1
|
Sarkar S, Roy A, Mitra R, Kundu S, Banerjee P, Acharya Chowdhury A, Ghosh S. Escaping the ESKAPE pathogens: A review on antibiofilm potential of nanoparticles. Microb Pathog 2024; 194:106842. [PMID: 39117012 DOI: 10.1016/j.micpath.2024.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
ESKAPE pathogens, a notorious consortium comprising Enterococcusfaecium, Staphylococcusaureus, Klebsiellapneumoniae, Acinetobacterbaumannii, Pseudomonasaeruginosa, and Enterobacter species, pose formidable challenges in healthcare settings due to their multidrug-resistant nature. The increasing global cases of antimicrobial-resistant ESKAPE pathogens are closely related to their remarkable ability to form biofilms. Thus, understanding the unique mechanisms of antimicrobial resistance of ESKAPE pathogens and the innate resilience of biofilms against traditional antimicrobial agents is important for developing innovative strategies to establish effective control methods against them. This review offers a thorough analysis of biofilm dynamics, with a focus on the general mechanisms of biofilm formation, the significant contribution of persister cells in the resistance mechanisms, and the recurrence of biofilms in comparison to planktonic cells. Additionally, this review highlights the potential strategies of nanoparticles for managing biofilms in the ESKAPE group of pathogens. Nanoparticles, with their unique physicochemical properties, provide promising opportunities for disrupting biofilm structures and improving antimicrobial effectiveness. The review has explored interactions between nanoparticles and biofilms, covering a range of nanoparticle types such as metal, metal-oxide, surface-modified, and functionalized nanoparticles, along with organic nanoparticles and nanomaterials. The additional focus of this review also encompasses green synthesis techniques of nanoparticles that involve plant extract and supernatants from bacterial and fungal cultures as reducing agents. Furthermore, the use of nanocomposites and nano emulsions in biofilm management of ESKAPE is also discussed. To conclude, the review addresses the current obstacles and future outlooks in nanoparticle-based biofilm management, stressing the necessity for further research and development to fully exploit the potential of nanoparticles in addressing biofilm-related challenges.
Collapse
Affiliation(s)
| | - Ankita Roy
- Department of Biosciences, JIS University, Kolkata, India
| | - Rangan Mitra
- Department of Biosciences, JIS University, Kolkata, India
| | - Sweta Kundu
- Department of Biosciences, JIS University, Kolkata, India
| | | | | | - Suparna Ghosh
- Department of Biosciences, JIS University, Kolkata, India.
| |
Collapse
|
2
|
Ye Z, Chen H, Weinans H, van der Wal B, Rios JL. Novel Aptamer Strategies in Combating Bacterial Infections: From Diagnostics to Therapeutics. Pharmaceutics 2024; 16:1140. [PMID: 39339177 PMCID: PMC11435160 DOI: 10.3390/pharmaceutics16091140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial infections and antimicrobial resistance are posing substantial difficulties to the worldwide healthcare system. The constraints of conventional diagnostic and therapeutic approaches in dealing with continuously changing infections highlight the necessity for innovative solutions. Aptamers, which are synthetic oligonucleotide ligands with a high degree of specificity and affinity, have demonstrated significant promise in the field of bacterial infection management. This review examines the use of aptamers in the diagnosis and therapy of bacterial infections. The scope of this study includes the utilization of aptasensors and imaging technologies, with a particular focus on their ability to detect conditions at an early stage. Aptamers have shown exceptional effectiveness in suppressing bacterial proliferation and halting the development of biofilms in therapeutic settings. In addition, they possess the capacity to regulate immune responses and serve as carriers in nanomaterial-based techniques, including radiation and photodynamic therapy. We also explore potential solutions to the challenges faced by aptamers, such as nuclease degradation and in vivo instability, to broaden the range of applications for aptamers to combat bacterial infections.
