1
|
Guo Y, Chen X, Fang G, Cao X, Wan J. A Convenient Strategy for Studying Antibody Aggregation and Inhibition of Aggregation: Characterization and Simulation. Pharmaceutics 2025; 17:534. [PMID: 40284529 PMCID: PMC12030238 DOI: 10.3390/pharmaceutics17040534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Protein aggregation, particularly the aggregation of antibody-based drugs, has long been a significant challenge in downstream processes and formulation. While the inhibitory effects of excipients on aggregation have been extensively studied using early experimental characterization methods, complete formulation research requires significant amounts of antibodies and time, resulting in high research costs. Methods: This study proposed a quick and small-scale position-restrained simulation method which elucidated the mechanism of the reversible self-association (RSA) of antibodies and the influence of excipients on RSA under different conditions. We also validated the rationality of rapid and small-scale simulations through long-term (>1 μs) and large-scale (>1,000,000 atoms) simulations. Results: Through combing with simple stability characterization, the effects of different excipients on monomer residual content and the trend shown with concentration changes after thermal incubation were found to be similar to those observed in the simulations. Additionally, the formulation proposed by the simulations was validated using experimental characterization. Conclusions: Simulations and experiments revealed the mechanism and showed consistent trends, providing better understanding for aggregation research.
Collapse
Affiliation(s)
| | | | | | | | - Junfen Wan
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; (Y.G.); (X.C.); (G.F.); (X.C.)
| |
Collapse
|
2
|
Khan S, Ansari NK, Naeem A. Chlorogenic Acid Enhances the Chaperone Potential of BSA at Physiological Concentrations on Model Protein Cytochrome c. Cell Biochem Biophys 2025; 83:845-856. [PMID: 39306822 DOI: 10.1007/s12013-024-01516-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 03/03/2025]
Abstract
Neurodegenerative disorders are associated with the accumulation of disease-related proteins intracellularly and extracellularly. Extracellular chaperones play a crucial role in clearing the extracellularly accumulated proteins. In this study, we observed the extracellular chaperone-like potential of BSA at physiological concentrations on model protein cytochrome c (cyt c). Kinetics of heat-induced aggregation of cyt c suggest the nucleation independent first order aggregation kinetics. Aggregation of cyt c was studied in the presence of varying concentrations of BSA to assess its chaperone nature. At lower concentrations of BSA when the sub molar ratio of cyt c:BSA are 1:0.6 and 1:1.2, heat-induced unfolded cyt c promotes the aggregation of BSA. However, as the ratio of cyt c:BSA increases to 1:1.8, the aggregation of cyt c is reduced. When the concentration of BSA reaches physiological levels, yielding a cyt c:BSA ratio of 1:2.4, the rate of aggregation drastically decreases reflecting its chaperone potential. These observations indicate that under physiological conditions, macromolecular crowding stabilizes the native structure of both proteins and enhances their interaction that results in the reduced aggregation of cyt c. Additionally, the presence of the phytochemical chlorogenic acid at a sub-molar ratio of 1:1 stabilizes cyt c and prevents its unfolding and facilitates the binding of cyt c to BSA at physiological concentrations. This interaction further decreases the overall aggregation of cyt c and stabilizes its native fold.
Collapse
Affiliation(s)
- Sadaf Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Neha Kausar Ansari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India.
| |
Collapse
|
3
|
Ektirici S, Harmandaris V. A study of alpha-synuclein and poly( N-isopropylacrylamide) complex formation through detailed atomistic simulations. SOFT MATTER 2025; 21:1382-1394. [PMID: 39868549 DOI: 10.1039/d4sm01395f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
This work presents an investigation of the influence of poly(N-isopropylacrylamide) (PNIPAM) polymer on the structural dynamics of intrinsically disordered alpha-synuclein (α-syn) protein, exploring the formation and intricate features of the resulting α-syn/PNIPAM complexes. Using atomistic molecular dynamics (MD) simulations, our study analyzes the impact of initial configuration, polymer molecular weight, and protein mutations on the α-syn and the α-syn/PNIPAM complex. Atomistic simulations, of a few μs, of the protein/polymer complex reveal crucial insights into molecular interactions within the complex, emphasizing a delicate balance of forces governing its stability and structural evolution. Our findings indicate that PNIPAM polymer engages in significant non-polar interactions with the non-amyloid component (NAC) region of α-syn, which plays a crucial role in fibril formation, under various conditions such as the mutations in the protein structure and polymer chain length. Especially the PNIPAM polymer with a 40mer monomer exhibits a stabilizing effect on the structural properties of the protein, reducing intramolecular interactions that contribute to misfolding. These findings, which delve into protein/polymer interactions, hold promise as potential guidance for therapeutic strategies in various neurodegenerative disorders.
