1
|
Alonso Villela SM, Kraïem-Ghezal H, Bouhaouala-Zahar B, Bideaux C, Aceves Lara CA, Fillaudeau L. Production of recombinant scorpion antivenoms in E. coli: current state and perspectives. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12578-1. [PMID: 37199752 DOI: 10.1007/s00253-023-12578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Scorpion envenomation is a serious health problem in tropical and subtropical zones. The access to scorpion antivenom is sometimes limited in availability and specificity. The classical production process is cumbersome, from the hyper-immunization of the horses to the IgG digestion and purification of the F(ab)'2 antibody fragments. The production of recombinant antibody fragments in Escherichia coli is a popular trend due to the ability of this microbial host to produce correctly folded proteins. Small recombinant antibody fragments, such as single-chain variable fragments (scFv) and nanobodies (VHH), have been constructed to recognize and neutralize the neurotoxins responsible for the envenomation symptoms in humans. They are the focus of interest of the most recent studies and are proposed as potentially new generation of pharmaceuticals for their use in immunotherapy against scorpion stings of the Buthidae family. This literature review comprises the current status on the scorpion antivenom market and the analyses of cross-reactivity of commercial scorpion anti-serum against non-specific scorpion venoms. Recent studies on the production of new recombinant scFv and nanobodies will be presented, with a focus on the Androctonus and Centruroides scorpion species. Protein engineering-based technology could be the key to obtaining the next generation of therapeutics capable of neutralizing and cross-reacting against several types of scorpion venoms. KEY POINTS: • Commercial antivenoms consist of predominantly purified equine F(ab)'2fragments. • Nanobody-based antivenom can neutralize Androctonus venoms and have a low immunogenicity. • Affinity maturation and directed evolution are used to obtain potent scFv families against Centruroides scorpions.
Collapse
Affiliation(s)
| | - Hazar Kraïem-Ghezal
- Laboratoire Des Venins Et Molécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, 1002, Tunis, Tunisia
| | - Balkiss Bouhaouala-Zahar
- Laboratoire Des Venins Et Molécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, 1002, Tunis, Tunisia.
- Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis, Tunisia.
| | - Carine Bideaux
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | - Luc Fillaudeau
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
2
|
Crystal structure of a phospholipase A 2 from Bothrops asper venom: Insights into a new putative "myotoxic cluster". Biochimie 2016; 133:95-102. [PMID: 28034717 DOI: 10.1016/j.biochi.2016.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 11/20/2022]
Abstract
Snake venoms from the Viperidae and Elapidae families often have several phospholipases A2 (PLA2s), which may display different functions despite having a similar structural scaffold. These proteins are considered an important target for the development of drugs against local myotoxic damage because they are not efficiently neutralized by conventional serum therapy. PLA2s from these venoms are generally divided into two classes: (i) catalytic PLA2s (or Asp49-PLA2s) and (ii) non-catalytic PLA2-like toxins (or Lys49-PLA2s). In many Viperidae venoms, a subset of the basic Asp49-PLA2s displays some functional and structural characteristics of PLA2-like proteins and group within the same phylogenetic clade, but their myotoxic mechanism is still largely unknown. In the present study, we have crystallized and solved the structure of myotoxin I (MT-I), a basic myotoxic Asp49-PLA2 isolated from Bothrops asper venom. The structure presents a dimeric conformation that is compatible with that of previous dimers found for basic myotoxic Asp49-PLA2s and Lys49-PLA2s and has been confirmed by other biophysical and bioinformatics techniques. This arrangement suggests a possible cooperative action between both monomers to exert myotoxicity via two different sites forming a putative membrane-docking site (MDoS) and a putative membrane disruption site (MDiS). This mechanism would resemble that proposed for Lys49-PLA2s, but the sites involved appear to be situated in a different region. Thus, as both sites are close to one another, they form a "myotoxic cluster", which is also found in two other basic myotoxic Asp49-PLA2s from Viperidae venoms. Such arrangement may represent a novel structural strategy for the mechanism of muscle damage exerted by the group of basic, Asp49-PLA2s found in viperid snake venoms.