Collapse
Affiliation(s)
- Zijian Ye
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Huaizhi Chen
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), 2628 CD Delft, The Netherlands
| | - Bart van der Wal
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jaqueline Lourdes Rios
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
3
|
Pourhajibagher M, Bahador A. Periodontal ligament stem cell-derived exosome-loaded Emodin mediated antimicrobial photodynamic therapy against cariogenic bacteria. BMC Oral Health 2024; 24:311. [PMID: 38454402 PMCID: PMC10919019 DOI: 10.1186/s12903-024-04062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND This study was conducted to investigate the efficiency of periodontal ligament (PDL) stem cell-derived exosome-loaded Emodin (Emo@PDL-Exo) in antimicrobial photodynamic therapy (aPDT) on Streptococcus mutans and Lactobacillus acidophilus as the cariogenic bacteria. MATERIALS AND METHODS After isolating and characterizing PDL-Exo, the study proceeded to prepare and verify the presence of Emo@PDL-Exo. The antimicrobial effect, anti-biofilm activity, and anti-metabolic potency of Emo, PDL-Exo, and Emo@PDL-Exo were then evaluated with and without irradiation of blue laser at a wavelength of 405 ± 10 nm with an output intensity of 150 mW/cm2 for a duration of 60 s. In addition, the study assessed the binding affinity of Emodin with GtfB and SlpA proteins using in silico molecular docking. Eventually, the study examined the generation of endogenous reactive oxygen species (ROS) and changes in the gene expression levels of gelE and sprE. RESULTS The study found that using Emo@PDL-Exo-mediated aPDT resulted in a significant decrease in L. acidophilus and S. mutans by 4.90 ± 0.36 and 5.07 log10 CFU/mL, respectively (P < 0.05). The study found that using Emo@PDL-Exo for aPDT significantly reduced L. acidophilus and S. mutans biofilms by 44.7% and 50.4%, respectively, compared to untreated biofilms in the control group (P < 0.05). Additionally, the metabolic activity of L. acidophilus and S. mutans decreased by 58.3% and 71.2%, respectively (P < 0.05). The molecular docking analysis showed strong binding affinities of Emodin with SlpA and GtfB proteins, with docking scores of -7.4 and -8.2 kcal/mol, respectively. The study also found that the aPDT using Emo@PDL-Exo group resulted in the most significant reduction in gene expression of slpA and gtfB, with a decrease of 4.2- and 5.6-folds, respectively, compared to the control group (P < 0.05), likely due to the increased generation of endogenous ROS. DISCUSSION The study showed that aPDT using Emo@PDL-Exo can effectively reduce the cell viability, biofilm activity, and metabolic potency of S. mutans and L. acidophilus. aPDT also significantly reduced the expression levels of gtfB and slpA mRNA due to the increased endogenous ROS generation. The findings suggest that Emo@PDL-Exo-mediated aPDT could be a promising antimicrobial approach against cariogenic microorganisms.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
4
|
Elumalai R, Vishwakarma A, Balakrishnan A, Ramya M. Assessment of the growth inhibition and anti-biofilm activity of aptamer (PmA2G02) against Proteus mirabilis 1429 T. Res Microbiol 2024; 175:104105. [PMID: 37429429 DOI: 10.1016/j.resmic.2023.104105] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/15/2023] [Accepted: 07/01/2023] [Indexed: 07/12/2023]
Abstract
Proteus mirabilis is known to cause Catheter-associated urinary tract infections (CAUTIs), which exhibit virulence factors linked to forming biofilms. Aptamers have recently been explored as potential anti-biofilm agents. This study demonstrates the anti-biofilm activity of aptamer (PmA2G02) targeting P. mirabilis 1429T, a pathogenic bacteria known to cause Catheter-associated urinary tract infections (CAUTIs). The studied aptamer inhibited biofilm formation, swarming motility, and cell viability at a concentration of 3 μM. The study also showed that the PmA2G02 had a binding affinity towards fimbrial outer membrane usher protein (PMI1466), flagellin protein (PMI1619), and regulator of swarming behavior (rsbA), which are responsible for adhesion, motility, and quorum sensing, respectively. Crystal violet assay, SEM, and confocal imaging confirmed the effectiveness of the PmA2G02 as an anti-biofilm agent. Moreover, as verified by qPCR, the expression levels of fimD, fliC2, and rsbA were significantly reduced compared to the untreated group. This study suggests that aptamer may be a potential alternative to traditional antibiotics for the treatment of CAUTIs caused by P. mirabilis. These findings shed light on the mechanisms by which the aptamer inhibits biofilm formation.