Collapse
Affiliation(s)
- Sisem Ektirici
- Computation-based Science and Technology Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus.
| | - Vagelis Harmandaris
- Computation-based Science and Technology Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus.
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion, GR-71110, Greece
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology - Hellas, Heraklion, GR-71110 Crete, Greece
| |
Collapse
|
4
|
Stanciu SM, Jurcut R, Dragoi Galrinho R, Stefani C, Miricescu D, Rusu IR, Prisacariu GS, Mititelu R. From Molecular to Radionuclide and Pharmacological Aspects in Transthyretin Cardiac Amyloidosis. Int J Mol Sci 2024; 26:146. [PMID: 39796004 PMCID: PMC11719977 DOI: 10.3390/ijms26010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Amyloidosis is a rare pathology characterized by protein deposits in various organs and tissues. Cardiac amyloidosis (CA) can be caused by various protein deposits, but transthyretin amyloidosis (ATTR) and immunoglobulin light chain (AL) are the most frequent pathologies. Protein misfolding can be induced by several factors such as oxidative stress, genetic mutations, aging, chronic inflammation, and neoplastic disorders. In ATTR cardiomyopathy (ATTR-CM), the amyloid fibrils can be found in the myocardium interstitial space and are associated with arrhythmias and heart failure. In pathological situations, the transthyretin (TTR) configuration is destroyed by proteolytic action, leading to monomers that further misfold and aggregate to form the amyloid fibrils. 99mTc-Pyrophosphate (99m-Tc-PYP), 99mTc 3,3-diphosphono-1,2-propanodicarboxylic acid (99m-Tc-DPD) and 99m-Tc hydroxy-methylene-Dyphosphonate (99m-Tc-HMDP) are used to detect myocardium amyloid deposits due to their ability to detect calcium ions that are present in the amyloid fibrils through dystrophic calcification. ATTR-CM therapy acts on different stages of the amyloidogenic process, including liver TTR synthesis, TTR tetramer destabilization, and misfolding of the monomers. The main aim of this narrative review is to present ATTR-CM, starting with molecular changes regarding the protein misfolding process and radionuclide aspects and finishing with pharmacological approaches.
Collapse
Affiliation(s)
- Silviu Marcel Stanciu
- Department of Internal Medicine and Gastroenterology, Carol Davila University of Medicine and Pharmacy, Central Military Emergency University Hospital, 010825 Bucharest, Romania;
| | - Ruxandra Jurcut
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Institute of Cardiovascular Diseases “Prof CC Iliescu”, 022322 Bucharest, Romania;
| | - Ruxandra Dragoi Galrinho
- Department of Cardiology and Cardiovascular Surgery, University and Emergency Hospital, 050098 Bucharest, Romania
| | - Constantin Stefani
- Department I of Family Medicine and Clinical Base, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania;
| | - Daniela Miricescu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana Ruxandra Rusu
- Discipline of Anatomy, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Georgiana Sabina Prisacariu
- Clinic of Nuclear Medicine Central University Emergency Military Hospital “Dr Carol Davila”, 10825 Bucharest, Romania; (G.S.P.); (R.M.)
| | - Raluca Mititelu
- Clinic of Nuclear Medicine Central University Emergency Military Hospital “Dr Carol Davila”, 10825 Bucharest, Romania; (G.S.P.); (R.M.)
