activity in vivo. Science 2023; 380:1270-1275. [PMID: 37347862 PMCID: PMC10361454 DOI: 10.1126/science.adf9725] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/16/2023] [Indexed: 06/24/2023]
Abstract
The development of voltage-sensitive fluorescent probes suggests fluorescence lifetime as a promising readout for electrical activity in biological systems. Existing approaches fail to achieve the speed and sensitivity required for voltage imaging in neuroscience applications. We demonstrated that wide-field electro-optic fluorescence lifetime imaging microscopy (EO-FLIM) allows lifetime imaging at kilohertz frame-acquisition rates, spatially resolving action potential propagation and subthreshold neural activity in live adult Drosophila. Lifetime resolutions of <5 picoseconds at 1 kilohertz were achieved for single-cell voltage recordings. Lifetime readout is limited by photon shot noise, and the method provides strong rejection of motion artifacts and technical noise sources. Recordings revealed local transmembrane depolarizations, two types of spikes with distinct fluorescence lifetimes, and phase locking of spikes to an external mechanical stimulus.
Collapse
Affiliation(s)
- Adam J Bowman
- Physics Department, Stanford University, Stanford, CA 94305, USA
| | - Cheng Huang
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Mark J Schnitzer
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Mark A Kasevich
- Physics Department, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Quicke P, Sun Y, Arias-Garcia M, Beykou M, Acker CD, Djamgoz MBA, Bakal C, Foust AJ. Voltage imaging reveals the dynamic electrical signatures of human breast cancer cells. Commun Biol 2022; 5:1178. [PMID: 36369329 PMCID: PMC9652252 DOI: 10.1038/s42003-022-04077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer cells feature a resting membrane potential (Vm) that is depolarized compared to normal cells, and express active ionic conductances, which factor directly in their pathophysiological behavior. Despite similarities to 'excitable' tissues, relatively little is known about cancer cell Vm dynamics. Here high-throughput, cellular-resolution Vm imaging reveals that Vm fluctuates dynamically in several breast cancer cell lines compared to non-cancerous MCF-10A cells. We characterize Vm fluctuations of hundreds of human triple-negative breast cancer MDA-MB-231 cells. By quantifying their Dynamic Electrical Signatures (DESs) through an unsupervised machine-learning protocol, we identify four classes ranging from "noisy" to "blinking/waving". The Vm of MDA-MB-231 cells exhibits spontaneous, transient hyperpolarizations inhibited by the voltage-gated sodium channel blocker tetrodotoxin, and by calcium-activated potassium channel inhibitors apamin and iberiotoxin. The Vm of MCF-10A cells is comparatively static, but fluctuations increase following treatment with transforming growth factor-β1, a canonical inducer of the epithelial-to-mesenchymal transition. These data suggest that the ability to generate Vm fluctuations may be a property of hybrid epithelial-mesenchymal cells or those originated from luminal progenitors.
Collapse
Affiliation(s)
- Peter Quicke
- Department of Bioengineering, Imperial College London, London, SW7 2AL, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Yilin Sun
- Department of Bioengineering, Imperial College London, London, SW7 2AL, UK
| | - Mar Arias-Garcia
- Institute of Cancer Research, Cancer Biology, London, SW3 6JB, UK
| | - Melina Beykou
- Institute of Cancer Research, Cancer Biology, London, SW3 6JB, UK
- Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Corey D Acker
- University of Connecticut School of Medicine, R. D. Berlin Center for Cell Analysis and Modeling, Farmington, CT, USA
| | - Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey
| | - Chris Bakal
- Institute of Cancer Research, Cancer Biology, London, SW3 6JB, UK.
| | - Amanda J Foust
- Department of Bioengineering, Imperial College London, London, SW7 2AL, UK.
