1
|
Galant-Swafford J, Catanzaro J, Achcar RD, Cool C, Koelsch T, Bang TJ, Lynch DA, Alam R, Katial RK, Fernández Pérez ER. Approach to diagnosing and managing granulomatous-lymphocytic interstitial lung disease. EClinicalMedicine 2024; 75:102749. [PMID: 39170934 PMCID: PMC11338122 DOI: 10.1016/j.eclinm.2024.102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Granulomatous-lymphocytic interstitial lung disease (GLILD) is a lymphoproliferative and granulomatous pulmonary manifestation of primary immune deficiency diseases, notably common variable immunodeficiency (CVID), and is an important contributor of excess morbidity. As with all forms of ILD, the significance of utilizing a multidisciplinary team discussion to enhance diagnostic and treatment confidence of GLILD cannot be overstated. In this review, key clinical, radiological, and pathological features are integrated into a diagnostic algorithm to facilitate a consensus diagnosis. As the evidence for diagnosing and managing patients with GLILD is limited, the viewpoints discussed here are not meant to resolve current controversies. Instead, this review aims to provide a practical framework for diagnosing and evaluating suspected cases and emphasizes the importance of a multidisciplinary approach when caring for GLILD patients.
Collapse
Affiliation(s)
- Jessica Galant-Swafford
- Department of Medicine, Division of Allergy and Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Jason Catanzaro
- Department of Pediatrics, Division of Allergy and Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Rosane Duarte Achcar
- Department of Medicine, Division of Pathology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Carlyne Cool
- Department of Pathology, University of Colorado Health Sciences Center, 12605 East 16th Avenue, Denver, CO 80045, USA
| | - Tilman Koelsch
- Department of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Tami J. Bang
- Department of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - David A. Lynch
- Department of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Rafeul Alam
- Department of Medicine, Division of Allergy and Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Rohit K. Katial
- Department of Medicine, Division of Allergy and Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Evans R. Fernández Pérez
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Interstitial Lung Disease Program, National Jewish Health, Denver, CO 80206, USA
| |
Collapse
|
2
|
Bintalib HM, van de Ven A, Jacob J, Davidsen JR, Fevang B, Hanitsch LG, Malphettes M, van Montfrans J, Maglione PJ, Milito C, Routes J, Warnatz K, Hurst JR. Diagnostic testing for interstitial lung disease in common variable immunodeficiency: a systematic review. Front Immunol 2023; 14:1190235. [PMID: 37223103 PMCID: PMC10200864 DOI: 10.3389/fimmu.2023.1190235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction Common variable immunodeficiency related interstitial lung disease (CVID-ILD, also referred to as GLILD) is generally considered a manifestation of systemic immune dysregulation occurring in up to 20% of people with CVID. There is a lack of evidence-based guidelines for the diagnosis and management of CVID-ILD. Aim To systematically review use of diagnostic tests for assessing patients with CVID for possible ILD, and to evaluate their utility and risks. Methods EMBASE, MEDLINE, PubMed and Cochrane databases were searched. Papers reporting information on the diagnosis of ILD in patients with CVID were included. Results 58 studies were included. Radiology was the investigation modality most commonly used. HRCT was the most reported test, as abnormal radiology often first raised suspicion of CVID-ILD. Lung biopsy was used in 42 (72%) of studies, and surgical lung biopsy had more conclusive results compared to trans-bronchial biopsy (TBB). Analysis of broncho-alveolar lavage was reported in 24 (41%) studies, primarily to exclude infection. Pulmonary function tests, most commonly gas transfer, were widely used. However, results varied from normal to severely impaired, typically with a restrictive pattern and reduced gas transfer. Conclusion Consensus diagnostic criteria are urgently required to support accurate assessment and monitoring in CVID-ILD. ESID and the ERS e-GLILDnet CRC have initiated a diagnostic and management guideline through international collaboration. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022276337.