- Department of Nuclear Medicine, University of Medicine and Pharmacy Carol Davila, 030147 Bucharest, Romania
| |
Collapse
|
5
|
Rahman A, Saikia B, Baruah A. Binding Interaction Between Two Mutant Myocilin Olfactomedin Domain Monomers in a Homodimer. J Phys Chem B 2024; 128:11893-11903. [PMID: 39571175 DOI: 10.1021/acs.jpcb.4c06782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
In myocilin-associated glaucoma, pathogenic missense mutations accumulate mainly in the olfactomedin domain (mOLF) of myocilin. This makes the protein susceptible to aggregation, where mOLF-mOLF dimerization is possibly an initial stage. Nevertheless, there are no molecular level studies that have probed the nature of interactions occurring between two mOLF domains and the key characteristics of the resulting dimer complex. In this work, we used AlphaFold2 to obtain an I477N mutant mOLF structure with high quality followed by a stable I477N mOLF-mOLF homodimer model using molecular docking combined with molecular dynamics simulations. Moreover, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods coupled with per-residue energy decomposition studies are carried out to identify the key residues involved in the binding interaction. Based on these results, we provide insights into the molecular level understanding of the intermolecular interaction between two mOLF domains in an I477N homodimer. Hydrogen bonds, salt bridges, and favorable van der Waals interactions are observed in the binding interface of the homodimer. Additionally, our results suggest that I477N mutant mOLF aggregation could be a multistep process, beginning with an initial mOLF-mOLF dimerization mainly mediated by residues such as Asp395 and Arg681. Also, the peptides P1 (residues 326-337) and P3 (residues 426-442) of the mOLF domain, previously identified as pertinent for myocilin aggregation, could potentially contribute to a subsequent stage of myocilin aggregation, the first step being mOLF-mOLF dimerization.
Collapse
Affiliation(s)
- Aziza Rahman
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Bondeepa Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Anupaul Baruah
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| |
Collapse
|
6
|
Trujillo P, Garavaglia P, Alvarez G, Aduviri S, Domene C, Cannata J, Asciutto EK, García GA, Pickholz M. Insight from atomistic molecular dynamics simulations into the supramolecular assembly of the aldo-keto reductase from Trypanosoma cruzi. J Mol Model 2024; 30:346. [PMID: 39316137 DOI: 10.1007/s00894-024-06153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
CONTEXT Currently, Chagas disease represents an important public health problem affecting more than 8 million people worldwide. The vector of this disease is the Trypanosoma cruzi (Tc) parasite. Our research specifically focuses on the structure and aggregation states of the enzyme aldo-keto reductase of Tc (TcAKR) reported in this parasite. TcAKR belongs to the aldo-keto reductase (AKR) superfamily, enzymes that catalyze redox reactions involved in crucial biological processes. While most AKRs are found in monomeric forms, some have been reported to form dimeric and tetrameric structures. This is the case for some TcAKR. To better understand how TcAKR multimers form and remain stable, we conducted a comprehensive computational analysis using molecular dynamics (MD) simulations. Our approach to elucidating the aggregation states of TcAKR involved two strategies. Initially, we explored the dynamic behaviour of pre-assembled TcAKR dimers. Subsequently, we examined the self-aggregation of eight monomers. This investigation led to the identification of crucial residues that contribute to the stabilization of protein-protein interactions. It was also found that TcAKRs can form stable supramolecular assemblies, with each monomer typically surrounded by three first neighbours. These findings align with experimental reports of tetrameric or more complex supramolecular structures. Our computational studies could guide further experimental investigations aiming at drug development and assist in designing strategies to modulate aggregation. METHOD Atomistic molecular dynamics simulations were carried out. The TcAKR 3D model structure was obtained by homology modelling using the Swiss Model for the TcAKR sequence (GenBank accession no. EU558869). Further, we checked the model with Alphafold2 and found a high degree of similarity between models. Several tools were used to build the dimers including CLUSPRO, GRAMM-Docking, Hdock, and Py-dock. Protein superstructures were built using the PACKMOL package. CHARMM-GUI was used to set up the simulation systems. GROMACS version 2020.5 was used to perform the simulations with the CHARMM36 force field for the protein and ions and the TIP3P model for water. Further analyses were performed using VMD, GROMACS, AMBER tools, MDLovoFit, bio3d, and in-house programs.