| |
Collapse
|
5
|
Al Abed A, Wei Y, Almasri RM, Lei X, Wang H, Firth J, Chen Y, Gouailhardou N, Silvestri L, Lehmann T, Ladouceur F, Lovell NH. Liquid crystal electro-optical transducers for electrophysiology sensing applications. J Neural Eng 2022; 19. [DOI: 10.1088/1741-2552/ac8ed6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
Abstract
Objective. Biomedical instrumentation and clinical systems for electrophysiology rely on electrodes and wires for sensing and transmission of bioelectric signals. However, this electronic approach constrains bandwidth, signal conditioning circuit designs, and the number of channels in invasive or miniature devices. This paper demonstrates an alternative approach using light to sense and transmit the electrophysiological signals. Approach. We develop a sensing, passive, fluorophore-free optrode based on the birefringence property of liquid crystals (LCs) operating at the microscale. Main results. We show that these optrodes can have the appropriate linearity (µ ± s.d.: 99.4 ± 0.5%, n = 11 devices), relative responsivity (µ ± s.d.: 57 ± 12%V−1, n = 5 devices), and bandwidth (µ ± s.d.: 11.1 ± 0.7 kHz, n = 7 devices) for transducing electrophysiology signals into the optical domain. We report capture of rabbit cardiac sinoatrial electrograms and stimulus-evoked compound action potentials from the rabbit sciatic nerve. We also demonstrate miniaturisation potential by fabricating multi-optrode arrays, by developing a process that automatically matches each transducer element area with that of its corresponding biological interface. Significance. Our method of employing LCs to convert bioelectric signals into the optical domain will pave the way for the deployment of high-bandwidth optical telecommunications techniques in ultra-miniature clinical diagnostic and research laboratory neural and cardiac interfaces.
Collapse
|
6
|
Müllenbroich MC, Kelly A, Acker C, Bub G, Bruegmann T, Di Bona A, Entcheva E, Ferrantini C, Kohl P, Lehnart SE, Mongillo M, Parmeggiani C, Richter C, Sasse P, Zaglia T, Sacconi L, Smith GL. Novel Optics-Based Approaches for Cardiac Electrophysiology: A Review. Front Physiol 2021; 12:769586. [PMID: 34867476 PMCID: PMC8637189 DOI: 10.3389/fphys.2021.769586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022] Open
Abstract
Optical techniques for recording and manipulating cellular electrophysiology have advanced rapidly in just a few decades. These developments allow for the analysis of cardiac cellular dynamics at multiple scales while largely overcoming the drawbacks associated with the use of electrodes. The recent advent of optogenetics opens up new possibilities for regional and tissue-level electrophysiological control and hold promise for future novel clinical applications. This article, which emerged from the international NOTICE workshop in 2018, reviews the state-of-the-art optical techniques used for cardiac electrophysiological research and the underlying biophysics. The design and performance of optical reporters and optogenetic actuators are reviewed along with limitations of current probes. The physics of light interaction with cardiac tissue is detailed and associated challenges with the use of optical sensors and actuators are presented. Case studies include the use of fluorescence recovery after photobleaching and super-resolution microscopy to explore the micro-structure of cardiac cells and a review of two photon and light sheet technologies applied to cardiac tissue. The emergence of cardiac optogenetics is reviewed and the current work exploring the potential clinical use of optogenetics is also described. Approaches which combine optogenetic manipulation and optical voltage measurement are discussed, in terms of platforms that allow real-time manipulation of whole heart electrophysiology in open and closed-loop systems to study optimal ways to terminate spiral arrhythmias. The design and operation of optics-based approaches that allow high-throughput cardiac electrophysiological assays is presented. Finally, emerging techniques of photo-acoustic imaging and stress sensors are described along with strategies for future development and establishment of these techniques in mainstream electrophysiological research.
Collapse
Affiliation(s)
| | - Allen Kelly
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Corey Acker
- Center for Cell Analysis and Modeling, UConn Health, Farmington, CT, United States
| | - Gil Bub
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Tobias Bruegmann
- Institute for Cardiovascular Physiology, University Medical Center Goettingen, Goettingen, Germany
| | - Anna Di Bona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Emilia Entcheva
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | | | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Stephan E. Lehnart
- Heart Research Center Göttingen, University Medical Center Göttingen, Göttingen, Germany
- Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | | | - Claudia Richter
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Leonardo Sacconi
- European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Italy
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
- National Institute of Optics, National Research Council, Florence, Italy
| | - Godfrey L. Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
7
|
