1
|
Yu Q, Wu X, Lu Y, Chen Z, Zhu Q, Wu W. Ionic Liquid Pretreatment Enhances Skin Penetration of 5-Aminolevulinic Acid: A Promising Scheme for Photodynamic Therapy for Acne Vulgaris. ACS APPLIED BIO MATERIALS 2024; 7:2899-2910. [PMID: 38607995 DOI: 10.1021/acsabm.3c01295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Acne vulgaris is one of the most prevalent skin disorders; it affects up to 85% of adolescents and often persists into adulthood. Topical 5-aminolevulinic acid (ALA)-based photodynamic therapy (PDT) provides an alternative treatment for acne; however, its efficacy is greatly undermined by the limited skin permeability of ALA. Herein, biocompatible ionic liquids (ILs) based on aliphatic acid/choline were employed to enhance the dermal delivery of ALA, thereby improving the efficacy of PDT. In addition to the one-step delivery of ALA by utilizing ILs as carriers, a two-step strategy of pretreating the skin with blank ILs, followed by the administration of free ALA, was employed to test the IL-facilitated dermal delivery of ALA in vitro. The cumulative permeation of ALA through the excised rat skin after IL pretreatment was significantly greater than that in the untreated group, the 20% dimethyl sulfoxide (DMSO) penetration enhancer group, and the one-step group. The penetration efficiency was influenced by formulation and treatment factors, including the type of IL, pretreatment duration, water content in the ILs, and concentration of ALA. In rats, IL pretreatment facilitated faster, greater, and deeper ALA-induced protoporphyrin IX (PpIX) accumulation. Moreover, the IL pretreatment regimen significantly improved the efficacy of ALA-based PDT against acne vulgaris in a rat ear model. The model IL choline citrate ([Ch]3[Cit]1) had a moderate effect on the skin barrier. Trans-epidermal water loss could be recovered 1 h after IL treatment, but no irritation to the rat skin was detected after 7 days of consecutive treatment. It was concluded that biocompatible IL pretreatment enhances the penetration of ALA and thus facilitates the transformation of PpIX and improves the efficacy of PDT against acne vulgaris.
Collapse
Affiliation(s)
- Qin Yu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiying Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Shanghai 201399, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
2
|
Luo OD, Bose R, Bawazir MA, Thuraisingam T, Ghazawi FM. A Review of the Dermatologic Clinical Applications of Topical Photodynamic Therapy. J Cutan Med Surg 2024; 28:NP1. [PMID: 38243786 DOI: 10.1177/12034754231216969] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Topical photodynamic therapy is a widely approved therapy for actinic keratoses and low-risk nonmelanoma skin cancers with a rapidly growing range of emerging indications for other cutaneous diseases. This review summarizes the best-available evidence to provide a clinical update for dermatologists on the approved and emerging indications of photodynamic therapy. The body of evidence suggests that photodynamic therapy is superior or noninferior to other available treatment modalities for actinic keratoses, low-risk basal cell carcinomas, Bowen's disease, skin field cancerization, chemoprevention of keratinocyte carcinomas in organ transplant recipients, photoaging, acne vulgaris, and cutaneous infections including verrucae, onychomycosis, and cutaneous leishmaniasis. There is emerging evidence that photodynamic therapy plays a role in the management of actinic cheilitis, early-stage mycosis fungoides, extramammary Paget disease, lichen sclerosis, and folliculitis decalvans but there are no comparative studies with other active treatment modalities. Common barriers to topical photodynamic therapy include procedural pain, costs, and the time required for treatment delivery. There is significant heterogeneity in the photodynamic therapy protocols reported in the literature, including different photosensitizers, light sources, number of treatments, time between treatments, and use of procedural analgesia. Topical photodynamic therapy should be considered in the management of a spectrum of inflammatory, neoplastic, and infectious dermatoses. However, more comparative research is required to determine its role in the treatment algorithm for these dermatologic conditions and more methodological research is required to optimize photodynamic therapy protocols to improve the tolerability of the procedure for patients.