Collapse
Affiliation(s)
- Heba M. Bintalib
- University College London (UCL) Respiratory, University College London, London, United Kingdom
- Department of Respiratory Care, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
| | - Annick van de Ven
- Departments of Internal Medicine & Allergology, Rheumatology & Clinical Immunology, University Medical Center Groningen, Groningen, Netherlands
| | - Joseph Jacob
- University College London (UCL) Respiratory, University College London, London, United Kingdom
- Satsuma Lab, Centre for Medical Image Computing, University College London (UCL), London, United Kingdom
| | - Jesper Rømhild Davidsen
- South Danish Center for Interstitial Lung Diseases (SCILS), Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark
- Odense Respiratory Research Unit (ODIN), Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Børre Fevang
- Centre for Rare Disorders, Division of Paediatric and Adolescent Health, Oslo University Hospital, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Oslo, Norway
| | - Leif G. Hanitsch
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1 and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, Berlin, Germany
| | - Marion Malphettes
- Department of Clinic Immunopathology, Hôpital Saint-Louis, Paris, France
| | - Joris van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Childrens Hospital, University Medical Center Utrecht (UMC), Utrecht, Netherlands
| | - Paul J. Maglione
- Section of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - John Routes
- Division of Allergy, Asthma and Immunology, Department of Pediatrics, Medicine, Microbiology and Immunology, Medical College Wisconsin, Milwaukee, WI, United States
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - John R. Hurst
- University College London (UCL) Respiratory, University College London, London, United Kingdom
| |
Collapse
|
3
|
Costagliola G, Consolini R. Lymphadenopathy at the crossroad between immunodeficiency and autoinflammation: An intriguing challenge. Clin Exp Immunol 2021; 205:288-305. [PMID: 34008169 PMCID: PMC8374228 DOI: 10.1111/cei.13620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Lymphadenopathies can be part of the clinical spectrum of several primary immunodeficiencies, including diseases with immune dysregulation and autoinflammatory disorders, as the clinical expression of benign polyclonal lymphoproliferation, granulomatous disease or lymphoid malignancy. Lymphadenopathy poses a significant diagnostic dilemma when it represents the first sign of a disorder of the immune system, leading to a consequently delayed diagnosis. Additionally, the finding of lymphadenopathy in a patient with diagnosed immunodeficiency raises the question of the differential diagnosis between benign lymphoproliferation and malignancies. Lymphadenopathies are evidenced in 15–20% of the patients with common variable immunodeficiency, while in other antibody deficiencies the prevalence is lower. They are also evidenced in different combined immunodeficiency disorders, including Omenn syndrome, which presents in the first months of life. Interestingly, in the activated phosphoinositide 3‐kinase delta syndrome, autoimmune lymphoproliferative syndrome, Epstein–Barr virus (EBV)‐related lymphoproliferative disorders and regulatory T cell disorders, lymphadenopathy is one of the leading signs of the entire clinical picture. Among autoinflammatory diseases, the highest prevalence of lymphadenopathies is observed in patients with periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) and hyper‐immunoglobulin (Ig)D syndrome. The mechanisms underlying lymphoproliferation in the different disorders of the immune system are multiple and not completely elucidated. The advances in genetic techniques provide the opportunity of identifying new monogenic disorders, allowing genotype–phenotype correlations to be made and to provide adequate follow‐up and treatment in the single diseases. In this work, we provide an overview of the most relevant immune disorders associated with lymphadenopathy, focusing on their diagnostic and prognostic implications.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Lamers OAC, Smits BM, Leavis HL, de Bree GJ, Cunningham-Rundles C, Dalm VASH, Ho HE, Hurst JR, IJspeert H, Prevaes SMPJ, Robinson A, van Stigt AC, Terheggen-Lagro S, van de Ven AAJM, Warnatz K, van de Wijgert JHHM, van Montfrans J. Treatment Strategies for GLILD in Common Variable Immunodeficiency: A Systematic Review. Front Immunol 2021; 12:606099. [PMID: 33936030 PMCID: PMC8086379 DOI: 10.3389/fimmu.2021.606099] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Besides recurrent infections, a proportion of patients with Common Variable Immunodeficiency Disorders (CVID) may suffer from immune dysregulation such as granulomatous-lymphocytic interstitial lung disease (GLILD). The optimal treatment of this complication is currently unknown. Experienced-based