Ronzhina M, Stracina T, Lacinova L, Ondacova K, Pavlovicova M, Marsanova L, Smisek R, Janousek O, Fialova K, Kolarova J, Novakova M, Provaznik I. Di-4-ANEPPS Modulates Electrical Activity and Progress of Myocardial Ischemia in Rabbit Isolated Heart. Front Physiol 2021; 12:667065. [PMID: 34177617 PMCID: PMC8222999 DOI: 10.3389/fphys.2021.667065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Aims Although voltage-sensitive dye di-4-ANEPPS is a common tool for mapping cardiac electrical activity, reported effects on electrophysiological parameters are rather. The main goals of the study were to reveal effects of the dye on rabbit isolated heart and to verify, whether rabbit isolated heart stained with di-4-ANEPPS is a suitable tool for myocardial ischemia investigation. Methods and Results Study involved experiments on stained (n = 9) and non-stained (n = 11) Langendorff perfused rabbit isolated hearts. Electrophysiological effects of the dye were evaluated by analysis of various electrogram (EG) parameters using common paired and unpaired statistical tests. It was shown that staining the hearts with di-4-ANEPPS leads to only short-term sporadic prolongation of impulse conduction through atria and atrioventricular node. On the other hand, significant irreversible slowing of heart rate and ventricular conduction were found in stained hearts as compared to controls. In patch clamp experiments, significant inhibition of sodium current density was observed in differentiated NG108-15 cells stained by the dye. Although no significant differences in mean number of ventricular premature beats were found between the stained and the non-stained hearts in ischemia as well as in reperfusion, all abovementioned results indicate increased arrhythmogenicity. In isolated hearts during ischemia, prominent ischemic patterns appeared in the stained hearts with 3–4 min delay as compared to the non-stained ones. Moreover, the ischemic changes did not achieve the same magnitude as in controls even after 10 min of ischemia. It resulted in poor performance of ischemia detection by proposed EG parameters, as was quantified by receiver operating characteristics analysis. Conclusion Our results demonstrate significant direct irreversible effect of di-4-ANEPPS on spontaneous heart rate and ventricular impulse conduction in rabbit isolated heart model. Particularly, this should be considered when di-4-ANEPPS is used in ischemia studies in rabbit. Delayed attenuated response of such hearts to ischemia might lead to misinterpretation of obtained results.
Collapse
Affiliation(s)
- Marina Ronzhina
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Tibor Stracina
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Lubica Lacinova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarina Ondacova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michaela Pavlovicova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucie Marsanova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Radovan Smisek
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Oto Janousek
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Katerina Fialova
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jana Kolarova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Marie Novakova
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Ivo Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| |
Collapse
|
8
|
Tissue Chips and Microphysiological Systems for Disease Modeling and Drug Testing. MICROMACHINES 2021; 12:mi12020139. [PMID: 33525451 PMCID: PMC7911320 DOI: 10.3390/mi12020139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Tissue chips (TCs) and microphysiological systems (MPSs) that incorporate human cells are novel platforms to model disease and screen drugs and provide an alternative to traditional animal studies. This review highlights the basic definitions of TCs and MPSs, examines four major organs/tissues, identifies critical parameters for organization and function (tissue organization, blood flow, and physical stresses), reviews current microfluidic approaches to recreate tissues, and discusses current shortcomings and future directions for the development and application of these technologies. The organs emphasized are those involved in the metabolism or excretion of drugs (hepatic and renal systems) and organs sensitive to drug toxicity (cardiovascular system). This article examines the microfluidic/microfabrication approaches for each organ individually and identifies specific examples of TCs. This review will provide an excellent starting point for understanding, designing, and constructing novel TCs for possible integration within MPS.
Collapse
|
9
|
Assessment of Cardiotoxicity With Stem Cell-based Strategies. Clin Ther 2020; 42:1892-1910. [PMID: 32938533 DOI: 10.1016/j.clinthera.2020.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Adverse cardiovascular drug effects pose a substantial medical risk and represent a common cause of drug withdrawal from the market. Thus, current in vitro assays and in vivo animal models still have shortcomings in assessing cardiotoxicity. A human model for more accurate preclinical cardiotoxicity assessment is highly desirable. Current differentiation protocols allow for the generation of human pluripotent stem cell-derived cardiomyocytes in basically unlimited numbers and offer the opportunity to study drug effects on human cardiomyocytes. The purpose of this review is to provide a brief overview of the current approaches to translate studies with pluripotent stem cell-derived cardiomyocytes from basic science to preclinical risk assessment. METHODS A review of the literature was performed to gather data on the pathophysiology of cardiotoxicity, the current cardiotoxicity screening assays, stem cell-derived cardiomyocytes, and their application in cardiotoxicity screening. FINDINGS There is increasing evidence that stem cell-derived cardiomyocytes predict arrhythmogenicity with high accuracy. Cardiomyocyte immaturity represents the major limitation so far. However, strategies are being developed to overcome this hurdle, such as tissue engineering. In addition, stem cell-based strategies offer the possibility to assess structural drug toxicity (eg, by anticancer drugs) on complex models that more closely mirror the structure of the heart and contain endothelial cells and fibroblasts. IMPLICATIONS Pluripotent stem cell-derived cardiomyocytes have the potential to substantially change how preclinical cardiotoxicity screening is performed. To which extent they will replace or complement current approaches is being evaluated.
Collapse
|