Collapse
Affiliation(s)
- Owen Dan Luo
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Reetesh Bose
- Division of Dermatology, Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Mohammed A Bawazir
- Division of Dermatology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Thusanth Thuraisingam
- Division of Dermatology, Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Dermatology, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Feras M Ghazawi
- Division of Dermatology, Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Dermatology, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Alma A, Pongetti L, Clementi A, Chester J, Toccaceli M, Ciardo S, Zappia E, Manfredini M, Pellacani G, Greco M, Bennardo L, Farnetani F. Combined Carbon Dioxide Laser with Photodynamic Therapy for Nodular Basal Cell Carcinoma Monitored by Reflectance Confocal Microscopy. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:30. [PMID: 38256291 PMCID: PMC10821002 DOI: 10.3390/medicina60010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
Introduction: Basal cell carcinoma (BCC) represents around 80% of all malignant skin cancers worldwide, constituting a substantial burden on healthcare systems. Due to excellent clearance rates (around 95%), surgery is the current gold-standard treatment. However, surgery is not always possible or preferred by patients. Numerous non-surgical therapies, sometimes combined, have been associated with promising tumor free survival rates (80-90%) in non-melanoma skin cancers (NMSCs). Most research has enrolled superficial basal cell carcinomas (sBCCs), with limited recent studies also involving low-risk nodular BCCs (nBCCs). Given lower efficacy rates compared to surgery, close monitoring during the follow-up period is essential for patients treated with non-surgical therapies. Monitoring with dermoscopy is constrained by low sensitivity rates. Reflectance confocal microscopy (RCM) is more sensitive in monitoring non-surgically treated NMSCs. Case presentation: A 41-year-old woman with a single nBCC relapse following photodynamic therapy (PDT) located on the dorsum of the nose presented to our center. Given the aesthetically sensitive location of the lesion and the patient's preference for a non-surgical approach, a combined treatment of CO2 laser and PDT was prescribed. A superpulsed CO2 laser (power: 0.5-3 W, frequency: 10 Hz, spot size 2 mm) with two PDT sessions (2 weeks apart) were conducted. At 6 weeks follow-up, monitoring performed with RCM revealed a reduction but not eradication of basaloid tumor islands. Another 2 sessions of PDT were recommended. At 3, 12 and 30 months of follow-up, the nasal dorsum area of the previous nBBC lesion was noted to be slightly hypopigmented (observed clinically), with a mild erythematous background (observed by dermoscopy). RCM evaluation confirmed the absence of RCM BCC criteria. The cosmetic outcome was very much improved. Conclusions: Combined CO2 laser and PDT for the treatment of a localized nBCC on the dorsum of the nose of a 41-year-old proved to offer tumor free survival at 30-month follow-up, as monitored with RCM. RCM is useful for the evaluation of non-surgical therapies as it has comparably higher sensitivity than dermoscopy and is especially useful in cases of suspected late recurrence. Further studies are needed to validate ongoing tumor free survival following this combined nonsurgical approach in the treatment of nBCC.
Collapse
Affiliation(s)
- Antonio Alma
- Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.A.); (L.P.); (A.C.); (J.C.); (M.T.); (S.C.); (M.M.); (M.G.); (F.F.)
| | - Linda Pongetti
- Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.A.); (L.P.); (A.C.); (J.C.); (M.T.); (S.C.); (M.M.); (M.G.); (F.F.)
| | - Alessandro Clementi
- Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.A.); (L.P.); (A.C.); (J.C.); (M.T.); (S.C.); (M.M.); (M.G.); (F.F.)
| | - Johanna Chester
- Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.A.); (L.P.); (A.C.); (J.C.); (M.T.); (S.C.); (M.M.); (M.G.); (F.F.)
| | - Matteo Toccaceli
- Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.A.); (L.P.); (A.C.); (J.C.); (M.T.); (S.C.); (M.M.); (M.G.); (F.F.)
| | - Silvana Ciardo
- Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.A.); (L.P.); (A.C.); (J.C.); (M.T.); (S.C.); (M.M.); (M.G.); (F.F.)
| | - Elena Zappia
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Marco Manfredini
- Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.A.); (L.P.); (A.C.); (J.C.); (M.T.); (S.C.); (M.M.); (M.G.); (F.F.)
| | - Giovanni Pellacani
- Dermatology Clinic, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Maurizio Greco
- Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.A.); (L.P.); (A.C.); (J.C.); (M.T.); (S.C.); (M.M.); (M.G.); (F.F.)
| | - Luigi Bennardo
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Francesca Farnetani
- Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.A.); (L.P.); (A.C.); (J.C.); (M.T.); (S.C.); (M.M.); (M.G.); (F.F.)
| |
Collapse
|
4
|
Li P, Liu CH, Zhao YY, Cao DD, Chen BZ, Guo XD, Zhang W. Multifunctional Covalent Organic Framework-Based Microneedle Patch for Melanoma Treatment. Biomacromolecules 2023; 24:3846-3857. [PMID: 37475132 DOI: 10.1021/acs.biomac.3c00488] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Melanoma is resistant to conventional chemotherapy and radiotherapy. Therefore, it is essential to develop a targeted, low-toxic, and minimally invasive treatment. Here, DTIC/ICG-Fe3O4@TpBD BSP/HA microneedles (MNs) were designed and fabricated, which can enhance targeting to melanoma and perform photothermal therapy (PTT) and chemotherapy simultaneously to synergistically exert anticancer effects. The system consisted of magnetic nanoparticles (DTIC/ICG-Fe3O4@TpBD), dissoluble matrix (Bletilla polysaccharide (BSP)/hyaluronic acid (HA)), and a polyvinyl alcohol backing layer. Due to the good magnetic responsiveness of Fe3O4@TpBD, dacarbazine (DTIC) and indocyanine green (ICG) can be better targeted to the tumor tissue and improve the therapeutic effect. BSP and HA have good biocompatibility and transdermal ability, so that the MNs can completely penetrate the tumor tissue, be dissolved by the interstitial fluid, and release DTIC and ICG. Under near-infrared (NIR) light irradiation, ICG converts light energy into thermal energy and induces ablation of B16-OVA melanoma cells. In vivo results showed that DTIC/ICG-Fe3O4@TpBD BSP/HA MNs combined with chemotherapy and PTT could effectively inhibit the growth of melanoma without tumor recurrence or significant weight loss in mice. Therefore, DTIC/ICG-Fe3O4@TpBD BSP/HA MNs are expected to provide new ideas and therapeutic approaches for the clinical treatment of melanoma.
Collapse
Affiliation(s)
- Pan Li
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Chun Hui Liu
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Yan Yan Zhao
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Da Dong Cao
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Weifen Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P.R. China
- Institute for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, Shandong, P.R. China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| |
Collapse
|
5
|
Algorri JF, López-Higuera JM, Rodríguez-Cobo L, Cobo A. Advanced Light Source Technologies for Photodynamic Therapy of Skin Cancer Lesions. Pharmaceutics 2023; 15:2075. [PMID: 37631289 PMCID: PMC10458875 DOI: 10.3390/pharmaceutics15082075] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Photodynamic therapy (PDT) is an increasingly popular dermatological treatment not only used for life-threatening skin conditions and other tumors but also for cosmetic purposes. PDT has negligible effects on underlying functional structures, enabling tissue regeneration feasibility. PDT uses a photosensitizer (PS) and visible light to create cytotoxic reactive oxygen species, which can damage cellular organelles and trigger cell death. The foundations of modern photodynamic therapy began in the late 19th and early 20th centuries, and in recent times, it has gained more attention due to the development of new sources and PSs. This review focuses on the latest advancements in light technology for PDT in treating skin cancer lesions. It discusses recent research and developments in light-emitting technologies, their potential benefits and drawbacks, and their implications for clinical practice. Finally, this review summarizes key findings and discusses their implications for the use of PDT in skin cancer treatment, highlighting the limitations of current approaches and providing insights into future research directions to improve both the efficacy and safety of PDT. This review aims to provide a comprehensive understanding of PDT for skin cancer treatment, covering various aspects ranging from the underlying mechanisms to the latest technological advancements in the field.
Collapse
Affiliation(s)
- José Francisco Algorri
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - José Miguel López-Higuera
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Luís Rodríguez-Cobo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Adolfo Cobo
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
6
|
Zhang Y, Liu W, Wang Q. Positive effects of low-dose photodynamic therapy with aminolevulinic acid or its methyl ester in skin rejuvenation and wound healing: An update. JOURNAL OF BIOPHOTONICS 2023; 16:e202200293. [PMID: 36602479 DOI: 10.1002/jbio.202200293] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/28/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
In dermatology, photodynamic therapy (PDT) is widely used in skin tumors, infections, etc., because of the killing effect triggered by toxic reactive oxygen species (ROS). However, the ROS concentration is determined by various photosensitizer concentrations and formulations, as well as various irradiation parameters. Low-dose PDT leads to sufficiently low ROS level, which results in biological effects that are the exact opposite of the killing potency. Therefore, in recent years, low-dose PDT has been exploited in improving aging and wound. Low-dose ALA/MAL PDT might improve aging through promoting the proliferation of fibroblasts, blocking DNA damage, counteracting oxidative stress, inhibiting melanogenesis, and remodeling lymphatic vessels in aged skin. Promoting fibroblasts and epidermal stem cells proliferation and migration, promoting granulation tissue formation and angiogenesis and regulating the inflammatory process might be the mechanisms of low-dose ALA/MAL PDT in wound healing. Nevertheless, the positive effects of low-dose PDT have not been thoroughly investigated in dermatology, and high-quality studies are still needed to fill the relevant vacancy.
Collapse
Affiliation(s)
- YuWei Zhang
- The Institute of Dermatology and Venereology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Liu
- The Institute of Dermatology and Venereology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qian Wang
- The Institute of Dermatology and Venereology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
7
|
Krivosheeva OP, Doctor MA, Larkina EA, Vedenkin AS, Nikolskaya TA. Effect of substituents in chlorin e 6 derivatives on the loading efficiency of the photosensitizer into the liposome membrane and their biological activity. Photodiagnosis Photodyn Ther 2023; 42:103328. [PMID: 36775229 DOI: 10.1016/j.pdpdt.2023.103328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
In this work, we incorporated the hydrophobic alkylamide and hydroxyalkylamide derivatives of chlorin e6 into the lipid bilayer of liposomes. We obtained the data on the effectiveness of incorporation of studied compounds and have determined the size of liposomes and their stability when stored in liquid form. We also investigated the bioactivity of chlorin photosensitizers and compared the photodynamic activity of studied compounds in free and liposomal forms.
Collapse
Affiliation(s)
- Olga P Krivosheeva
- MIREA - Russian Technological University, Pr. Vernadskogo, 78, Moscow, 119454, Russia
| | - Maxim A Doctor
- MIREA - Russian Technological University, Pr. Vernadskogo, 78, Moscow, 119454, Russia
| | - Ekaterina A Larkina
- MIREA - Russian Technological University, Pr. Vernadskogo, 78, Moscow, 119454, Russia
| | - Alexander S Vedenkin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina 4, Moscow, 119991, Russia.
| | - Tatiana A Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow, 119991, Russia
| |
Collapse
|
8
|
Nanoemulsion applications in photodynamic therapy. J Control Release 2022; 351:164-173. [PMID: 36165834 DOI: 10.1016/j.jconrel.2022.09.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 01/01/2023]
Abstract
Nanoemulsion, or nanoscaled-size emulsions, is a thermodynamically stable system formed by blending two immiscible liquids, blended with an emulsifying agent to produce a single phase. Nanoemulsion science has advanced rapidly in recent years, and it has opened up new opportunities in a variety of fields, including pharmaceuticals, biotechnology, food, and cosmetics. Nanoemulsion has been recognized as a potential drug delivery technology for various drugs, such as photosensitizing agents (PS). In photodynamic therapy (PDT), PSs produce cytotoxic reactive oxygen species under specific light irradiation, which oxidize the surrounding tissues. Over the past decades, the idea of PS-loaded nanoemulsions has received researchers' attention due to their ability to overcome several limitations of common PSs, such as limited permeability, non-specific phototoxicity, hydrophobicity, low bioavailability, and self-aggregation tendency. This review aims to provide fundamental knowledge of nanoemulsion formulations and the principles of PDT. It also discusses nanoemulsion-based PDT strategies and examines nanoemulsion advantages for PDT, highlighting future possibilities for nanoemulsion use.
Collapse
|
9
|
Thompson A, Mattia A, Green WH, Cognetta AB. A 10-year follow-up on the chemopreventive role of photodynamic therapy in a Gorlin syndrome patient. Australas J Dermatol 2022; 63:e378-e379. [PMID: 36222440 DOI: 10.1111/ajd.13934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/10/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Anthony Thompson
- Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Alexzandra Mattia
- Florida State University College of Medicine, Tallahassee, Florida, USA
| | | | | |
Collapse
|
10
|
Khorsandi K, Hosseinzadeh R, Esfahani H, Zandsalimi K, Shahidi FK, Abrahamse H. Accelerating skin regeneration and wound healing by controlled ROS from photodynamic treatment. Inflamm Regen 2022; 42:40. [PMID: 36192814 PMCID: PMC9529607 DOI: 10.1186/s41232-022-00226-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Cellular metabolisms produce reactive oxygen species (ROS) which are essential for cellular signaling pathways and physiological functions. Nevertheless, ROS act as “double-edged swords” that have an unstable redox balance between ROS production and removal. A little raise of ROS results in cell proliferation enhancement, survival, and soft immune responses, while a high level of ROS could lead to cellular damage consequently protein, nucleic acid, and lipid damages and finally cell death. ROS play an important role in various pathological circumstances. On the contrary, ROS can show selective toxicity which is used against cancer cells and pathogens. Photodynamic therapy (PDT) is based on three important components including a photosensitizer (PS), oxygen, and light. Upon excitation of the PS at a specific wavelength, the PDT process begins which leads to ROS generation. ROS produced during PDT could induce two different pathways. If PDT produces control and low ROS, it can lead to cell proliferation and differentiation. However, excess production of ROS by PDT causes cellular photo damage which is the main mechanism used in cancer treatment. This review summarizes the functions of ROS in living systems and describes role of PDT in production of controllable ROS and finally a special focus on current ROS-generating therapeutic protocols for regeneration and wound healing.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran. .,Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA.
| | - Reza Hosseinzadeh
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.,Academic center for education, culture and research, Urmia, Iran
| | - HomaSadat Esfahani
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Kavosh Zandsalimi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Fedora Khatibi Shahidi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| |
Collapse
|
11
|
Design and Validation of a Handheld Optical Polarization Imager for Preoperative Delineation of Basal Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14164049. [PMID: 36011042 PMCID: PMC9406425 DOI: 10.3390/cancers14164049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Skin cancer is the most common malignancy in humans. The goal of this study was to design, implement, and clinically test a novel handheld optical polarization imaging (OPI) system for rapid and noninvasive detection of basal cell carcinoma (BCC) margins. The device is compact, lightweight, and can be operated with minimal training. To validate the handheld imager, 10 subjects with biopsy-confirmed BCC were imaged prior to Mohs surgery. The optical images were processed using a spectral encoding method to increase the accuracy of the tumor boundary delineation. Preoperative margin assessment results from the OPI were compared to the surgeon’s clinical evaluation and to the gold standard of histopathology. Our findings indicate that OPI may be a valuable tool for optimizing surgical treatment of skin cancer. Abstract Background: Accurate removal of basal cell carcinoma (BCC) is challenging due to the subtle contrast between cancerous and normal skin. A method aiding with preoperative delineation of BCC margins would be valuable. The aim of this study was to implement and clinically validate a novel handheld optical polarization imaging (OPI) device for rapid, noninvasive, in vivo assessment of skin cancer margins. Methods: The handheld imager was designed, built, and tested. For clinical validation, 10 subjects with biopsy-confirmed BCC were imaged. Presumable cancer margins were marked by the study surgeon. The optical images were spectrally encoded to mitigate the impact of endogenous skin chromophores. The results of OPI and of the surgeon’s preoperative visual assessment were compared to clinical intraoperative histopathology. Results: As compared to the previous prototype, the handheld imager incorporates automated image processing and has 10-times shorter acquisition times. It is twice as light and provides twice as large a field of view. Clinical validation demonstrated that margin assessments using OPI were more accurate than visual assessment by the surgeon. The images were in good correlation with histology in 9 out of 10 cases. Conclusions: Handheld OPI could improve the outcomes of skin cancer treatments without impairing clinical workflows.
Collapse
|
12
|
Cellular Mechanisms in Acute and Chronic Wounds after PDT Therapy: An Update. Biomedicines 2022; 10:biomedicines10071624. [PMID: 35884929 PMCID: PMC9313247 DOI: 10.3390/biomedicines10071624] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/17/2022] Open
Abstract
PDT is a two-stage treatment that combines light energy with a photosensitizer designed to destroy cancerous and precancerous cells after light activation. Photosensitizers are activated by a specific wavelength of light energy, usually from a laser. The photosensitizer is nontoxic until it is activated by light. However, after light activation, the photosensitizer becomes toxic to the targeted tissue. Among sensitizers, the topical use of ALA, a natural precursor of protoporphyrin IX, a precursor of the heme group, and a powerful photosensitizing agent, represents a turning point for PDT in the dermatological field, as it easily absorbable by the skin. Wound healing requires a complex interaction and coordination of different cells and molecules. Any alteration in these highly coordinated events can lead to either delayed or excessive healing. The goal of this review is to elucidate the cellular mechanisms involved, upon treatment with ALA-PDT, in chronic wounds, which are often associated with social isolation and high costs in terms of care.
Collapse
|
13
|
Salvio AG, Veneziano DB, Moriyama LT, Inada NM, Grecco C, Kurachi C, Bagnato VS. A new photodynamic therapy protocol for nodular basal cell carcinoma treatment: Effectiveness and long-term follow-up. Photodiagnosis Photodyn Ther 2021; 37:102668. [PMID: 34863948 DOI: 10.1016/j.pdpdt.2021.102668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) has been reported as an excellent option for the treatment of small nodular basal cell carcinomas (nBCC). The standard protocol consists of two sessions, one week apart. Sometimes, returning to the hospital after one week can be impractical for elderly patients, due to comorbidities and mobility issues. Therefore, a new technique performed in one day could be superior for those patients. OBJECTIVE Evaluate the effectiveness of a PDT Single-visit protocol comparing to the standard protocol, as well as pain and long-term recurrence-free follow-up for nBCC. METHODS A total of 120 nBCC were treated through a Standard PDT protocol(two sessions, one week apart), and 120 nBCC were treated through a Single-visit PDT(two sessions in one day). A 30-day-after biopsy was performed in order to evaluate the results after the treatment. The lesions that had successful treatment were clinically and dermoscopically evaluated every 6 months up to 60 months. The pain score was compared between the groups(assessed every 3 min during PDT). RESULTS A complete response at 30-days-after PDT biopsy was observed in 85% of Standard PDT and in 93.3% of Single-visit PDT. Regarding the pain during the illumination, less pain was observed during the second session of the Single-visit PDT. The recurrence-free follow up showed, after 60 months, an 69.0% cumulative probability of recurrence-free for Standard PDT and 80.6% for Single-visit PDT. CONCLUSIONS The suggested Single-visit PDT protocol resulted in better outcomes at 30-day-after PDT biopsy and in lower recurrence rates than the Standard PDT protocol. A more comfortable and more efficient treatment was offered for the patients, with lower pain.
Collapse
Affiliation(s)
| | | | - Lilian Tan Moriyama
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Natalia Mayumi Inada
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | | | - Cristina Kurachi
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil; Hagler Fellow, Texas A&M University, College Station Texas, United States of America
| |
Collapse
|
14
|
Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Photodynamic Therapy: A Compendium of Latest Reviews. Cancers (Basel) 2021; 13:4447. [PMID: 34503255 PMCID: PMC8430498 DOI: 10.3390/cancers13174447] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising therapy against cancer. Even though it has been investigated for more than 100 years, scientific publications have grown exponentially in the last two decades. For this reason, we present a brief compendium of reviews of the last two decades classified under different topics, namely, overviews, reviews about specific cancers, and meta-analyses of photosensitisers, PDT mechanisms, dosimetry, and light sources. The key issues and main conclusions are summarized, including ways and means to improve therapy and outcomes. Due to the broad scope of this work and it being the first time that a compendium of the latest reviews has been performed for PDT, it may be of interest to a wide audience.
Collapse
Affiliation(s)
- José Francisco Algorri
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Mario Ochoa
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Pablo Roldán-Varona
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | | | - José Miguel López-Higuera
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
15
|
Zeinali S, Tuncel A, Yüzer A, Yurt F. Imaging and detection of cell apoptosis byIn vitrophotodynamic therapy applications of zinc (II) phthalocyanine on human melanoma cancer. Photodiagnosis Photodyn Ther 2021; 36:102518. [PMID: 34478898 DOI: 10.1016/j.pdpdt.2021.102518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/29/2021] [Accepted: 08/27/2021] [Indexed: 01/10/2023]
Abstract
This study aims to investigate the photodynamic therapy (PDT) effects on MeWo (human melanoma cells) and HaCaT (normal human keratinocyte cells) by light stimulation of different concentrations of Zinc (II)-tetra-tert-butyl-phthalocyaninato (ZnPc). MTT viability assay data indicated that a 25 μM concentration of ZnPc is cytotoxic to the melanoma cancer cells while this concentration of ZnPc is not cytotoxic for the HaCaT cell line. Moreover, the results showed that photoactivated ZnPc at 12.5 μM concentration reduced the cell viability of the MeWo cell line to about 50 %. At this photosensitizing concentration, the efficacy of light doses of 20, 30, 40, and 50 J/cm2 was evaluated against MeWo and HaCaT cells. ZnPc at a concentration of 12.5 μM activated with a light dose of 50 J/cm2 was the most efficient for the killing of MeWo cells. In conclusion, the 12.5 μM of ZnPc with the treatment light dose of 50 J/cm2 from a RED light source was adequate to destroy MeWo cells by the ROS-induced apoptosis mechanism. It also exhibited low killing effects on healthy HaCaT cells. These findings are supported by the results of apoptosis with the Annexin V & Dead Cell Kit and fluorescence imaging.
Collapse
Affiliation(s)
- Sevda Zeinali
- Department Biomedical Technologies, Institute of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Ayca Tuncel
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Abdulcelil Yüzer
- Faculty of Engineering, Department of Engineering Fundamental Sciences, Tarsus University, 33400, Tarsus, Turkey
| | - Fatma Yurt
- Department Biomedical Technologies, Institute of Science, Ege University, 35100, Bornova, Izmir, Turkey; Department of Nuclear Applications, Institute of Nuclear Science, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
16
|
Bădilă AE, Rădulescu DM, Niculescu AG, Grumezescu AM, Rădulescu M, Rădulescu AR. Recent Advances in the Treatment of Bone Metastases and Primary Bone Tumors: An Up-to-Date Review. Cancers (Basel) 2021; 13:4229. [PMID: 34439383 PMCID: PMC8392383 DOI: 10.3390/cancers13164229] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/14/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
In the last decades, the treatment of primary and secondary bone tumors has faced a slow-down in its development, being mainly based on chemotherapy, radiotherapy, and surgical interventions. However, these conventional therapeutic strategies present a series of disadvantages (e.g., multidrug resistance, tumor recurrence, severe side effects, formation of large bone defects), which limit their application and efficacy. In recent years, these procedures were combined with several adjuvant therapies, with different degrees of success. To overcome the drawbacks of current therapies and improve treatment outcomes, other strategies started being investigated, like carrier-mediated drug delivery, bone substitutes for repairing bone defects, and multifunctional scaffolds with bone tissue regeneration and antitumor properties. Thus, this paper aims to present the types of bone tumors and their current treatment approaches, further focusing on the recent advances in new therapeutic alternatives.
Collapse
Affiliation(s)
- Adrian Emilian Bădilă
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.E.B.); (D.M.R.); (A.R.R.)
- Department of Orthopedics and Traumatology, Bucharest University Hospital, 050098 Bucharest, Romania
| | - Dragoș Mihai Rădulescu
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.E.B.); (D.M.R.); (A.R.R.)
- Department of Orthopedics and Traumatology, Bucharest University Hospital, 050098 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.-G.N.); (A.M.G.)
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 50044 Bucharest, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Adrian Radu Rădulescu
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.E.B.); (D.M.R.); (A.R.R.)
- Department of Orthopedics and Traumatology, Bucharest University Hospital, 050098 Bucharest, Romania
| |
Collapse
|
17
|
Abstract
The healing power of light has attracted interest for thousands of years. Scientific discoveries and technological advancements in the field have eventually led to the emergence of photodynamic therapy, which soon became a promising approach in treating a broad range of diseases. Based on the interaction between light, molecular oxygen, and various photosensitizers, photodynamic therapy represents a non-invasive, non-toxic, repeatable procedure for tumor treatment, wound healing, and pathogens inactivation. However, classic photosensitizing compounds impose limitations on their clinical applications. Aiming to overcome these drawbacks, nanotechnology came as a solution for improving targeting efficiency, release control, and solubility of traditional photosensitizers. This paper proposes a comprehensive path, starting with the photodynamic therapy mechanism, evolution over the years, integration of nanotechnology, and ending with a detailed review of the most important applications of this therapeutic approach.
Collapse
|
18
|
Goldman A, Wollina U. Defect closure after successful skin cancer surgery of the nose: a report of 52 cases. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2020. [DOI: 10.15570/actaapa.2020.41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Navarro-Triviño FJ, Ayén-Rodríguez Á, Llamas-Molina JM, Saenz-Guirado S, Ruiz-Villaverde R. Treatment of superficial basal cell carcinoma with 7.8% 5-aminolaevulinic acid nanoemulsion-based gel (BF-200 ALA) and photodynamic therapy: Results in clinical practice in a tertiary hospital. Dermatol Ther 2020; 34:e14558. [PMID: 33210436 DOI: 10.1111/dth.14558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/17/2020] [Accepted: 11/14/2020] [Indexed: 11/29/2022]
Abstract
Photodynamic therapy (PDT) is an effective treatment option for the treatment of superficial basal cell carcinoma (sBCC). Recent publications have demonstrated that PDT with 7.8% 5-aminolaevulinic acid nanoemulsion-based gel (BF-200 ALA-PDT) is an effective and safe alternative for the treatment of sBCC). To investigate the efficacy and safety of 7.8% 5-aminolaevulinic acid nanoemulsion-based gel (BF-200 ALA)-PDT for the treatment of sBCC. A non-controlled, open-label single centre study was conducted. Patients received one PDT cycle with two PDT sessions one-week apart. In case that clinical-dermoscopy evaluation of treatment outcome revealed remaining lesions, a second PDT cycle was performed. The clinical results at the dermoscopy and fluorescence diagnosis level were histologically confirmed in all patients. Treatment response was evaluated 3, 6, and 12 months after last PDT session. A total of 31 patients (12 men and 19 women), with a median age of 63.74 years were included in this study. 3-month after PDT-session, 23/31 patients were complete responders (74.19%) after two BF-200 ALA -PDT sessions. Esthetic outcome was considered good-to-excellent. 5 Aminolevulinic acid 7.8% nanoemulsion-based gel (BF-200 ALA) PDT is an effective therapy option for the treatment of sBCC. Complete clearance rates were higher in those patients who received only one PDT cycle. These results show a similar tendency as shown in other publications.
Collapse
Affiliation(s)
- Francisco José Navarro-Triviño
- Department of Contact Eczema and Immunoallergic diseases, Dermatology Unit, Hospital Universitario San Cecilio, Granada, Spain
| | | | | | - Soledad Saenz-Guirado
- Department of Photodynamic Therapy, Dermatology Unit, Hospital Universitario San Cecilio, Granada, Spain
| | | |
Collapse
|
20
|
Zhi D, Yang T, O'Hagan J, Zhang S, Donnelly RF. Photothermal therapy. J Control Release 2020; 325:52-71. [DOI: 10.1016/j.jconrel.2020.06.032] [Citation(s) in RCA: 335] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
|
21
|
Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 2020; 17:657-674. [DOI: 10.1038/s41571-020-0410-2] [Citation(s) in RCA: 1817] [Impact Index Per Article: 363.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
|