1
|
Suárez-Martínez C, Santaella-Pascual M, Yagüe-Guirao G, García-Marcos L, Ros G, Martínez-Graciá C. The Early Appearance of Asthma and Its Relationship with Gut Microbiota: A Narrative Review. Microorganisms 2024; 12:1471. [PMID: 39065238 PMCID: PMC11278858 DOI: 10.3390/microorganisms12071471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Asthma is, worldwide, the most frequent non-communicable disease affecting both children and adults, with high morbidity and relatively low mortality, compared to other chronic diseases. In recent decades, the prevalence of asthma has increased in the pediatric population, and, in general, the risk of developing asthma and asthma-like symptoms is higher in children during the first years of life. The "gut-lung axis" concept explains how the gut microbiota influences lung immune function, acting both directly, by stimulating the innate immune system, and indirectly, through the metabolites it generates. Thus, the process of intestinal microbial colonization of the newborn is crucial for his/her future health, and the alterations that might generate dysbiosis during the first 100 days of life are most influential in promoting hypersensitivity diseases. That is why this period is termed the "critical window". This paper reviews the published evidence on the numerous factors that can act by modifying the profile of the intestinal microbiota of the infant, thereby promoting or inhibiting the risk of asthma later in life. The following factors are specifically addressed in depth here: diet during pregnancy, maternal adherence to a Mediterranean diet, mode of delivery, exposure to antibiotics, and type of infant feeding during the first three months of life.
Collapse
Affiliation(s)
- Clara Suárez-Martínez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - Marina Santaella-Pascual
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - Genoveva Yagüe-Guirao
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Microbiology Service, Virgen de La Arrixaca University Clinical Hospital, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
| | - Luis García-Marcos
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Pediatric Allergy and Pulmonology Units, Virgen de La Arrixaca University Clinical Hospital, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
- Network of Asthma and Adverse and Allergic Reactions (ARADyAL), 28029 Madrid, Spain
| | - Gaspar Ros
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - Carmen Martínez-Graciá
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
2
|
Lau LYJ, Quek SY. Probiotics: Health benefits, food application, and colonization in the human gastrointestinal tract. FOOD BIOENGINEERING 2024; 3:41-64. [DOI: 10.1002/fbe2.12078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/29/2024] [Indexed: 01/04/2025]
Abstract
AbstractProbiotics have become increasingly popular over the past two decades due to the continuously expanding scientific evidence indicating their beneficial effects on human health. Therefore, they have been applied in the food industry to produce functional food, which plays a significant role in human health and reduces disease risk. However, maintaining the viability of probiotics and targeting the successful delivery to the gastrointestinal tract remain two challenging tasks in food applications. Specifically, this paper reviews the potentially beneficial properties of probiotics, highlighting the use and challenges of probiotics in food application and the associated health benefits. Of foremost importance, this paper also explores the potential underlying molecular mechanisms of the enhanced effect of probiotics on gastrointestinal epithelial cells, including a discussion on various surface adhesion‐related proteins on the probiotic cell surface that facilitate colonization.
Collapse
Affiliation(s)
- Li Ying Jessie Lau
- Food Science, School of Chemical Sciences The University of Auckland Auckland New Zealand
| | - Siew Young Quek
- Food Science, School of Chemical Sciences The University of Auckland Auckland New Zealand
| |
Collapse
|
3
|
Stumpf K, Mirpuri J. Maternal Macro- and Micronutrient Intake During Pregnancy: Does It Affect Allergic Predisposition in Offspring? Immunol Allergy Clin North Am 2023; 43:27-42. [PMID: 36411006 DOI: 10.1016/j.iac.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review article explores the available literature on the association of maternal nutrient intake with development of allergies in offspring. It examines the mechanisms for maternal diet-mediated effects on offspring immunity and dissects recent human and animal studies that evaluate the role of both maternal macro- and micronutrient intake on offspring susceptibility to asthma, eczema, food allergy, and atopy.