Collapse
|
3
|
Novel phospholipase A2 inhibitors from python serum are potent peptide antibiotics. Biochimie 2015; 111:30-44. [PMID: 25583073 DOI: 10.1016/j.biochi.2015.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 01/02/2015] [Indexed: 11/24/2022]
Abstract
Antimicrobial peptides (AMPs) play a vital role in defense against resistant bacteria. In this study, eight different AMPs synthesized from Python reticulatus serum protein were tested for bactericidal activity against various Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Burkholderia pseudomallei (KHW and TES strains), and Proteus vulgaris) using a disc-diffusion method (20 μg/disc). Among the tested peptides, phospholipase A2 inhibitory peptide (PIP)-18[59-76], β-Asp65-PIP[59-67], D-Ala66-PNT.II, and D60,65E-PIP[59-67] displayed the most potent bactericidal activity against all tested pathogens in a dose-dependent manner (100-6.8 μg/ml), with a remarkable activity noted against S. aureus at 6.8 μg/ml dose within 6 h of incubation. Determination of minimum inhibitory concentrations (MICs) by a micro-broth dilution method at 100-3.125 μg/ml revealed that PIP-18[59-76], β-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides exerted a potent inhibitory effect against S. aureus and B. pseudomallei (KHW) (MICs 3.125 μg/ml), while a much less inhibitory potency (MICs 12.5 μg/ml) was noted for β-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides against B. pseudomallei (TES). Higher doses of peptides had no effect on the other two strains (i.e., Klebsiella pneumoniae and Streptococcus pneumoniae). Overall, PIP-18[59-76] possessed higher antimicrobial activity than that of chloramphenicol (CHL), ceftazidime (CF) and streptomycin (ST) (30 μg/disc). When the two most active peptides, PIP-18[59-76] and β-Asp65-PIP[59-67], were applied topically at a 150 mg/kg dose for testing wound healing activity in a mouse model of S. aureus infection, the former accelerates faster wound healing than the latter peptide at 14 days post-treatment. The western blot data suggest that the topical application of peptides (PIP-18[59-67] and β-Asp65-PIP[59-67]) modulates NF-kB mediated wound repair in mice with relatively little haemolytic (100-1.56 μg/ml) and cytotoxic (1000-3.125 μg/ml) effects evident on human cells in vitro.
Collapse
|
4
|
Interactions of PLA2-s from Vipera lebetina, Vipera berus berus and Naja naja oxiana venom with platelets, bacterial and cancer cells. Toxins (Basel) 2013; 5:203-23. [PMID: 23348053 PMCID: PMC3640532 DOI: 10.3390/toxins5020203] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/16/2013] [Accepted: 01/17/2013] [Indexed: 12/21/2022] Open
Abstract
Secretory phospholipasesA2 (sPLA2s) form a large family of structurally related enzymes widespread in nature. Herein, we studied the inhibitory effects of sPLA2s from Vipera lebetina (VLPLA2), Vipera berus berus (VBBPLA2), and Naja naja oxiana (NNOPLA2) venoms on (i) human platelets, (ii) four different bacterial strains (gram-negative Escherichia coli and Vibrio fischeri; gram-positive Staphylococcus aureus and Bacillus subtilis) and (iii) five types of cancer cells (PC-3, LNCaP, MCF-7, K-562 and B16-F10) in vitro. sPLA2s inhibited collagen-induced platelet aggregation: VBBPLA2 IC50 = 0.054, VLPLA2 IC50 = 0.072, NNOPLA2 IC50 = 0.814 μM. p-Bromophenacylbromide-inhibited sPLA2 had no inhibitory action on platelets. 36.17 μM VBBPLA2 completely inhibited the growth of gram-positive Bacillus subtilis whereas no growth inhibition was observed towards gram-negative Escherichia coli. The inhibitory action of sPLA2s (~0.7 μM and ~7 μM) towards cancer cells depended on both venom and cell type. VBBPLA2 (7.2 μM) inhibited significantly the viability of K-562 cells and the cell death appeared apoptotic. The sPLA2s exhibited no inhibitory effect towards LNCaP cells and some effect (8%–20%) towards other cells. Thus, already sub-μM concentrations of sPLA2s inhibited collagen-induced platelet aggregation and from the current suite of studied svPLA2s and test cells, VBBPLA2 was the most growth inhibitory towards Bacillus subtilis and K-562 cells.