Collapse
Affiliation(s)
- Pablo Trujillo
- Department of Physics, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
- CONICET-University of Buenos Aires, Physics Institute of Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - Patricia Garavaglia
- National Institute of Parasitology "Dr. Mario Fatala Chaben" ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Guadalupe Alvarez
- School of Science and Technology, National University of San Martín (UNSAM), ICIFI, CONICET, San Martín, Argentina
| | - Sebastian Aduviri
- Department of Physics, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
- CONICET-University of Buenos Aires, Physics Institute of Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - Carmen Domene
- Department of Chemistry, University of Bath, 1 South Bldg, Claverton Down, Bath, BA27AY, UK
| | - Joaquín Cannata
- Institute for Biotechnological Research (IIB-INTECH) "Dr. Rodolfo A. Ugalde", National University of General San Martín-CONICET, San Martín, Argentina
| | - Eliana K Asciutto
- School of Science and Technology, National University of San Martín (UNSAM), ICIFI, CONICET, San Martín, Argentina
| | - Gabriela A García
- National Institute of Parasitology "Dr. Mario Fatala Chaben" ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Mónica Pickholz
- Department of Physics, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina.
- CONICET-University of Buenos Aires, Physics Institute of Buenos Aires (IFIBA), Buenos Aires, Argentina.
| |
Collapse
|
7
|
Sinpru P, Suwanvichanee C, Bunnom R, Kubota S, Yongsawatdigul J, Molee W, Thumanu K, Molee A. Revealing the global mechanism related to carnosine synthesis in the pectoralis major of slow-growing Korat chickens using a proteomic approach. Anim Biosci 2024; 37:1692-1701. [PMID: 39139081 PMCID: PMC11366509 DOI: 10.5713/ab.24.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/30/2024] [Accepted: 05/15/2024] [Indexed: 08/15/2024] Open
Abstract
OBJECTIVE This study aimed to find global mechanisms related to carnosine synthesis in slow-growing Korat chickens (KRC) using a proteomic approach. METHODS M. pectoralis major samples were collected from 10-week-old female KRC including low-carnosine (LC, 2,756.6±82.88 μg/g; n = 5) and high-carnosine (HC, 4,212.5 ±82.88 μg/g; n = 5). RESULTS We identified 152 common proteins, and 8 of these proteins showed differential expression between the LC and HC groups (p<0.05). Heat shock 70 kDa protein 8, Heat shock 70 kDa protein 2, protein disulfide isomerase family A, member 6, and endoplasmic reticulum resident protein 29 were significantly involved in protein processing in the endoplasmic reticulum pathway (false discovery rate<0.05), suggesting that the pathway is related to differential carnosine concentration in the M. pectoralis major of KRC. A high concentration of carnosine in the meat is mainly involved in low abundances of Titin isoform Ch12 and Connectin and high abundances of M-protein to maintain homeostasis during muscle contraction. These consequences improve meat characteristics, which were confirmed by the principal component analysis. CONCLUSION Carnosine synthesis may occur when muscle cells need to recover homeostasis after being interfered with carnosine synthesis precursors, leading to improved muscle function. To the best of our knowledge, this is the first study to describe in detail the global molecular mechanisms in divergent carnosine contents in meat based on the proteomic approach.
Collapse
Affiliation(s)
- Panpradub Sinpru
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000,
Thailand
| | - Chanadda Suwanvichanee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000,
Thailand
| | - Rujjira Bunnom
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000,
Thailand
| | - Satoshi Kubota
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000,
Thailand
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000,
Thailand
| | - Wittawat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000,
Thailand
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000,
Thailand
| | - Amonrat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000,
Thailand
| |
Collapse
|
8
|
Rananaware P, Bauri S, Keri R, Mishra M, Brahmkhatri V. Polymeric curcumin nanospheres for lysozyme aggregation inhibition, antibacterial, and wound healing applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46625-46640. [PMID: 37688693 DOI: 10.1007/s11356-023-29160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/31/2023] [Indexed: 09/11/2023]
Abstract
The present study reports highly stable polymeric nanoparticles comprising curcumin and polyvinylpyrrolidone, and then conjugated with gold nanoparticles, resulting in C-PVP and C-PVP-Au, respectively. The synthesized conjugates C-PVP and C-PVP-Au were investigated for amyloid aggregation inhibition activity, antimicrobial activity, and wound healing applications. The anti-amyloidogenic capacity of nanoconjugates were studied for model protein, hen egg-white lysozyme (HEWL). The ThT binding assay, fibril size measurement, and electron microscopy results revealed that conjugates suppress fibrillogenesis in HEWL. The highest amyloid inhibition activity obtained against C-PVP and C-PVP-Au was 31 μg.mL-1 and 30 μg.mL-1, respectively. The dissociation activity for amyloid aggregation was observed against Q-PVP and Q-PVP-Au at 29 μg.mL-1 and 27 μg.mL-1, respectively. The antibacterial studies show significant efficacy against Escherichia coli (E. coli) in the presence of C-PVP and C-PVP-Au. The substantial antibacterial potential of C-PVP@PVA and C-PVP-Au@PVA membranes shows promising wound healing applications. The PVA membranes with nanoparticles promote the antibacterial activity and wound healing activity in the Drosophila model. C-PVP-Au@PVA membrane healed the wound faster than the C-PVP@PVA, and it can be used for better results in wound healing. Thus, C-PVP-Au and C-PVP have higher bioavailability and stability and can act as multifunctional therapeutic agents for amyloid-related diseases and as wound healing agents. Graphical abstract C-PVP, and C-PVP-Au conjugates for inhibition of HEWL aggregation, antibacterial and wound healing activity.
