1
|
Li D, Guo R, Chen F, Wang J, Wang F, Wan Y. Genetically Engineered Goats as Efficient Mammary Gland Bioreactors for Production of Recombinant Human Neutrophil Peptide 1 Using CRISPR/Cas9. BIOLOGY 2024; 13:367. [PMID: 38927247 PMCID: PMC11200946 DOI: 10.3390/biology13060367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Mammary gland bioreactors are promising methods for recombinant protein production. Human neutrophil peptide 1 (HNP1) exhibits antibacterial and immune-modulating properties. This study aims to establish a method to generate goats secreting HNP1 using the mammary gland as bioreactors. HNP1 transgenic goats were generated by using CRISPR/Cas9 technology to knock-in (KI) the HNP1 sequence into exon 7 of the goat β-casein (CSN2) gene under the control of the CSN2 promoter. One-cell stage embryos were cytoplasmically injected with a mixture of Cas9 mRNA, sgRNA, and a homologous plasmid including the T2A-HNP1 sequences, followed by transfer to recipient goats. A total of 22 live offspring goats were delivered, and 21 of these goats (95.45%) exhibited targeted edits at the CSN2 locus, and 2 female goats (9.09%) demonstrated successful HNP1 integration. Western blot and ELISA analyses confirmed the presence of HNP1 protein at high levels in the milk of these HNP1-positive goats, with mean concentrations of 22.10 µg/mL and 0.0092 µg/mL during the initial 60 days of lactation. Furthermore, milk from these transgenic goats exhibited notable antibacterial activity against Escherichia coli and Staphylococcus aureus, demonstrating the functionality of the expressed HNP1 protein. In conclusion, we established an efficient method for developing new transgenic goat lines as a mammary gland bioreactor, and the bioactive HNP1 protein secreted by the transgenic goat has the potential to combat microbial resistance.
Collapse
Affiliation(s)
- Dongxu Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (J.W.)
| | - Rihong Guo
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China; (R.G.); (F.C.)
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fang Chen
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China; (R.G.); (F.C.)
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jingang Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (J.W.)
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (J.W.)
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (J.W.)
| |
Collapse
|
2
|
Munson PV, Adamik J, Butterfield LH. Immunomodulatory impact of α-fetoprotein. Trends Immunol 2022; 43:438-448. [PMID: 35550875 DOI: 10.1016/j.it.2022.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 11/18/2022]
Abstract
α-Fetoprotein (AFP) is a fetal glycoprotein produced by most human hepatocellular carcinoma tumors. Research has focused on its immunosuppressive properties in pregnancy, autoimmunity, and cancer, and human AFP directly limits the viability and functionality of human natural killer (NK) cells, monocytes, and dendritic cells (DCs). AFP-altered DCs can promote the differentiation of naïve T cells into regulatory T cells. These properties may work to shield tumors from the immune system. Recent efforts to define the molecular characteristics of AFP identified key structural immunoregulatory domains and bioactive roles of AFP-bound ligands in immunomodulation. We propose that a key mechanism of AFP immunomodulation skews DC function through cellular metabolism. Delineating differences between fetal 'normal' AFP (nAFP) and tumor-derived AFP (tAFP) has uncovered a novel role for tAFP in altering metabolism via lipid-binding partners.
Collapse
Affiliation(s)
- Paul V Munson
- Parker Institute for Cancer Immunotherapy (PICI), San Francisco, CA, USA; Department of Microbiology and Immunology, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Juraj Adamik
- Parker Institute for Cancer Immunotherapy (PICI), San Francisco, CA, USA; Department of Microbiology and Immunology, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Lisa H Butterfield
- Parker Institute for Cancer Immunotherapy (PICI), San Francisco, CA, USA; Department of Microbiology and Immunology, University of California San Francisco (UCSF), San Francisco, CA, USA.