expert opinions have been produced, but a systematic review of published treatment studies is lacking. Goals To summarize and synthesize the published literature on the efficacy of treatments for GLILD in CVID. Methods We performed a systematic review using the PRISMA guidelines. Papers describing treatment and outcomes in CVID patients with radiographic and/or histologic evidence of GLILD were included. Treatment regimens and outcomes of treatment were summarized. Results 6124 papers were identified and 42, reporting information about 233 patients in total, were included for review. These papers described case series or small, uncontrolled studies of monotherapy with glucocorticoids or other immunosuppressants, rituximab monotherapy or rituximab plus azathioprine, abatacept, or hematopoietic stem cell transplantation (HSCT). Treatment response rates varied widely. Cross-study comparisons were complicated because different treatment regimens, follow-up periods, and outcome measures were used. There was a trend towards more frequent GLILD relapses in patients treated with corticosteroid monotherapy when compared to rituximab-containing treatment regimens based on qualitative endpoints. HSCT is a promising alternative to pharmacological treatment of GLILD, because it has the potential to not only contain symptoms, but also to resolve the underlying pathology. However, mortality, especially among immunocompromised patients, is high. Conclusions We could not draw definitive conclusions regarding optimal pharmacological treatment for GLILD in CVID from the current literature since quantitative, well-controlled evidence was lacking. While HSCT might be considered a treatment option for GLILD in CVID, the risks related to the procedure are high. Our findings highlight the need for further research with uniform, objective and quantifiable endpoints. This should include international registries with standardized data collection including regular pulmonary function tests (with carbon monoxide-diffusion), uniform high-resolution chest CT radiographic scoring, and uniform treatment regimens, to facilitate comparison of treatment outcomes and ultimately randomized clinical trials.
Collapse
Affiliation(s)
- Olivia A. C. Lamers
- Department of Pediatric Immunology and Rheumatology, Wilhelmina Children’s Hospital, Utrecht, Netherlands
| | - Bas M. Smits
- Department of Pediatric Immunology and Rheumatology, Wilhelmina Children’s Hospital, Utrecht, Netherlands
- Department of Immunology and Rheumatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Helen Louisa Leavis
- Department of Immunology and Rheumatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Godelieve J. de Bree
- Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Charlotte Cunningham-Rundles
- Department of Medicine, Division of Clinical Immunology and Department of Pediatrics, Mount Sinai Hospital, New York, NY, United States
| | - Virgil A. S. H. Dalm
- Department of Internal Medicine, Division of Clinical Immunology and Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Hsi-en Ho
- Department of Medicine, Division of Clinical Immunology and Department of Pediatrics, Mount Sinai Hospital, New York, NY, United States
| | - John R. Hurst
- UCL Respiratory, University College London, London, United Kingdom
| | - Hanna IJspeert
- Department of Internal Medicine, Division of Clinical Immunology and Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Alex Robinson
- UCL Respiratory, University College London, London, United Kingdom
| | - Astrid C. van Stigt
- Department of Internal Medicine, Division of Clinical Immunology and Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Suzanne Terheggen-Lagro
- Department of Pediatric Pulmonology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Annick A. J. M. van de Ven
- Departments of Rheumatology and Clinical Immunology, Internal Medicine and Allergology, University Medical Center Groningen, Groningen, Netherlands
| | - Klaus Warnatz
- Department of Immunology, Universitätsklinikum Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Division of Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Janneke H. H. M. van de Wijgert
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joris van Montfrans
- Department of Pediatric Immunology and Rheumatology, Wilhelmina Children’s Hospital, Utrecht, Netherlands
| |
Collapse
|
5
|