Collapse
Affiliation(s)
- Pranita Rananaware
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Samir Bauri
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Odisha, Rourkela, 769008, India
| | - Rangappa Keri
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Odisha, Rourkela, 769008, India
| | - Varsha Brahmkhatri
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| |
Collapse
|
9
|
Ghosh D, Biswas A, Radhakrishna M. Advanced computational approaches to understand protein aggregation. BIOPHYSICS REVIEWS 2024; 5:021302. [PMID: 38681860 PMCID: PMC11045254 DOI: 10.1063/5.0180691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/18/2024] [Indexed: 05/01/2024]
Abstract
Protein aggregation is a widespread phenomenon implicated in debilitating diseases like Alzheimer's, Parkinson's, and cataracts, presenting complex hurdles for the field of molecular biology. In this review, we explore the evolving realm of computational methods and bioinformatics tools that have revolutionized our comprehension of protein aggregation. Beginning with a discussion of the multifaceted challenges associated with understanding this process and emphasizing the critical need for precise predictive tools, we highlight how computational techniques have become indispensable for understanding protein aggregation. We focus on molecular simulations, notably molecular dynamics (MD) simulations, spanning from atomistic to coarse-grained levels, which have emerged as pivotal tools in unraveling the complex dynamics governing protein aggregation in diseases such as cataracts, Alzheimer's, and Parkinson's. MD simulations provide microscopic insights into protein interactions and the subtleties of aggregation pathways, with advanced techniques like replica exchange molecular dynamics, Metadynamics (MetaD), and umbrella sampling enhancing our understanding by probing intricate energy landscapes and transition states. We delve into specific applications of MD simulations, elucidating the chaperone mechanism underlying cataract formation using Markov state modeling and the intricate pathways and interactions driving the toxic aggregate formation in Alzheimer's and Parkinson's disease. Transitioning we highlight how computational techniques, including bioinformatics, sequence analysis, structural data, machine learning algorithms, and artificial intelligence have become indispensable for predicting protein aggregation propensity and locating aggregation-prone regions within protein sequences. Throughout our exploration, we underscore the symbiotic relationship between computational approaches and empirical data, which has paved the way for potential therapeutic strategies against protein aggregation-related diseases. In conclusion, this review offers a comprehensive overview of advanced computational methodologies and bioinformatics tools that have catalyzed breakthroughs in unraveling the molecular basis of protein aggregation, with significant implications for clinical interventions, standing at the intersection of computational biology and experimental research.