Collapse
Affiliation(s)
- Katherine Stumpf
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard- Suite F3.302, Dallas, TX 75390-9063, USA.
| | - Julie Mirpuri
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard- Suite F3.302, Dallas, TX 75390-9063, USA.
| |
Collapse
|
4
|
Mohamad Zainal NH, Mohd Nor NH, Saat A, Clifton VL. Childhood allergy susceptibility: The role of the immune system development in the in-utero period. Hum Immunol 2022; 83:437-446. [DOI: 10.1016/j.humimm.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/20/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022]
|
5
|
Marín-Garzón NA, Magalhães AFB, Schmidt PI, Serna M, Fonseca LFS, Salatta BM, Frezarim GB, Fernandes-Júnior GA, Bresolin T, Carvalheiro R, Albuquerque LG. Genome-wide scan reveals genomic regions and candidate genes underlying direct and maternal effects of preweaning calf mortality in Nellore cattle. Genomics 2021; 113:1386-1395. [PMID: 33716185 DOI: 10.1016/j.ygeno.2021.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/25/2021] [Accepted: 02/23/2021] [Indexed: 11/26/2022]
Abstract
We conducted analysis to estimate genetic parameters and to identify genomic regions and candidate genes affecting direct and maternal effects of preweaning calf mortality (PWM) in Nellore cattle. Phenotypic records of 67,196 animals, and 8443 genotypes for 410,936 SNPs were used. Analysis were performed through the weighted single-step GBLUP approach and considering a threshold animal model via Bayesian Inference. Direct and maternal heritability estimates were of 0.2143 ± 0.0348 and 0.0137 ± 0.0066, respectively. The top 10 genomic regions accounted for 13.61 and 14.23% of the direct and maternal additive genetic variances and harbored a total of 63 and 91 positional candidate genes, respectively. Two overlapping regions on BTA2 were identified for both direct and maternal effects. Candidate genes are involved in biological mechanisms i.e. embryogenesis, immune response, feto-maternal communication, circadian rhythm, hormone alterations, myometrium adaptation, and milk secretion, which are critical for the successful calf growth and survival during preweaning period.
Collapse
Affiliation(s)
- N A Marín-Garzón
- São Paulo State University (Unesp), College of Agricultural and Veterinarian Sciences, Via de Acesso Professor Paulo Donato Castelane Castellane S/N - Vila Industrial, 14884-900 Jaboticabal, SP, Brazil.
| | - A F B Magalhães
- São Paulo State University (Unesp), College of Agricultural and Veterinarian Sciences, Via de Acesso Professor Paulo Donato Castelane Castellane S/N - Vila Industrial, 14884-900 Jaboticabal, SP, Brazil
| | - P I Schmidt
- São Paulo State University (Unesp), College of Agricultural and Veterinarian Sciences, Via de Acesso Professor Paulo Donato Castelane Castellane S/N - Vila Industrial, 14884-900 Jaboticabal, SP, Brazil
| | - M Serna
- São Paulo State University (Unesp), College of Agricultural and Veterinarian Sciences, Via de Acesso Professor Paulo Donato Castelane Castellane S/N - Vila Industrial, 14884-900 Jaboticabal, SP, Brazil
| | - L F S Fonseca
- São Paulo State University (Unesp), College of Agricultural and Veterinarian Sciences, Via de Acesso Professor Paulo Donato Castelane Castellane S/N - Vila Industrial, 14884-900 Jaboticabal, SP, Brazil
| | - B M Salatta
- São Paulo State University (Unesp), College of Agricultural and Veterinarian Sciences, Via de Acesso Professor Paulo Donato Castelane Castellane S/N - Vila Industrial, 14884-900 Jaboticabal, SP, Brazil
| | - G B Frezarim
- São Paulo State University (Unesp), College of Agricultural and Veterinarian Sciences, Via de Acesso Professor Paulo Donato Castelane Castellane S/N - Vila Industrial, 14884-900 Jaboticabal, SP, Brazil
| | - G A Fernandes-Júnior
- São Paulo State University (Unesp), College of Agricultural and Veterinarian Sciences, Via de Acesso Professor Paulo Donato Castelane Castellane S/N - Vila Industrial, 14884-900 Jaboticabal, SP, Brazil
| | - T Bresolin
- São Paulo State University (Unesp), College of Agricultural and Veterinarian Sciences, Via de Acesso Professor Paulo Donato Castelane Castellane S/N - Vila Industrial, 14884-900 Jaboticabal, SP, Brazil
| | - R Carvalheiro
- São Paulo State University (Unesp), College of Agricultural and Veterinarian Sciences, Via de Acesso Professor Paulo Donato Castelane Castellane S/N - Vila Industrial, 14884-900 Jaboticabal, SP, Brazil