van de Ven AAJM, Alfaro TM, Robinson A, Baumann U, Bergeron A, Burns SO, Condliffe AM, Fevang B, Gennery AR, Haerynck F, Jacob J, Jolles S, Malphettes M, Meignin V, Milota T, van Montfrans J, Prasse A, Quinti I, Renzoni E, Stolz D, Warnatz K, Hurst JR. Managing Granulomatous-Lymphocytic Interstitial Lung Disease in Common Variable Immunodeficiency Disorders: e-GLILDnet International Clinicians Survey. Front Immunol 2020; 11:606333. [PMID: 33324422 PMCID: PMC7726128 DOI: 10.3389/fimmu.2020.606333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Background Granulomatous-lymphocytic interstitial lung disease (GLILD) is a rare, potentially severe pulmonary complication of common variable immunodeficiency disorders (CVID). Informative clinical trials and consensus on management are lacking. Aims The European GLILD network (e-GLILDnet) aims to describe how GLILD is currently managed in clinical practice and to determine the main uncertainties and unmet needs regarding diagnosis, treatment and follow-up. Methods The e-GLILDnet collaborators developed and conducted an online survey facilitated by the European Society for Immunodeficiencies (ESID) and the European Respiratory Society (ERS) between February-April 2020. Results were analyzed using SPSS. Results One hundred and sixty-one responses from adult and pediatric pulmonologists and immunologists from 47 countries were analyzed. Respondents treated a median of 27 (interquartile range, IQR 82-maximum 500) CVID patients, of which a median of 5 (IQR 8-max 200) had GLILD. Most respondents experienced difficulties in establishing the diagnosis of GLILD and only 31 (19%) had access to a standardized protocol. There was little uniformity in diagnostic or therapeutic interventions. Fewer than 40% of respondents saw a definite need for biopsy in all cases or performed bronchoalveolar lavage for diagnostics. Sixty-six percent used glucocorticosteroids for remission-induction and 47% for maintenance therapy; azathioprine, rituximab and mycophenolate mofetil were the most frequently prescribed steroid-sparing agents. Pulmonary function tests were the preferred modality for monitoring patients during follow-up. Conclusions These data demonstrate an urgent need for clinical studies to provide more evidence for an international consensus regarding management of GLILD. These studies will need to address optimal procedures for definite diagnosis and a better understanding of the pathogenesis of GLILD in order to provide individualized treatment options. Non-availability of well-established standardized protocols risks endangering patients.
Collapse
Affiliation(s)
- Annick A. J. M. van de Ven
- Departments of Internal Medicine and Allergology, Rheumatology and Clinical Immunology, University Medical Center Groningen, Netherlands
| | - Tiago M. Alfaro
- Pneumology Unit, Centro Hospital e Universitário de Coimbra, Coimbra, Portugal and Centre of Pneumology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | - Ulrich Baumann
- Department of Paediatric Pulmonology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anne Bergeron
- Université de Paris, Assistance Publique Hôpitaux de Paris (APHP), Hôpital Saint Louis, Paris, France
| | - Siobhan O. Burns
- Institute of Immunity and Transplantation, University College London, Dept of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Alison M. Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Børre Fevang
- Centre for Rare Disorders and Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Andrew R. Gennery
- Translational and Clinical Research Institute, Newcastle University and Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| | - Filomeen Haerynck
- Department of Pediatric Pulmonology and Immunology, Centre for Primary Immune deficiency Ghent, PID research lab, Ghent University Hospital, Belgium
| | - Joseph Jacob
- UCL Respiratory, University College London, London, United Kingdom
- Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Marion Malphettes
- Department of Clinical Immunology, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), Université Paris Diderot, Paris, France
| | - Véronique Meignin
- Department of Pathology, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Tomas Milota
- Department of Immunology, Second Faculty of Medicine Charles University and Motol University Hospital, Prague, Czech Republic
| | - Joris van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, Netherlands
| | - Antje Prasse
- Department of Pulmonology, Hannover Medical School and DZL BREATH, and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Renzoni
- Interstitial Lung Disease Unit, Royal Brompton Hospital, London, United Kingdom
| | - Daiana Stolz
- Clinic for Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - John R. Hurst
- UCL Respiratory, University College London, London, United Kingdom
| |
Collapse
|
6
|