Collapse
Affiliation(s)
- Rajalakshmi Elumalai
- Molecular Genetics Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamil Nadu, India
| | - Archana Vishwakarma
- Molecular Genetics Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamil Nadu, India
| | - Anandkumar Balakrishnan
- Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India; Homi Bhabha National Institute Kalpakkam, Mumbai 400094, India
| | - Mohandass Ramya
- Molecular Genetics Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamil Nadu, India.
| |
Collapse
|
5
|
Saha P, Ahmad F. Neuroprotective, Anti-Inflammatory and Antifibrillogenic Offerings by Emodin against Alzheimer's Dementia: A Systematic Review. ACS OMEGA 2024; 9:7296-7309. [PMID: 38405501 PMCID: PMC10882671 DOI: 10.1021/acsomega.3c07178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 02/27/2024]
Abstract
Background: Alzheimer's disease (AD) is among the major causes of dementia in the elderly and exerts tremendous clinical, psychological and socio-economic constraints. Currently, there are no effective disease-modifying/retarding anti-AD agents. Emodin is a bioactive phytochemical with potent multimodal anti-inflammatory, antioxidant, and antifibrillogenic properties. In particular, emodin may result in significant repression of the pathogenic mechanisms underlying AD. The purpose of this review is to accumulate and summarize all the primary research data evaluating the therapeutic actions of emodin in AD pathogenesis. Methodology: The search, selection, and retrieval of pertinent primary research articles were systematically performed using a methodically designed approach. A variety of keyword combinations were employed on online scholarly web-databases. Strict preset inclusion and exclusion criteria were used to select the retrieved studies. Data from the individual studies were summarized and compiled into different sections, based upon their findings. Results: Cellular and animal research indicates that emodin exerts robust multimodal neuroprotection in AD. While emodin effectively prevents tau and amyloid-beta (Aβ) oligomerization, it also mitigates their neurotoxicity by attenuating neuroinflammatory, oxidative, and bioenergetic defects. Evidences for emodin-mediated enhancements in memory, learning, and cognition were also found in the literature. Conclusion: Emodin is a potential anti-AD dietary supplement; however, further studies are warrantied to thoroughly understand its target players and mechanisms. Moreover, human clinical data on emodin-mediated amelioration of AD phenotype is largely lacking, and must be addressed in the future. Lastly, the safety of exogenously supplemented emodin must be thoroughly evaluated.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
6
|
Selvaraj SP, Chen JY. Conjugation of antimicrobial peptides to enhance therapeutic efficacy. Eur J Med Chem 2023; 259:115680. [PMID: 37515922 DOI: 10.1016/j.ejmech.2023.115680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
The growing prevalence of antimicrobial resistance (AMR) has brought with it a continual increase in the numbers of deaths from multidrug-resistant (MDR) infections. Since the current arsenal of antibiotics has become increasingly ineffective, there exists an urgent need for discovery and development of novel antimicrobials. Antimicrobial peptides (AMPs) are considered to be a promising class of molecules due to their broad-spectrum activities and low resistance rates compared with other types of antibiotics. Since AMPs also often play major roles in elevating the host immune response, the molecules may also be called "host defense peptides." Despite the great promise of AMPs, the majority remain unsuitable for clinical use due to issues of structural instability, degradation by proteases, and/or toxicity to host cells. Moreover, AMP activities in vivo can be influenced by many factors, such as interaction with blood and serum biomolecules, physiological salt concentrations or different pH values. To overcome these limitations, structural modifications can be made to the AMP. Among several modifications, physical and chemical conjugation of AMP to other biomolecules is widely considered an effective strategy. In this review, we discuss structural modification strategies related to conjugation of AMPs and their possible effects on mode of action. The conjugation of fatty acids, glycans, antibiotics, photosensitizers, polymers, nucleic acids, nanoparticles, and immobilization to biomaterials are highlighted.