Collapse
Affiliation(s)
- Deepshikha Ghosh
- Department of Biological Sciences and Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382355, India
| | - Anushka Biswas
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382355, India
| | | |
Collapse
|
10
|
Gómez-Castro CZ, Quintanar L, Vela A. An N-terminal acidic β-sheet domain is responsible for the metal-accumulation properties of amyloid-β protofibrils: a molecular dynamics study. J Biol Inorg Chem 2024; 29:407-425. [PMID: 38811408 PMCID: PMC11186886 DOI: 10.1007/s00775-024-02061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/10/2024] [Indexed: 05/31/2024]
Abstract
The influence of metal ions on the structure of amyloid- β (Aβ) protofibril models was studied through molecular dynamics to explore the molecular mechanisms underlying metal-induced Aβ aggregation relevant in Alzheimer's disease (AD). The models included 36-, 48-, and 188-mers of the Aβ42 sequence and two disease-modifying variants. Primary structural effects were observed at the N-terminal domain, as it became susceptible to the presence of cations. Specially when β-sheets predominate, this motif orients N-terminal acidic residues toward one single face of the β-sheet, resulting in the formation of an acidic region that attracts cations from the media and promotes the folding of the N-terminal region, with implications in amyloid aggregation. The molecular phenotype of the protofibril models based on Aβ variants shows that the AD-causative D7N mutation promotes the formation of N-terminal β-sheets and accumulates more Zn2+, in contrast to the non-amyloidogenic rodent sequence that hinders the β-sheets and is more selective for Na+ over Zn2+ cations. It is proposed that forming an acidic β-sheet domain and accumulating cations is a plausible molecular mechanism connecting the elevated affinity and concentration of metals in Aβ fibrils to their high content of β-sheet structure at the N-terminal sequence.
Collapse
Affiliation(s)
- Carlos Z Gómez-Castro
- Conahcyt-Universidad Autónoma del Estado de Hidalgo, Km 4.5 Carr. Pachuca-Tulancingo, Mineral de La Reforma, 42184, Hidalgo, Mexico.
| | - Liliana Quintanar
- Department of Chemistry, Cinvestav, Av. Instituto Politécnico Nacional 2508, CDMX, San Pedro Zacatenco, 07360, Gustavo A. Madero, Mexico.
| | - Alberto Vela
- Department of Chemistry, Cinvestav, Av. Instituto Politécnico Nacional 2508, CDMX, San Pedro Zacatenco, 07360, Gustavo A. Madero, Mexico.
| |
Collapse
|
11
|
Saikia B, Baruah A. In silico design of misfolding resistant proteins: the role of structural similarity of a competing conformational ensemble in the optimization of frustration. SOFT MATTER 2024; 20:3283-3298. [PMID: 38529658 DOI: 10.1039/d4sm00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Most state-of-the-art in silico design methods fail due to misfolding of designed sequences to a conformation other than the target. Thus, a method to design misfolding resistant proteins will provide a better understanding of the misfolding phenomenon and will also increase the success rate of in silico design methods. In this work, we optimize the conformational ensemble to be selected for negative design purposes based on the similarity of the conformational ensemble to the target. Five ensembles with different degrees of similarity to the target are created and destabilized and the target is stabilized while designing sequences using mean field theory and Monte Carlo simulation methods. The results suggest that the degree of similarity of the non-native conformations to the target plays a prominent role in designing misfolding resistant protein sequences. The design procedures that destabilize the conformational ensemble with moderate similarity to the target have proven to be more promising. Incorporation of either highly similar or highly dissimilar conformations to the target conformation into the non-native ensemble to be destabilized may lead to sequences with a higher misfolding propensity. This will significantly reduce the conformational space to be considered in any protein design procedure. Interestingly, the results suggest that a sequence with higher frustration in the target structure does not necessarily lead to a misfold prone sequence. A successful design method may purposefully choose a frustrated sequence in the target conformation if that sequence is even more frustrated in the competing non-native conformations.
Collapse
Affiliation(s)
- Bondeepa Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh 786004, India.
| | - Anupaul Baruah
- Department of Chemistry, Dibrugarh University, Dibrugarh 786004, India.
| |
Collapse
|
12
|
Martín LR, Santiago LR, Korendovych IV, Sodupe M, Maréchal JD. Computational modelling of supramolecular metallopeptide assemblies. Methods Enzymol 2024; 697:211-245. [PMID: 38816124 DOI: 10.1016/bs.mie.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Among the important questions in supramolecular peptide self-assemblies are their interactions with metallic compounds and ions. In the last decade, intensive efforts have been devoted to understanding the structural properties of these interactions including their dynamical and catalytic impact in natural and de novo systems. Since structural insights from experimental approaches could be particularly challenging, computational chemistry methods are interesting complementary tools. Here, we present the general multiscale strategies we developed and applied for the study of metallopeptide assemblies. These strategies include prediction of metal binding site, docking of metallic moieties, classical and accelerated molecular dynamics and finally QM/MM calculations. The systems of choice for this chapter are, on one side, peptides involved in neurodegenerative diseases and, on the other, de novo fibrillar systems with catalytic properties. Both successes and remaining challenges are highlighted so that the protocol could be apply to other system of this kind.