| | - L G Albuquerque
- São Paulo State University (Unesp), College of Agricultural and Veterinarian Sciences, Via de Acesso Professor Paulo Donato Castelane Castellane S/N - Vila Industrial, 14884-900 Jaboticabal, SP, Brazil; National Council for Science and Technological Development (CNPq), Brasília, Brazil
| |
Collapse
|
6
|
Acevedo N, Alashkar Alhamwe B, Caraballo L, Ding M, Ferrante A, Garn H, Garssen J, Hii CS, Irvine J, Llinás-Caballero K, López JF, Miethe S, Perveen K, Pogge von Strandmann E, Sokolowska M, Potaczek DP, van Esch BCAM. Perinatal and Early-Life Nutrition, Epigenetics, and Allergy. Nutrients 2021; 13:724. [PMID: 33668787 PMCID: PMC7996340 DOI: 10.3390/nu13030724] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023] Open
Abstract
Epidemiological studies have shown a dramatic increase in the incidence and the prevalence of allergic diseases over the last several decades. Environmental triggers including risk factors (e.g., pollution), the loss of rural living conditions (e.g., farming conditions), and nutritional status (e.g., maternal, breastfeeding) are considered major contributors to this increase. The influences of these environmental factors are thought to be mediated by epigenetic mechanisms which are heritable, reversible, and biologically relevant biochemical modifications of the chromatin carrying the genetic information without changing the nucleotide sequence of the genome. An important feature characterizing epigenetically-mediated processes is the existence of a time frame where the induced effects are the strongest and therefore most crucial. This period between conception, pregnancy, and the first years of life (e.g., first 1000 days) is considered the optimal time for environmental factors, such as nutrition, to exert their beneficial epigenetic effects. In the current review, we discussed the impact of the exposure to bacteria, viruses, parasites, fungal components, microbiome metabolites, and specific nutritional components (e.g., polyunsaturated fatty acids (PUFA), vitamins, plant- and animal-derived microRNAs, breast milk) on the epigenetic patterns related to allergic manifestations. We gave insight into the epigenetic signature of bioactive milk components and the effects of specific nutrition on neonatal T cell development. Several lines of evidence suggest that atypical metabolic reprogramming induced by extrinsic factors such as allergens, viruses, pollutants, diet, or microbiome might drive cellular metabolic dysfunctions and defective immune responses in allergic disease. Therefore, we described the current knowledge on the relationship between immunometabolism and allergy mediated by epigenetic mechanisms. The knowledge as presented will give insight into epigenetic changes and the potential of maternal and post-natal nutrition on the development of allergic disease.
Collapse
Affiliation(s)
- Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Bilal Alashkar Alhamwe
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany; (B.A.A.); (E.P.v.S.)
- College of Pharmacy, International University for Science and Technology (IUST), Daraa 15, Syria
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Mei Ding
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (M.D.); (M.S.)
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos, Switzerland
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Antonio Ferrante
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (H.G.); (S.M.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands;
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Charles S. Hii
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - James Irvine
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kevin Llinás-Caballero
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Juan Felipe López
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Sarah Miethe
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (H.G.); (S.M.)
| | - Khalida Perveen
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Elke Pogge von Strandmann
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany; (B.A.A.); (E.P.v.S.)
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (M.D.); (M.S.)
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos, Switzerland
| | - Daniel P. Potaczek
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (H.G.); (S.M.)