Collapse
Affiliation(s)
- Sanjay Prasad Selvaraj
- Molecular and Biological Agricultural Science Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd, Jiaushi, Ilan, 262, Taiwan; The iEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
7
|
Choi V, Rohn JL, Stoodley P, Carugo D, Stride E. Drug delivery strategies for antibiofilm therapy. Nat Rev Microbiol 2023; 21:555-572. [PMID: 37258686 DOI: 10.1038/s41579-023-00905-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/02/2023]
Abstract
Although new antibiofilm agents have been developed to prevent and eliminate pathogenic biofilms, their widespread clinical use is hindered by poor biocompatibility and bioavailability, unspecific interactions and insufficient local concentrations. The development of innovative drug delivery strategies can facilitate penetration of antimicrobials through biofilms, promote drug dispersal and synergistic bactericidal effects, and provide novel paradigms for clinical application. In this Review, we discuss the potential benefits of such emerging techniques for improving the clinical efficacy of antibiofilm agents, as well as highlighting the existing limitations and future prospects for these therapies in the clinic.
Collapse
Affiliation(s)
- Victor Choi
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Jennifer L Rohn
- Department of Renal Medicine, Centre for Urological Biology, Division of Medicine, University College London, London, UK
| | - Paul Stoodley
- Departments of Microbial Infection and Immunity, Microbiology and Orthopaedics, The Ohio State University, Columbus, OH, USA
- Department of Mechanical Engineering, National Centre for Advanced Tribology at Southampton (nCATS) and National Biofilm Innovation Centre (NBIC), University of Southampton, Southampton, UK
| | - Dario Carugo
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Eleanor Stride
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Pourhajibagher M, Hosseini N, Bahador A. Antimicrobial activity of D-amino acid in combination with photo-sonoactivated hypericin nanoparticles against Acinetobacter baumannii. BMC Microbiol 2023; 23:23. [PMID: 36658487 PMCID: PMC9850556 DOI: 10.1186/s12866-023-02758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The emergence of multidrug-resistant Acinetobacter baumannii strains is increasing worldwide. To overcome these life-threatening infections, the development of new treatment approaches is critical. For this purpose, this study was conducted to determine the antimicrobial photo-sonodynamic therapy (aPSDT) using hypericin nanoparticles (HypNP) in combination with D-Tryptophan (D-Trp) against A. baumannii. MATERIALS AND METHODS HypNP was synthesized and characterized, followed by the determination of the fractional inhibitory concentration (FIC) index of HypNP and D-Trp by checkerboard assay. Next, the antimicrobial and anti-biofilm potential of HypNP@D-Trp-mediated aPSDT against A. baumannii was evaluated. Finally, the anti-virulence activity of aPSDT using HypNP@D-Trp was accessed following the characterization of HypNP@D-Trp interaction with AbaI using in silico virtual screening and molecular docking. RESULTS A synergistic activity in the combination of HypNP and D-Trp against A. baumannii was observed with a FIC index value of 0.5. There was a 5.10 log10 CFU/mL reduction in the cell viability of A. baumannii when the bacterial cells were treated with 1/2 × MIC of HypNP@D-Trp and subsequently exposed to ultrasound waves and blue light (P < 0.05). Moreover, a significant biofilm degradation effect on biofilm-associated cells of A. baumannii was observed after treatment with aPSDT using 2 × MIC of HypNP@D-Trp in comparison with the control groups (P < 0.05). According to the molecular docking analysis of the protein-ligand complex, Hyp with a high affinity for AbaI showed a binding affinity of - 9.41 kcal/mol. Also, the expression level of abaI gene was significantly downregulated by 10.32-fold in A. baumannii treated with aPSDT as comprised with the control group (P < 0.05). CONCLUSIONS It can be concluded that HypNP@D-Trp-mediated aPSDT can be considered a promising strategy to overcome the infections caused by A. baumannii by reducing the growth of bacterial biofilm and decreasing the expression of abaI as a gene involved in A. baumannii biofilm formation.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- grid.411705.60000 0001 0166 0922Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nava Hosseini
- grid.23856.3a0000 0004 1936 8390Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6 Canada ,grid.23856.3a0000 0004 1936 8390Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6 Canada ,grid.421142.00000 0000 8521 1798Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5 Canada
| | - Abbas Bahador
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Microbiology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|