Collapse
Affiliation(s)
| | | | - Ivan V Korendovych
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | |
Collapse
|
13
|
Saremi S, Khajeh K. Amyloid fibril cytotoxicity and associated disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:265-290. [PMID: 38811083 DOI: 10.1016/bs.pmbts.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Misfolded proteins assemble into fibril structures that are called amyloids. Unlike usually folded proteins, misfolded fibrils are insoluble and deposit extracellularly or intracellularly. Misfolded proteins interrupt the function and structure of cells and cause amyloid disease. There is increasing evidence that the most pernicious species are oligomers. Misfolded proteins disrupt cell function and cause cytotoxicity by calcium imbalance, mitochondrial dysfunction, and intracellular reactive oxygen species. Despite profound impacts on health, social, and economic factors, amyloid diseases remain untreatable. To develop new therapeutics and to understand the pathological manifestations of amyloidosis, research into the origin and pathology of amyloidosis is urgently needed. This chapter describes the basic concept of amyloid disease and the function of atypical amyloid deposits in them.
Collapse
Affiliation(s)
- Sabereh Saremi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
14
|
Nie RZ, Zhang SS, Yan XK, Feng K, Lao YJ, Bao YR. Molecular insights into the structure destabilization effects of ECG and EC on the Aβ protofilament: An all-atom molecular dynamics simulation study. Int J Biol Macromol 2023; 253:127002. [PMID: 37729983 DOI: 10.1016/j.ijbiomac.2023.127002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
The formation of Aβ into amyloid fibrils was closely connected to AD, therefore, the Aβ aggregates were the primary therapeutic targets against AD. Previous studies demonstrated that epicatechin-3-gallate (ECG), which possessed a gallate moiety, exhibited a greater ability to disrupt the preformed Aβ amyloid fibrils than epicatechin (EC), indicating that the gallate moiety was crucial. In the present study, the molecular mechanisms were investigated. Our results demonstrated that ECG had more potent disruptive impacts on the β-sheet structure and K28-A42 salt bridges than EC. We found that ECG significantly interfered the interactions between Peptide-4 and Peptide-5. However, EC could not. The disruption of K28-A42 salt bridges by ECG was mainly due to the interactions between ECG and the hydrophobic residues located at C-terminus. Interestingly, EC disrupted the K28-A42 salt bridges by the interactions with C-terminal hydrophobic residues and the cation-π interactions with K28. Moreover, our results indicated that hydrophobic interactions, H-bonds, π-π interactions and cation-π interactions between ECG and the bend of L-shaped region caused the disaggregation of interactions between Peptide-4 and Peptide-5. Significantly, gallate moiety in ECG had contributed tremendously to the disaggregation. We believed that our findings could be useful for designing prospective drug candidates targeting AD.
Collapse
Affiliation(s)
- Rong-Zu Nie
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Shan-Shuo Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Xiao-Ke Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Kun Feng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Yan-Jing Lao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Ya-Ru Bao
- Science and Technology Division, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| |
Collapse
|
15
|
Rahman A, Saikia B, Baruah A. In silico analysis of SOD1 aggregation inhibition modes of tertiary amine pyrazolone and pyrano coumarin ferulate as ALS drug candidates. Phys Chem Chem Phys 2023; 25:26833-26846. [PMID: 37782142 DOI: 10.1039/d3cp03978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, the familial form (fALS) of which is often cognate to mutations in the antioxidant enzyme Cu/Zn superoxide dismutase 1 (SOD1) leading to misfolding and aggregation. Two small molecules, a tertiary amine pyrazolone (TAP) and a pyrano coumarin ferulate (PCF) were suggested to be ALS drug candidates following experimental observation of their ability to inhibit SOD1 protein misfolding and aggregation. The present work aims at computational investigation of these experimentally proposed drug candidates to gain insight into their mechanism of SOD1 misfolding and aggregation inhibition. On the basis of molecular docking, molecular dynamics simulation, MM-PBSA and per-residue energy decomposition analysis, we examined the specific interactions of TAP and PCF with three probable binding sites of SOD1, namely, dimeric interface cavity, W32 and, UMP binding sites. Results suggest that the binding of TAP at W32 and at UMP sites are least probable due to absence of any favorable interaction. The binding of TAP to dimeric cavity is also unstable due to strong unfavorable interactions. In case of PCF, binding at the UMP site is least probable while binding at dimeric cavity is accompanied by unfavorable interactions. PCF, however, exhibits stable binding with the W32 binding site of SOD1 by stabilizing the solvent accessible hydrophobic residues, which otherwise would have acted as contact points for aggregation. Thus the results imply that compound PCF functions as an inhibitior of SOD1 misfolding/aggregation through direct interaction with the protein SOD1 at the W32 binding site. However, TAP is likely to act as an inhibitor through a different mechanism rather than direct interaction with the protein SOD1. These results apart from reinforcing previous experimental findings, shed light on the probable mechanism of action of the proposed drug candidates.