| | - Betty C. A. M. van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands;
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
7
|
Barański M, Średnicka-Tober D, Rempelos L, Hasanaliyeva G, Gromadzka-Ostrowska J, Skwarło-Sońta K, Królikowski T, Rembiałkowska E, Hajslova J, Schulzova V, Cakmak I, Ozturk L, Hallmann E, Seal C, Iversen PO, Vigar V, Leifert C. Feed Composition Differences Resulting from Organic and Conventional Farming Practices Affect Physiological Parameters in Wistar Rats-Results from a Factorial, Two-Generation Dietary Intervention Trial. Nutrients 2021; 13:377. [PMID: 33530419 PMCID: PMC7911726 DOI: 10.3390/nu13020377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Recent human cohort studies reported positive associations between organic food consumption and a lower incidence of obesity, cancer, and several other diseases. However, there are very few animal and human dietary intervention studies that provide supporting evidence or a mechanistic understanding of these associations. Here we report results from a two-generation, dietary intervention study with male Wistar rats to identify the effects of feeds made from organic and conventional crops on growth, hormonal, and immune system parameters that are known to affect the risk of a number of chronic, non-communicable diseases in animals and humans. A 2 × 2 factorial design was used to separate the effects of contrasting crop protection methods (use or non-use of synthetic chemical pesticides) and fertilizers (mineral nitrogen, phosphorus and potassium (NPK) fertilizers vs. manure use) applied in conventional and organic crop production. Conventional, pesticide-based crop protection resulted in significantly lower fiber, polyphenol, flavonoid, and lutein, but higher lipid, aldicarb, and diquat concentrations in animal feeds. Conventional, mineral NPK-based fertilization resulted in significantly lower polyphenol, but higher cadmium and protein concentrations in feeds. Feed composition differences resulting from the use of pesticides and/or mineral NPK-fertilizer had a significant effect on feed intake, weight gain, plasma hormone, and immunoglobulin concentrations, and lymphocyte proliferation in both generations of rats and in the second generation also on the body weight at weaning. Results suggest that relatively small changes in dietary intakes of (a) protein, lipids, and fiber, (b) toxic and/or endocrine-disrupting pesticides and metals, and (c) polyphenols and other antioxidants (resulting from pesticide and/or mineral NPK-fertilizer use) had complex and often interactive effects on endocrine, immune systems and growth parameters in rats. However, the physiological responses to contrasting feed composition/intake profiles differed substantially between the first and second generations of rats. This may indicate epigenetic programming and/or the generation of "adaptive" phenotypes and should be investigated further.
Collapse
Affiliation(s)
- Marcin Barański
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
- Nafferton Ecological Farming Group, Food and Rural Development, School of Agriculture, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK
| | - Dominika Średnicka-Tober
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
- Nafferton Ecological Farming Group, Food and Rural Development, School of Agriculture, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK
| | - Leonidas Rempelos
- Nafferton Ecological Farming Group, Food and Rural Development, School of Agriculture, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK
| | - Gultakin Hasanaliyeva
- Nafferton Ecological Farming Group, Food and Rural Development, School of Agriculture, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK
- Department of Sustainable Crop and Food Protection, Food and Environmental Sciences, Faculty of Agriculture, Universita Catollica del Sacro Cuore, I-29122 Piacenza, Italy
| | - Joanna Gromadzka-Ostrowska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Krystyna Skwarło-Sońta
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Tomasz Królikowski
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Ewa Rembiałkowska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, Institute of Chemical Technology, UCT Prague, 166 28 Prague, Czech Republic
| | - Vera Schulzova
- Department of Food Analysis and Nutrition, Institute of Chemical Technology, UCT Prague, 166 28 Prague, Czech Republic
| | - Ismail Cakmak
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | - Levent Ozturk
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | - Ewelina Hallmann
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Chris Seal
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle upon Tyne NE2 4HH, UK
| | - Per Ole Iversen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
- Department of Haematology, Oslo University Hospital, 0424 Oslo, Norway
| | - Vanessa Vigar
- NatMed, Southern Cross University, Military Rd., Lismore, NSW 2480, Australia
| | - Carlo Leifert
- Nafferton Ecological Farming Group, Food and Rural Development, School of Agriculture, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
- SCU Plant Science, Southern Cross University, Military Rd., Lismore, NSW 2480, Australia
| |
Collapse
|
8
|
Mangini LD, Hayward MD, Zhu Y, Dong Y, Forman MR. Timing of household food insecurity exposures and asthma in a cohort of US school-aged children. BMJ Open 2019; 8:e021683. [PMID: 30798285 PMCID: PMC6278782 DOI: 10.1136/bmjopen-2018-021683] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Food insecurity is positively associated with asthma, the most common chronic childhood disease, yet directionality is unclear. The objective was to determine the association between exposure to food insecurity in early childhood and the odds of asthma later in childhood. DESIGN Data from four waves of the Early Childhood Longitudinal Study-Kindergarten (ECLS-K) cohort, a prospective, dual-frame, multistage probability cluster sampling study of school-aged US children were entered in multivariate logistic regression models, adjusted for covariates. Exposures to food insecurity were based on parental responses to the validated USDA 18-item module at each wave. SETTING Public and private primary and secondary schools between 1998 and 2007. PARTICIPANTS At its inception (1999), the ECLS-K had 20 578 kindergarteners; by the spring of eighth grade (2007), the cohort dropped to 9725 due to attrition. Children missing an exposure, outcome or confounding variable were excluded, final n=6731. PRIMARY OUTCOME MEASURE Child's diagnosis of asthma by a healthcare professional as reported by the parent. RESULTS Household food insecurity (vs food security) in the year before kindergarten and in second grade had a higher odds of asthma by 18% (95% CI 1.17 to 1.20) and 55% (95% CI 1.51 to 1.55). After removing asthmatics before third grade from the model, food insecurity in second grade was associated with higher odds of asthma at fifth or eighth grades (OR 1.55; 95% CI 1.53 to 1.58), whereas food insecurity in the year before kindergarten had a lower odds at fifth or eighth grades. CONCLUSIONS Food insecurity in the year before kindergarten and in second grade were associated with a higher odds of asthma in third grade. Food insecurity in second grade retained the signal for increased odds of asthma after third and through eighth grades. Additional research is needed to explore childhood windows of vulnerability to asthma.