| |
Collapse
|
3
|
Use of Genome Editing Techniques to Produce Transgenic Farm Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1354:279-297. [PMID: 34807447 PMCID: PMC9810480 DOI: 10.1007/978-3-030-85686-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recombinant proteins are essential for the treatment and diagnosis of clinical human ailments. The availability and biological activity of recombinant proteins is heavily influenced by production platforms. Conventional production platforms such as yeast, bacteria, and mammalian cells have biological and economical challenges. Transgenic livestock species have been explored as an alternative production platform for recombinant proteins, predominantly through milk secretion; the strategy has been demonstrated to produce large quantities of biologically active proteins. The major limitation of utilizing livestock species as bioreactors has been efforts required to alter the genome of livestock. Advancements in the genome editing field have drastically improved the ability to genetically engineer livestock species. Specifically, genome editing tools such as the CRISPR/Cas9 system have lowered efforts required to generate genetically engineered livestock, thus minimizing restrictions on the type of genetic modification in livestock. In this review, we discuss characteristics of transgenic animal bioreactors and how the use of genome editing systems enhances design and availability of the animal models.
Collapse
|
4
|
Deykin AV, Shcheblykina OV, Povetka EE, Golubinskaya PA, Pokrovsky VM, Korokina LV, Vanchenko OA, Kuzubova EV, Trunov KS, Vasyutkin VV, Radchenko AI, Danilenko AP, Stepenko JV, Kochkarova IS, Belyaeva VS, Yakushev VI. Genetically modified animals for use in biopharmacology: from research to production. RESEARCH RESULTS IN PHARMACOLOGY 2021. [DOI: 10.3897/rrpharmacology.7.76685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: In this review, the analysis of technologies for obtaining biologically active proteins from various sources is carried out, and the comparative analysis of technologies for creating producers of biologically active proteins is presented. Special attention is paid to genetically modified animals as bioreactors for the pharmaceutical industry of a new type. The necessity of improving the technology of development transgenic rabbit producers and creating a platform solution for the production of biological products is substantiated.
The advantages of using TrB for the production of recombinant proteins: The main advantages of using TrB are the low cost of obtaining valuable complex therapeutic human proteins in readily accessible fluids, their greater safety relative to proteins isolated directly from human blood, and the greater safety of the activity of the native protein.
The advantages of the mammary gland as a system for the expression of recombinant proteins: The mammary gland is the organ of choice for the expression of valuable recombinant proteins because milk is easy to collect in large volumes.
Methods for obtaining transgenic animals: The modern understanding of the regulation of gene expression and the discovery of new tools for gene editing can increase the efficiency of creating bioreactors for animals and help to obtain high concentrations of the target protein.
The advantages of using rabbits as bioreactors producing recombinant proteins in milk: The rabbit is a relatively small animal with a short duration of gestation, puberty and optimal size, capable of producing up to 5 liters of milk per year per female, receiving up to 300 grams of the target protein.
Collapse
|
5
|
Kalds P, Zhou S, Cai B, Liu J, Wang Y, Petersen B, Sonstegard T, Wang X, Chen Y. Sheep and Goat Genome Engineering: From Random Transgenesis to the CRISPR Era. Front Genet 2019; 10:750. [PMID: 31552084 PMCID: PMC6735269 DOI: 10.3389/fgene.2019.00750] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Sheep and goats are valuable livestock species that have been raised for their production of meat, milk, fiber, and other by-products. Due to their suitable size, short gestation period, and abundant secretion of milk, sheep and goats have become important model animals in agricultural, pharmaceutical, and biomedical research. Genome engineering has been widely applied to sheep and goat research. Pronuclear injection and somatic cell nuclear transfer represent the two primary procedures for the generation of genetically modified sheep and goats. Further assisted tools have emerged to enhance the efficiency of genetic modification and to simplify the generation of genetically modified founders. These tools include sperm-mediated gene transfer, viral vectors, RNA interference, recombinases, transposons, and endonucleases. Of these tools, the four classes of site-specific endonucleases (meganucleases, ZFNs, TALENs, and CRISPRs) have attracted wide attention due to their DNA double-strand break-inducing role, which enable desired DNA modifications based on the stimulation of native cellular DNA repair mechanisms. Currently, CRISPR systems dominate the field of genome editing. Gene-edited sheep and goats, generated using these tools, provide valuable models for investigations on gene functions, improving animal breeding, producing pharmaceuticals in milk, improving animal disease resistance, recapitulating human diseases, and providing hosts for the growth of human organs. In addition, more promising derivative tools of CRISPR systems have emerged such as base editors which enable the induction of single-base alterations without any requirements for homology-directed repair or DNA donor. These precise editors are helpful for revealing desirable phenotypes and correcting genetic diseases controlled by single bases. This review highlights the advances of genome engineering in sheep and goats over the past four decades with particular emphasis on the application of CRISPR/Cas9 systems.