Pecoraro A, Crescenzi L, Galdiero MR, Marone G, Rivellese F, Rossi FW, de Paulis A, Genovese A, Spadaro G. Immunosuppressive therapy with rituximab in common variable immunodeficiency. Clin Mol Allergy 2019; 17:9. [PMID: 31080365 PMCID: PMC6501382 DOI: 10.1186/s12948-019-0113-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most frequent symptomatic primary antibody deficiency in adulthood and is characterized by the marked reduction of IgG and IgA serum levels. Thanks to the successful use of polyvalent immunoglobulin replacement therapy to treat and prevent recurrent infections, non-infectious complications, including autoimmunity, polyclonal lymphoproliferation and malignancies, have progressively become the major cause of morbidity and mortality in CVID patients. The management of these complications is particularly challenging, often requiring multiple lines of immunosuppressive treatments. Over the last 5–10 years, the anti-CD20 monoclonal antibody (i.e., rituximab) has been increasingly used for the treatment of both autoimmune and non-malignant lymphoproliferative manifestations associated with CVID. This review illustrates the evidence on the use of rituximab in CVID. For this purpose, first we discuss the mechanisms proposed for the rituximab mediated B-cell depletion; then, we analyze the literature data regarding the CVID-related complications for which rituximab has been used, focusing on autoimmune cytopenias, granulomatous lymphocytic interstitial lung disease (GLILD) and non-malignant lymphoproliferative syndromes. The cumulative data suggest that in the vast majority of the studies, rituximab has proven to be an effective and relatively safe therapeutic option. However, there are currently no data on the long-term efficacy and side effects of rituximab and other second-line therapeutic options. Further randomized controlled trials are needed to optimize the management strategies of non-infectious complications of CVID.
Collapse
Affiliation(s)
- Antonio Pecoraro
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Ludovica Crescenzi
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Maria Rosaria Galdiero
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Giancarlo Marone
- 2Department of Public Health, University of Naples Federico II, Naples, Italy.,3Monaldi Hospital Pharmacy, Naples, Italy
| | - Felice Rivellese
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.,4Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Francesca Wanda Rossi
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Amato de Paulis
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Arturo Genovese
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Giuseppe Spadaro
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
7
|
Sciveres M, Nastasio S, Maggiore G. Novel Diagnostic and Therapeutic Strategies in Juvenile Autoimmune Hepatitis. Front Pediatr 2019; 7:382. [PMID: 31616649 PMCID: PMC6763601 DOI: 10.3389/fped.2019.00382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Juvenile autoimmune hepatitis (JAIH) is a rare, chronic, inflammatory disease of the liver characterized by a complex interaction between genetic, immunological, and environmental factors leading to loss of immunotolerance to hepatic antigens. It affects both children and adolescents, most commonly females, and its clinical manifestations are quite variable. JAIH is progressive in nature and if left untreated may lead to cirrhosis and terminal liver failure. Although JAIH was first described almost 50 years ago, there have been few significant advances in the clinical management of these patients, both in terms of available diagnostic tools and therapeutic options. Aminotransferase activity, class G immunoglobulins and autoantibodies are the biomarkers used to diagnose AIH and monitor treatment response alongside clinical and histological findings. Despite their utility and cost-effectiveness, these biomarkers are neither an accurate expression of AIH pathogenic mechanism nor a precise measure of treatment response. Current standard of care is mainly based on the administration of steroids and azathioprine. This combination of drugs has been proven effective in inducing remission of disease in the majority of patients dramatically improving their survival; however, it not only fails to restore tolerance to hepatic autoantigens, but it also does not halt disease progression in some patients, it is often needed life-long and finally, it has deleterious side-effects. The ideal therapy should be enough selective to contrast immune-mediated live damage while preserving or potentiating the ability to develop permanent tolerance vs. pathogenic autoantigens. By reviewing the state of the art literature, this article highlights novel diagnostic and therapeutic strategies for managing pediatric AIH with a special focus on new strategies of immunotherapy. These promising tools could improve the diagnostic algorithm, more accurately predict disease prognosis, and provide targeted, individualized treatment.
Collapse
Affiliation(s)
- Marco Sciveres
- Pediatric Hepatology and Liver Transplantation, ISMETT-University of Pittsburgh Medical Center Italy, Palermo, Italy
| | - Silvia Nastasio
- Division of Gastroenterology, Hepatology, and Nutrition, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Giuseppe Maggiore
- Pediatric Hepatology and Liver Transplantation, ISMETT-University of Pittsburgh Medical Center Italy, Palermo, Italy.,Section of Pediatrics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|