Collapse
Affiliation(s)
- Lauren D Mangini
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Mark D Hayward
- Department of Sociology and Population Research Center, The University of Texas at Austin, Austin, Texas, USA
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Yongquan Dong
- Office of Medicine- Health Services Research, Baylor College of Medicine, Houston, Texas, USA
| | - Michele R Forman
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
9
|
Azuma K, Ohyama M, Azuma E, Nakajima T. Background factors of chemical intolerance and parent-child relationships. Environ Health Prev Med 2018; 23:52. [PMID: 30355299 PMCID: PMC6201541 DOI: 10.1186/s12199-018-0743-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022] Open
Abstract
Background Chemical intolerance is a widespread public health problem characterized by symptoms that reportedly result from low-level exposure to chemicals. Although several studies have reported factors related to chemical intolerance in adults, the impact of family members has not been reported. In the present study, we investigated the background factors related to chemical intolerance in family members and parent–child relationships. Methods We distributed a self-reported questionnaire to 4325 mothers who were invited to visit the Kishiwada Health Center in Kishiwada City, Osaka, between January 2006 and December 2007 for the regular health checkup of their three-and-a-half-year-old children. Results The prevalence of chemical intolerance in the 3-year-old children was almost one eighteenth of that reported by their mothers. Multiple logistic regression analyses revealed that cold sensitivity [odds ratio (OR), 1.89; 95% confidence interval (CI), 1.04–3.44], past bronchial asthma (OR, 2.84; 95% CI, 1.46–5.53), and any past allergies (OR, 2.21; 95% CI, 1.36–3.60) were significantly associated with chemical intolerance in the mother. The presence of indoor cat during childhood (OR, 1.99; 95% CI, 1.08–3.69) was significantly associated with chemical intolerance in the mother; however, the association was weak compared with cold sensitivity and past asthma and allergies. The current chemical intolerance of the mother was significantly associated with allergic rhinitis (OR, 2.32; 95% CI, 1.19–4.53), bronchial asthma (OR, 3.66; 95% CI, 2.00–6.69), and chronic bronchitis (OR, 3.69; 95% CI, 1.04–13.03) in her 3-year-old child. Conclusions The results suggest that inherent physical constitution and childhood housing environment are associated with a risk of acquiring chemical intolerance. Children of mothers with chemical intolerance have a possible risk of respiratory hypersensitivity or inflammation. Further investigation is recommended to determine the inherent physical constitution and background environmental factors associated with the risk of acquiring chemical intolerance. The impact of having mothers with chemical intolerance on the health of children also requires further study. Electronic supplementary material The online version of this article (10.1186/s12199-018-0743-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kenichi Azuma
- Department of Environmental Medicine and Behavioral Science, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, 589-8511, Japan.
| | - Masayuki Ohyama
- Department of Environmental Health, Osaka Institute of Public Health, Osaka, 537-0025, Japan
| | - Emiko Azuma
- Department of Food Chemistry, Osaka Institute of Public Health, Osaka, 537-0025, Japan
| | - Takae Nakajima
- Department of Environmental Health, Osaka Institute of Public Health, Osaka, 537-0025, Japan
| |
Collapse
|
10
|
Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen HK, More S, Naegeli H, Noteborn H, Ockleford C, Ricci A, Rychen G, Schlatter JR, Silano V, Solecki R, Turck D, Bresson JL, Dusemund B, Gundert-Remy U, Kersting M, Lambré C, Penninks A, Tritscher A, Waalkens-Berendsen I, Woutersen R, Arcella D, Court Marques D, Dorne JL, Kass GE, Mortensen A. Guidance on the risk assessment of substances present in food intended for infants below 16 weeks of age. EFSA J 2017; 15:e04849. [PMID: 32625502 PMCID: PMC7010120 DOI: 10.2903/j.efsa.2017.4849] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Following a request from the European Commission to EFSA, the EFSA Scientific Committee (SC) prepared a guidance for the risk assessment of substances present in food intended for infants below 16 weeks of age. In its approach to develop this guidance, the EFSA SC took into account, among others, (i) an exposure assessment based on infant formula as the only source of nutrition; (ii) knowledge of organ development in human infants, including the development of the gut, metabolic and excretory capacities, the brain and brain barriers, the immune system, the endocrine and reproductive systems; (iii) the overall toxicological profile of the substance identified through the standard toxicological tests, including critical effects; (iv) the relevance for the human infant of the neonatal experimental animal models used. The EFSA SC notes that during the period from birth up to 16 weeks, infants are expected to be exclusively fed on breast milk and/or infant formula. The EFSA SC views this period as the time where health-based guidance values for the general population do not apply without further considerations. High infant formula consumption per body weight is derived from 95th percentile consumption. The first weeks of life is the time of the highest relative consumption on a body weight basis. Therefore, when performing an exposure assessment, the EFSA SC proposes to use the high consumption value of 260 mL/kg bw per day. A decision tree approach is proposed that enables a risk assessment of substances present in food intended for infants below 16 weeks of age. The additional information needed when testing substances present in food for infants below 16 weeks of age and the approach to be taken for the risk assessment are on a case-by-case basis, depending on whether the substance is added intentionally to food and is systemically available.
Collapse
|
11
|
Huang C, Liu W, Cai J, Weschler LB, Wang X, Hu Y, Zou Z, Shen L, Sundell J. Breastfeeding and timing of first dietary introduction in relation to childhood asthma, allergies, and airway diseases: A cross-sectional study. J Asthma 2016; 54:488-497. [PMID: 27603296 DOI: 10.1080/02770903.2016.1231203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES We investigated associations of breastfeeding (BF) durations and patterns and of timing of other dietary introductions with prevalence of asthma, wheeze, hay fever, rhinitis, pneumonia, and eczema among preschool children. METHODS During April 2011-April 2012, we conducted a cross-sectional study in 72 kindergartens from five districts of Shanghai, China and obtained 13,335 questionnaires of children 4-6-years-old. We used multiple logistic regression models to evaluate the target associations. RESULTS Compared to children who were never BF, children who were exclusively breastfed 3-6 months had the lowest risk of asthma (adjusted odds ratio and 95% confidence interval: 0.81, 0.72-0.91) and wheeze (0.93, 0.87-0.99); and exclusive BF >6 months was significantly associated with a reduced risk of hay fever (0.93, 0.89-0.97), rhinitis (0.97, 0.94-0.99), pneumonia (0.97, 0.94-0.99), and eczema (0.96, 0.93-0.99). No significant associations were found between time when fruits or vegetables were introduced and the studied diseases. Associations were independent of the child's sex and parent's ownership of the current residence. Longer duration BF was only significantly protective when there was no family history of atopy. CONCLUSIONS This study suggests that heredity, but not sex and socioeconomic status, may negatively impact the effect of BF on childhood airway and allergic diseases. Our findings support China's national recommendation that mothers provide exclusive BF for the first four months, and continue partial BF for more than 6 months.