Collapse
Affiliation(s)
- Aziza Rahman
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India.
| | - Bondeepa Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India.
| | - Anupaul Baruah
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India.
| |
Collapse
|
16
|
Diab R, Pilotto F, Saxena S. Autophagy and neurodegeneration: Unraveling the role of C9ORF72 in the regulation of autophagy and its relationship to ALS-FTD pathology. Front Cell Neurosci 2023; 17:1086895. [PMID: 37006471 PMCID: PMC10060823 DOI: 10.3389/fncel.2023.1086895] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
The proper functioning of the cell clearance machinery is critical for neuronal health within the central nervous system (CNS). In normal physiological conditions, the cell clearance machinery is actively involved in the elimination of misfolded and toxic proteins throughout the lifetime of an organism. The highly conserved and regulated pathway of autophagy is one of the important processes involved in preventing and neutralizing pathogenic buildup of toxic proteins that could eventually lead to the development of neurodegenerative diseases (NDs) such as Alzheimer’s disease or Amyotrophic lateral sclerosis (ALS). The most common genetic cause of ALS and frontotemporal dementia (FTD) is a hexanucleotide expansion consisting of GGGGCC (G4C2) repeats in the chromosome 9 open reading frame 72 gene (C9ORF72). These abnormally expanded repeats have been implicated in leading to three main modes of disease pathology: loss of function of the C9ORF72 protein, the generation of RNA foci, and the production of dipeptide repeat proteins (DPRs). In this review, we discuss the normal physiological role of C9ORF72 in the autophagy-lysosome pathway (ALP), and present recent research deciphering how dysfunction of the ALP synergizes with C9ORF72 haploinsufficiency, which together with the gain of toxic mechanisms involving hexanucleotide repeat expansions and DPRs, drive the disease process. This review delves further into the interactions of C9ORF72 with RAB proteins involved in endosomal/lysosomal trafficking, and their role in regulating various steps in autophagy and lysosomal pathways. Lastly, the review aims to provide a framework for further investigations of neuronal autophagy in C9ORF72-linked ALS-FTD as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rim Diab
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Federica Pilotto
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- *Correspondence: Smita Saxena,
| |
Collapse
|
17
|
Roldán-Martín L, Sodupe M, Maréchal JD. Computational assessment of the impact of Cu(II) and Al(III) on β-amyloid 42 fibrils: Binding sites, structural stability, and possible physiological implications. Front Neurosci 2023; 17:1110311. [PMID: 36814794 PMCID: PMC9940836 DOI: 10.3389/fnins.2023.1110311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/10/2023] [Indexed: 02/09/2023] Open
Abstract
One of Alzheimer's disease major hallmarks is the aggregation of β-amyloid peptide, a process in which metal ions play an important role. In the present work, an integrative computational study has been performed to identify the metal-binding regions and determine the conformational impact of Cu(II) and Al(III) ion binding to the β-amyloid (Aβ42) fibrillary structure. Through classical and Gaussian accelerated molecular dynamics, it has been observed that the metal-free fiber shows a hinge fan-like motion of the S-shaped structure, maintaining the general conformation. Upon metal coordination, distinctive patterns are observed depending on the metal. Cu(II) binds to the flexible N-terminal region and induces structural changes that could ultimately disrupt the fibrillary structure. In contrast, Al(III) binding takes place with the residues Glu22 and Asp23, and its binding reinforces the core stability of the system. These results give clues on the molecular impact of the interaction of metal ions with the aggregates and sustain their non-innocent roles in the evolution of the illness.
Collapse
|