Collapse
|
5
|
Isolation and expression of a hypotensive and anti-platelet acidic phospholipase A2 from Bothrops moojeni snake venom. J Pharm Biomed Anal 2013; 73:35-43. [DOI: 10.1016/j.jpba.2012.04.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 04/02/2012] [Accepted: 04/07/2012] [Indexed: 11/20/2022]
|
6
|
Vargas LJ, Londoño M, Quintana JC, Rua C, Segura C, Lomonte B, Núñez V. An acidic phospholipase A₂ with antibacterial activity from Porthidium nasutum snake venom. Comp Biochem Physiol B Biochem Mol Biol 2012; 161:341-7. [PMID: 22251437 DOI: 10.1016/j.cbpb.2011.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/22/2011] [Accepted: 12/27/2011] [Indexed: 11/26/2022]
Abstract
Snake venoms are complex mixtures of proteins among which both basic and acidic phospholipases A(2) (PLA(2)s) can be found. Basic PLA(2)s are usually responsible for major toxic effects induced by snake venoms, while acidic PLA(2)s tend to have a lower toxicity. A novel PLA(2), here named PnPLA(2), was purified from the venom of Porthidium nasutum by means of RP-HPLC on a C18 column. PnPLA(2) is an acidic protein with a pI of 4.6, which migrates as a single band under both non-reducing and reducing conditions in SDS-PAGE. PnPLA(2) had a molecular mass of 15,802.6 Da, determined by ESI-MS. Three tryptic peptides of this protein were characterized by HPLC-nESI-MS/MS, and N-terminal sequencing by direct Edman degradation showing homology to other acidic PLA(2)s from viperid venoms. PnPLA(2) displayed indirect hemolytic activity in agarose erythrocyte-egg yolk gels and bactericidal activity against Staphylococcus aureus in a dose-dependent manner, with a MIC and MBC of 32 μg/mL. In addition, PnPLA(2) showed a potent inhibitory effect on platelet aggregation with doses up to 40 μg/mL. This acidic PLA(2), in contrast to basic enzymes isolated from other viperid snake venoms, was not cytotoxic to murine skeletal muscle myoblasts C(2)C(12). This is the first report on a bactericidal protein of Porthidium nasutum venom.
Collapse
Affiliation(s)
- Leidy Johana Vargas
- Programa Ofidismo/Escorpionismo, Universidad de Antioquia, Street 62 No. 52-59, A.A. 1226, Medellín, Colombia.
| | | | | | | | | | | | | |
Collapse
|
7
|
Teixeira SS, Silveira LB, da Silva FMN, Marchi-Salvador DP, Silva FP, Izidoro LFM, Fuly AL, Juliano MA, dos Santos CR, Murakami MT, Sampaio SV, da Silva SL, Soares AM. Molecular characterization of an acidic phospholipase A(2) from Bothrops pirajai snake venom: synthetic C-terminal peptide identifies its antiplatelet region. Arch Toxicol 2011; 85:1219-33. [PMID: 21331602 DOI: 10.1007/s00204-011-0665-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 01/31/2011] [Indexed: 11/27/2022]
Abstract
This paper describes a biochemical and pharmacological characterization of BpirPLA(2)-I, the first acidic Asp49-PLA(2) isolated from Bothrops pirajai. BpirPLA(2)-I caused hypotension in vivo, presented phospholipolytic activity upon artificial substrates and inhibitory effects on platelet aggregation in vitro. Moreover, a synthetic peptide of BpirPLA(2)-I, comprising residues of the C-terminal region, reproduced the antiplatelet activity of the intact protein. A cDNA fragment of 366 bp encompassing the mature form of BpirPLA(2)-I was cloned by reverse transcriptase-PCR of B. pirajai venom gland total RNA. A Bayesian phylogenetic analysis indicated that BpirPLA(2)-I forms a clade with other acid Asp49-PLA(2) enzymes from the Bothrops genus, which are characterized by the high catalytic activity associated with anticoagulant or hypotensive activity or both. Comparison of the electrostatic potential (EP) on the molecular surfaces calculated from a BpirPLA(2)-I homology model and from the crystallographic models of a group of close homologues revealed that the greatest number of charge inversions occurred on the face opposite to the active site entrance, particularly in the Ca(2+) ion binding loop. This observation suggests a possible relationship between the basic or acid character of PLA(2) enzymes and the functionality of the Ca(2+) ion binding loop.
Collapse
Affiliation(s)
- Sabrina S Teixeira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Vija H, Samel M, Siigur E, Aaspõllu A, Trummal K, Tõnismägi K, Subbi J, Siigur J. Purification, characterization, and cDNA cloning of acidic platelet aggregation inhibiting phospholipases A2 from the snake venom of Vipera lebetina (Levantine viper). Toxicon 2009; 54:429-39. [DOI: 10.1016/j.toxicon.2009.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 05/08/2009] [Accepted: 05/11/2009] [Indexed: 11/16/2022]
|
9
|
Santos-Filho NA, Silveira LB, Oliveira CZ, Bernardes CP, Menaldo DL, Fuly AL, Arantes EC, Sampaio SV, Mamede CC, Beletti ME, de Oliveira F, Soares AM. A new acidic myotoxic, anti-platelet and prostaglandin I2 inductor phospholipase A2 isolated from Bothrops moojeni snake venom. Toxicon 2008; 52:908-17. [DOI: 10.1016/j.toxicon.2008.08.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 08/07/2008] [Accepted: 08/08/2008] [Indexed: 10/21/2022]
|
10
|
Dutra AA, Sousa LO, Resende RR, Brandão RL, Kalapothakis E, Castro IM. Expression and characterization of LTx2, a neurotoxin from Lasiodora sp. effecting on calcium channels. Peptides 2008; 29:1505-13. [PMID: 18554751 DOI: 10.1016/j.peptides.2008.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 04/29/2008] [Accepted: 05/01/2008] [Indexed: 11/29/2022]
Abstract
Here, we described the expression and characterization of the recombinant toxin LTx2, which was previously isolated from the venomous cDNA library of a Brazilian spider, Lasiodora sp. (Mygalomorphae, Theraphosidae). The recombinant toxin found in the soluble and insoluble fractions was purified by reverse phase high-performance liquid chromatography (HPLC). Ca2+ imaging analysis revealed that the recombinant LTx2 acts on calcium channels of BC3H1 cells, blocking L-type calcium channels.