Collapse
Affiliation(s)
- Chen Huang
- a Department of Building Environment and Energy Engineering , School of Environment and Architecture, University of Shanghai for Science and Technology , Shanghai , China
| | - Wei Liu
- a Department of Building Environment and Energy Engineering , School of Environment and Architecture, University of Shanghai for Science and Technology , Shanghai , China
| | - Jiao Cai
- a Department of Building Environment and Energy Engineering , School of Environment and Architecture, University of Shanghai for Science and Technology , Shanghai , China
| | | | - Xueying Wang
- a Department of Building Environment and Energy Engineering , School of Environment and Architecture, University of Shanghai for Science and Technology , Shanghai , China
| | - Yu Hu
- a Department of Building Environment and Energy Engineering , School of Environment and Architecture, University of Shanghai for Science and Technology , Shanghai , China
| | - Zhijun Zou
- a Department of Building Environment and Energy Engineering , School of Environment and Architecture, University of Shanghai for Science and Technology , Shanghai , China
| | - Li Shen
- a Department of Building Environment and Energy Engineering , School of Environment and Architecture, University of Shanghai for Science and Technology , Shanghai , China
| | - Jan Sundell
- a Department of Building Environment and Energy Engineering , School of Environment and Architecture, University of Shanghai for Science and Technology , Shanghai , China.,c Department of Building Science , Tsinghua University , Beijing , China
| |
Collapse
|
12
|
Vitamin D exposure during pregnancy, but not early childhood, is associated with risk of childhood wheezing. J Dev Orig Health Dis 2015; 6:308-16. [PMID: 25885931 DOI: 10.1017/s2040174415001063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The association between vitamin D and wheezing in early childhood is unclear. The primary objective of this study was to evaluate the association between vitamin D exposure, during both pregnancy and childhood, and early childhood wheezing. Secondary objectives were to evaluate the associations between vitamin D exposures and asthma and wheezing severity. We conducted a cohort study of children (0-5 years) recruited from 2008 to 2013 through the TARGet Kids! primary-care research network. Vitamin D exposures included maternal vitamin D supplement use during pregnancy, child vitamin D supplementation and children's 25-hydroxyvitamin D (25(OH)D) concentrations. The outcomes measured were parent-reported childhood wheezing, diagnosed asthma and wheezing severity. Vitamin D supplement and wheezing data were available for 2478 children, and blood samples were available for 1275 children. Adjusted odds ratios (aOR) were estimated using logistic regression adjusted for age, sex, ethnicity, body mass index, birth weight, outdoor play, breastfeeding duration, daycare status, parental smoking and family history of asthma. Vitamin D supplementation during pregnancy was associated with lower odds of childhood wheezing (aOR=0.65; 95% CI: 0.46-0.93). In early childhood, neither 25(OH)D (aOR per 10 nmol/l=1.01; 95% CI: 0.96-1.06) nor vitamin D supplementation (aOR=1.00; 95% CI: 0.81-1.23) was associated with wheezing. No significant associations were observed with diagnosed asthma or wheezing severity. Vitamin D supplementation during pregnancy was associated with reduced odds of wheezing, but child vitamin D supplementation and childhood 25(OH)D were not associated with reduced wheezing. The timing of exposure may be important in understanding the association between vitamin D and childhood wheezing.
Collapse
|
13
|
Elenberg Y, Shaoul R. The role of infant nutrition in the prevention of future disease. Front Pediatr 2014; 2:73. [PMID: 25101251 PMCID: PMC4104350 DOI: 10.3389/fped.2014.00073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/25/2014] [Indexed: 02/01/2023] Open
Abstract
There is growing evidence that nutrition is part of the environmental factors affecting the incidence of various diseases. The effect starts in the prenatal life and affects fetal growth and continues in early life and throughout childhood. The effect has been shown on various disease states such as allergic diseases, hyperlipidemia and cardiovascular diseases, obesity, type II diabetes and metabolic syndrome, and immunologic diseases such as celiac disease and type 1 diabetes mellitus. It seems that the recommendations of exclusive breastfeeding until the age of 4 months and subsequently exposure to various solid foods has beneficial effect in terms of allergic, immunologic, and cardiovascular diseases prevention. Will these recommendations change the natural course of these diseases is unknown yet, but there is accumulating evidence that indeed this is the case. In this review, we review the evidence of early nutritional intervention and future disease prevention.
Collapse
Affiliation(s)
- Yigal Elenberg
- Pediatric Gastroenterology and Nutrition Unit, Meyer Children's Hospital of Haifa, Rambam Medical Center , Haifa , Israel ; Department of Pediatrics, Carmel Medical Center, Faculty of Medicine, Technion - Israel Institute of Technology , Haifa , Israel
| | - Ron Shaoul
- Pediatric Gastroenterology and Nutrition Unit, Meyer Children's Hospital of Haifa, Rambam Medical Center , Haifa , Israel
| |
Collapse
|