Collapse
Affiliation(s)
- Peter Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Shiwei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bei Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ying Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | | | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
He Z, Lu R, Zhang T, Jiang L, Zhou M, Wu D, Cheng Y. A novel recombinant human plasminogen activator: Efficient expression and hereditary stability in transgenic goats and in vitro thrombolytic bioactivity in the milk of transgenic goats. PLoS One 2018; 13:e0201788. [PMID: 30118482 PMCID: PMC6097695 DOI: 10.1371/journal.pone.0201788] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Thromboses is a rapidly growing medical problem worldwide. Low-cost, high-scale production of thrombotic drugs is needed to meet the demand. The production of biomolecules in transgenic animals might help address this issue. To our knowledge, the expression of recombinant human plasminogen activator (rhPA) in goat mammary glands has never been reported before. METHODS We constructed a mammary gland-specific expression vector, BLC14/rhPA, which encodes only the essential K2 fibrin-binding and P domains of wild-type tPA (deletion mutant of tPA lacking the F, E, and K1 domains), along with the goat β-lactoglobulin gene signal peptide-coding sequence. The mammary gland-specific expression vector BLC14/rhPA was transfected into goat fetal fibroblast cells by electroporation. After selection for 3 weeks by G418, stably transfected cell colonies were obtained. PCR analysis results indicated that 24 of the resistant clones were transgenic cell lines; of these, 8 lines were selected as the donor cells. The positive cells were starved for 72 h with DMEM/F12 medium containing 0.5% FBS and were then used as do. Finally, 256 reconstructed oocytes were transferred into 26 recipients, and 7 of them became pregnant (pregnancy rate, 26.9%). Two kids were obtained (BP21 and BP22). PCR analysis confirmed that both were transgenic goats. To analyze the heredity of the rhPA expressed in BP21 F0 and F1 transgenic goats, the F0 transgenic goat BP21 was mated with a normal male goat to generate an F1 transgenic goat. Enucleated metaphase II (MII) oocytes and positive donor cells were used to reconstruct embryos, which were transplanted into the oviducts of the recipients. RESULTS Western blot results showed a specific 39 kDa band. The rhPA expression level in transgenic goat whey was about 78.32 μg/mL by ELISA. Results of ELISA and the in vitro thrombolysis test (FAPA) showed that specific activity of the rhPA in the milk of F0 and F1 transgenic goats was 13.3 times higher than that of the reteplase reference material. CONCLUSION Thus, we demonstrated that BLC14/rhPA was reasonably effective for expression in the mammary glands of transgenic goats, and was stably inherited by the offspring. This study provides the basis for the large-scale production of biological pharmaceuticals in transgenic animals. The expression of biopharmaceuticals by transgenic animals can be used for pharmacological research and bioactive analysis, and transgenic goats were demonstrated to be promising animals for the large-scale production of thrombolytic biopharmaceuticals.
Collapse
Affiliation(s)
- Zhengyi He
- College of Veterinary Medicine/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rui Lu
- College of Veterinary Medicine/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ting Zhang
- College of Veterinary Medicine/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lei Jiang
- College of Veterinary Medicine/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Minya Zhou
- College of Veterinary Medicine/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Daijin Wu
- College of Veterinary Medicine/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yong Cheng
- College of Veterinary Medicine/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- * E-mail:
| |
Collapse
|
7
|
He Z, Jiang L, Zhang T, Zhou M, Wu D, Yuan T, Yuan Y, Cheng Y. