1
|
Van Hung H, Kieu Oanh Nguyen T, Nguyen PH, Le TTH, Hoang V. Chemical composition and anticancer activity of Psychotria montana on MCF7 breast cancer cells: insights from in vitro (2D & 3D) studies and in silico analysis. J Appl Biomed 2025; 23:12-25. [PMID: 40145882 DOI: 10.32725/jab.2025.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/20/2025] [Indexed: 03/28/2025] Open
Abstract
AIM This study aimed to investigate the phytochemical composition of Psychotria montana extract (PME) and evaluate its inhibitory effects on MCF7 breast cancer cells. METHODS The chemical composition of PME was analyzed using UPLC-QToF-MS. The effects of PME on cell proliferation were evaluated using the MTT assay. Flow cytometry was used for cell cycle and apoptosis analysis. The effects of PME on the transcription of cell cycle control genes were assessed using real-time PCR. RESULTS UPLC-QToF-MS analysis revealed major compounds of PME, including terpenoids and flavonoids, with the potential to inhibit proliferation, migration, and induce apoptosis in MCF7 cancer cells. PME effectively suppressed MCF7 cell proliferation under 2D culture, with a low IC50 value of 34.7 µg/ml. PME also hindered cell migration (p < 0.01) and reduced spheroid number (p < 0.001) and size (p < 0.001) in serum-free 3D culture. Apoptosis analysis via nuclear staining with DAPI and flow cytometry revealed an increase in the number of apoptotic cells after PME treatment (p < 0.001). Additionally, the PME induced cell cycle arrest at the G0/G1 phase (p < 0.05). PME altered the expression of cell cycle control genes (cyclins and CDKs) as well as cancer suppressor genes including p16, p27, and p53 at the transcriptional level (mRNA). The results of molecular docking suggest that the compounds present in PME exhibit a high binding affinity for CDK3, CDK4, CDK6, and CDK8 proteins, which are essential regulators of the cell cycle. CONCLUSION Psychotria montana has the potential to inhibit cancer cells by inducing apoptosis and halting the cell cycle of MCF7 breast cancer cells.
Collapse
Affiliation(s)
- Hoang Van Hung
- Thai Nguyen University, Tan Thinh Ward, Thai Nguyen City, Vietnam
| | - Thi Kieu Oanh Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
| | - Phu Hung Nguyen
- Center for Interdisciplinary Science and Education, Thai Nguyen University, Tan Thinh Ward, Thai Nguyen City, Vietnam
| | - Thi Thanh Huong Le
- Thai Nguyen University of Sciences, Tan Thinh Ward, Thai Nguyen City, Vietnam
| | - Viet Hoang
- Thai Nguyen University of Sciences, Tan Thinh Ward, Thai Nguyen City, Vietnam
| |
Collapse
|
2
|
Javaid S, Qureshi IZ, Khurshid A, Afsar T, Husain FM, Khurshid M, Trembley JH, Razak S. Photoactive metabolite mediated photodynamic therapy of Rhabdomyosarcoma cell lines using medicinal plants and Doxorubicin co-treatments. BMC Complement Med Ther 2024; 24:270. [PMID: 39010043 PMCID: PMC11251096 DOI: 10.1186/s12906-024-04575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Medicinal plant-mediated combinational therapies have gained importance globally due to minimal side effects and enhanced treatment outcomes compared to single-drug modalities. We aimed to analyze the cytotoxic potential of each conventional treatment i.e., photodynamic therapy (PDT), chemotherapy (doxorubicin hydrochloride; Dox-HCl) with or without various concentrations of medicinal plant extracts (PE) on soft tissue cancer Rhabdomyosarcoma (RD) cell line. METHODS The Rhabdomyosarcoma (RD) cell line was cultured and treated with Photosensitizer (Photosense (AlPc4)), Chemo (Dox-HCl), and their combinations with different concentrations of each plant extract i.e., Thuja occidentalis, Moringa oleifera, Solanum surattense. For the source of illumination, a Diode laser (λ = 630 nm ± 1 nm, Pmax = 1.5 mW) was used. Photosensitizer uptake time (∼ 45 min) was optimized through spectrophotometric measurements (absorption spectroscopy). Drug response of each treatment arm was assessed post 24 h of administration using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5- 5-diphenyl-2 H- tetrazolium bromide (MTT) assay. RESULTS PE-mediated Chemo-Photodynamic therapy (PDT) exhibited synergistic effects (CI < 1). Moreover, Rhabdomyosarcoma culture pretreated with various plant extracts for 24 h exhibited significant inhibition of cell viability however most effective outcomes were shown by low and high doses of Moringa oleifera compared to other plant extracts. Post low doses treated culture with all plant extracts followed by PDT came up with more effectiveness when compared to all di-therapy treatments. CONCLUSION The general outcome of this work shows that the ethanolic plant extracts (higher doses) promote the death of cancerous cells in a dose-dependent way and combining Dox-HCl and photo-mediated photodynamic therapy can yield better therapeutic outcomes.
Collapse
Affiliation(s)
- Sumbal Javaid
- Animal Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Biophotonics and Photonanomedicine Research laboratory (BPRL), Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Irfan Zia Qureshi
- Animal Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Ahmat Khurshid
- Animal Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Biophotonics and Photonanomedicine Research laboratory (BPRL), Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, KSA, 11451, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Khurshid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Janeen H Trembley
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, KSA, 11451, Saudi Arabia.
| |
Collapse
|
3
|
Cui M, Zhu S, Xiong M, Zuo H, Li X, Wang K, Jiang J. Novel naphthalimide bridged zinc porphyrin/BODIPY nanomaterials with D-A structure for photodynamic therapy. J PORPHYR PHTHALOCYA 2024; 28:166-172. [DOI: 10.1142/s1088424624500093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
As a non-invasive cancer therapy method, photodynamic therapy (PDT) shows tremendous promise in clinical cancer treatment. Light-activated singlet oxygen production of photosensitizers (PSs) is the prerequisite for cancer PDT, and the use of organic photosensitizers is always limited by visible light-based activation, hydrophilicity, biocompatibility, selectivity and quantum yield of singlet oxygen. Currently, both zinc porphyrin- and BODIPY-based structures have been widely used in the development of PDT PSs. Here, we developed a novel naphthalimide bridged zinc porphyrin/BODIPY molecule (Por-BDP-1) with two poly(ethylene glycol) (PEG) chains, in which D-A structure was constructed between the naphthalimide group and porphyrin group. After self-assembly into nanoparticles, Por-BDP-1 NPs (Diameter: 122.4 nm) could quench fluorescence in 600–700 nm, bind with calf thymus-DNA, and produce singlet oxygen during light-irradiation (laser: 680 nm, 1.0 W/cm[Formula: see text]. In addition, Por-BDP-1 NPs effectively killed HeLa cells with a IC[Formula: see text] value = 44.8 μg/mL and showed a lower dark toxicity under the same conditions. All our results demonstrated that our naphthalimide bridged zinc porphyrin/BODIPY nano-photosensitizer is a promising nanoagent for PDT in the clinic.
Collapse
Affiliation(s)
- Min Cui
- Wuhan Asia General Hospital, Wuhan, 430050, Hubei, P. R. China
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
| | - Sijie Zhu
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
| | - Mengmeng Xiong
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
| | - Huijie Zuo
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
| | - Xiang Li
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
- Hubei Jiangxia Laboratory, Wuhan 430200, Hubei, P. R. China
| | - Kai Wang
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
- Hubei Jiangxia Laboratory, Wuhan 430200, Hubei, P. R. China
| | - Jun Jiang
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
- Hubei Jiangxia Laboratory, Wuhan 430200, Hubei, P. R. China
| |
Collapse
|
4
|
Saghazadeh A. Exploring the pharmacological versatility of ficus carica: Modulating classical immunometabolism and beyond. Pharmacol Res 2023; 198:107010. [PMID: 37995897 DOI: 10.1016/j.phrs.2023.107010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
The burden of metabolic disorders is alarmingly increasing globally. On the other hand, sustainability is the key project of the 21st century. Natural products offer a coherent option for the complementary management of both these challenges. Ficus carica (FC), commonly known as the fig fruit, has an experimentally proven potency for the modulation of cell cycle, immunity, inflammation, metabolism, and oxidative stress. Here, we review the potential of FC-derived products (FCDP) in slowing down the progression of cancers, acute/chronic inflammation-related conditions, infections, metabolic disorders, toxicities, neurological and neuromuscular diseases, gastrointestinal disorders, vascular diseases, and skin-stressing conditions, as well as, in boosting normal healthy functions of the endocrine, immune, metabolic, and nervous systems. It reveals a variety of cellular and molecular targets for FCDP: cytokines (TNF-α, IL-1β, IL-6, IL-10, IL-12, IL-18, IFN-γ), chemokines (CCL2), other inflammatory mediators (CRP, PGE2), immune receptors (TLR-2, TLR-4, FcεRI), oxidative stress-related markers (SOD, GSH, MDA, GPx, catalase, ROS, NO, protein carbonyls), kinases (MAPKs, hexokinase, G6Pase, FBPase, PEPCK, Akt, AMPK, GSK3, CDKs), other enzymes (COX-2, iNOS, MMPs, caspases), growth factors/receptors (VEGF, EGFR), hormones (DHEAS, prolactin, GnRH, FSH, LH, estradiol, DHT, insulin), cell death-related markers (Bcl-2, Bax, Bak, FasL, gasdermins, cytochrome C), glucose transporter protein (Glut4), and transcription factors (NF-κB, HNF-4α, Foxo, PGC-1α, PPAR-γ, C/EBP-α, CREB, NFATC1, STAT3). FCDP cause both activation and inhibition of AMPK, MAPK, and NF-κB signaling to confer condition-specific advantages. Such a broad-range activity might be attributed to different mechanisms of action of FCDP in modulating functions within the classical immunometabolic system, but also beyond.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
5
|
Soliman AH, Youness RA, Sebak AA, Handoussa H. Phytochemical-derived tumor-associated macrophage remodeling strategy using Phoenix dactylifera L. boosted photodynamic therapy in melanoma via H19/iNOS/PD-L1 axis. Photodiagnosis Photodyn Ther 2023; 44:103792. [PMID: 37689125 DOI: 10.1016/j.pdpdt.2023.103792] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND The tumor microenvironment (TME) represents a barrier to PDT efficacy among melanoma patients. The aim of this study is to employ a novel muti-tactic TME-remodeling strategy via repolarization of tumor-associated macrophages (TAMs), the main TME immune cells in melanoma, from the pro-tumor M2 into the antitumor M1 phenotype using Phoenix dactylifera L. (date palm) in combination with PDT. METHODS Screening of different date cultivars was employed to choose extracts of selective toxicity to melanoma and TAMs, not normal macrophages. Potential extracts were then fractionated and characterized by gas chromatography-mass spectrometry (GC-MS). Finally, the efficacy and the potential molecular mechanism of the co-treatment were portrayed via quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RESULTS Initial screening resulted in the selection of the two Phoenix dactylifera L. cultivars Safawi and Sukkari methanolic extracts. Sukkari showed superior capacity to revert TAM phenotype into M1 as well as more prominent upregulation of M1 markers and repression of melanoma immunosuppressive markers relative to positive control (resiquimod). Molecularly, it was shown that PDT of melanoma cells in the presence of the secretome of repolarized TAMs surpassed the monotherapy via the modulation of the H19/iNOS/PD-L1immune-regulatory axis. CONCLUSION This study highlights the potential utilization of nutraceuticals in combination with PDT in the treatment of melanoma to provide a dual activity through alleviating the immune suppressive TME and potentiating the anti-tumor responses.
Collapse
Affiliation(s)
- Aya H Soliman
- Department of Pharmaceutical Biology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, Main Entrance El Tagamoa El Khames, New Cairo 11511, Egypt.
| | - Rana A Youness
- Department of Pharmaceutical Biology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, Main Entrance El Tagamoa El Khames, New Cairo 11511, Egypt; Department of Biology and Biochemistry, Faculty of Biotechnology, German International University, New Administrative Capital, New Cairo 11835, Egypt
| | - Aya A Sebak
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11511, Egypt.
| | - Heba Handoussa
- Department of Pharmaceutical Biology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, Main Entrance El Tagamoa El Khames, New Cairo 11511, Egypt
| |
Collapse
|
6
|
Gahtori R, Tripathi AH, Kumari A, Negi N, Paliwal A, Tripathi P, Joshi P, Rai RC, Upadhyay SK. Anticancer plant-derivatives: deciphering their oncopreventive and therapeutic potential in molecular terms. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-023-00465-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Abstract
Background
Over the years, phytomedicines have been widely used as natural modalities for the treatment and prevention of various diseases by different ethnic groups across the globe. Although, 25% of drugs in the USA contain at least one plant-derived therapeutic compound, currently there is a paucity of plant-derived active medicinal ingredients in the pharmaceutical industry. Scientific evidence-based translation of plant-derived ethnomedicines for their clinical application is an urgent need. The anticancer and associated properties (antioxidative, anti-inflammatory, pro-apoptotic and epithelial-mesenchymal transition (EMT) inhibition) of various plant extracts and phytochemicals have been elucidated earlier. Several of the plant derivatives are already in use under prophylactic/therapeutic settings against cancer and many are being investigated under different phases of clinical trials.
Main body
The purpose of this study is to systematically comprehend the progress made in the area of prophylactic and therapeutic potential of the anticancerous plant derivatives. Besides, we aim to understand their anticancer potential in terms of specific sub-phenomena, such as anti-oxidative, anti-inflammatory, pro-apoptotic and inhibition of EMT, with an insight of the molecules/pathways associated with them. The study also provides details of classes of anticancer compounds, their plant source(s) and the molecular pathway(s) targeted by them. In addition to the antioxidative and antiproliferative potentials of anticancer plant derivatives, this study emphasizes on their EMT-inhibition potential and other ‘anticancer related’ properties. The EMT is highlighted as a phenomenon of choice for targeting cancer due to its role in the induction of metastasis and drug resistance. Different phytochemicals in pre-clinical or clinical trials, with promising chemopreventive/anticancer activities have been enlisted and the plant compounds showing synergistic anticancer activity in combination with the existing drugs have been discussed. The review also unravels the need of carrying out pan-signalome studies for identifying the cardinal pathways modulated by phytomedicine(s), as in many cases, the molecular pathway(s) has/have been randomly studied.
Conclusion
This review systematically compiles the studies regarding the impact of various plant derivatives in different cancers and oncogenic processes, as tested in diverse experimental model systems. Availability of more comprehensive information on anticancer phyto-constituents, their relative abundance in crude drugs, pathways/molecules targeted by phytomedicines, their long-term toxicity data and information regarding their safe use under the combinatorial settings, would open greater avenues of their utilization in future against this dreaded disease.
Graphical Abstract
Collapse
|
7
|
Wang X, Tian X, Zhao K, Wu L, Cao J, Shen S. Oxygen-independent Free Radicals Induced by Photothermal Effect of Fe 3O 4 for Hypoxic Cancer Therapy. CHEM LETT 2022. [DOI: 10.1246/cl.220091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaofeng Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
- Affiliated Hospital of Jiangsu University, Zhenjiang 212001, P. R. China
| | - Xiangrong Tian
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
- Affiliated Hospital of Jiangsu University, Zhenjiang 212001, P. R. China
| | - Kai Zhao
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
- Affiliated Hospital of Jiangsu University, Zhenjiang 212001, P. R. China
| | - Lin Wu
- Affiliated Hospital of Jiangsu University, Zhenjiang 212001, P. R. China
| | - Jin Cao
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Song Shen
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| |
Collapse
|