Collapse
Affiliation(s)
- A A Dutra
- Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisa em Ciências Biológicas, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG 35400.000, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Tamarozzi MB, Soares SG, Marcussi S, Giglio JR, Barbosa JE. Expression of recombinant human antibody fragments capable of inhibiting the phospholipase and myotoxic activities of Bothrops jararacussu venom. Biochim Biophys Acta Gen Subj 2006; 1760:1450-7. [PMID: 16828972 DOI: 10.1016/j.bbagen.2006.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 04/21/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
Phospholipases A(2) are components of Bothrops venoms responsible for disruption of cell membrane integrity via hydrolysis of its phospholipids. This study used a large nonimmune human scFv library named Griffin.1 (MRC, Cambridge, UK) for selection of recombinant antibodies against antigens present in Bothrops jararacussu venom and identification of specific antibodies able to inhibit phospholipase activity. Four clones were identified as capable of inhibiting this activity in vitro. These clones were able to reduce in vivo the myotoxic activity of BthTX-I and BthTX-II PLA(2), but had no effect on the in vitro anticoagulant activity of BthTX-II. This work shows the potential of using recombinant scFv libraries in the search for antibodies that neutralize relevant venom components.
Collapse
Affiliation(s)
- M B Tamarozzi
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Brazil
| | | | | | | | | |
Collapse
|
12
|
Magro AJ, Murakami MT, Marcussi S, Soares AM, Arni RK, Fontes MRM. Crystal structure of an acidic platelet aggregation inhibitor and hypotensive phospholipase A2 in the monomeric and dimeric states: insights into its oligomeric state. Biochem Biophys Res Commun 2004; 323:24-31. [PMID: 15351695 DOI: 10.1016/j.bbrc.2004.08.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Indexed: 11/18/2022]
Abstract
Phospholipases A2 belong to the superfamily of proteins which hydrolyzes the sn-2 acyl groups of membrane phospholipids to release arachidonic acid and lysophospholipids. An acidic phospholipase A2 isolated from Bothrops jararacussu snake venom presents a high catalytic, platelet aggregation inhibition and hypotensive activities. This protein was crystallized in two oligomeric states: monomeric and dimeric. The crystal structures were solved at 1.79 and 1.90 angstroms resolution, respectively, for the two states. It was identified a Na+ ion at the center of Ca2+-binding site of the monomeric form. A novel dimeric conformation with the active sites exposed to the solvent was observed. Conformational states of the molecule may be due to the physicochemical conditions used in the crystallization experiments. We suggest dimeric state is one found in vivo.
Collapse
Affiliation(s)
- Angelo J Magro
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP, Botucatu-SP, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Takeda AAS, dos Santos JI, Marcussi S, Silveira LB, Soares AM, Fontes MRM. Crystallization and preliminary X-ray diffraction analysis of an acidic phospholipase A(2) complexed with p-bromophenacyl bromide and alpha-tocopherol inhibitors at 1.9- and 1.45-A resolution. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1699:281-4. [PMID: 15158738 DOI: 10.1016/j.bbapap.2004.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 02/10/2004] [Accepted: 02/11/2004] [Indexed: 11/29/2022]
Abstract
An acidic phospholipase A(2) (PLA(2)) isolated from Bothrops jararacussu snake venom was crystallized with two inhibitors: alpha-tocopherol (vitamin E) and p-bromophenacyl bromide (BPB). The crystals diffracted at 1.45- and 1.85-A resolution, respectively, for the complexes with alpha-tocopherol and p-bromophenacyl bromide. The crystals are not isomorphous with those of the native protein, suggesting the inhibitors binding was successful and changes in the quaternary structure may have occurred.
Collapse
Affiliation(s)
- Agnes A S Takeda
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP, Dist. Rubiao Jr. s/n-C.P. 510, CEP 18618-000, Botucatu-São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|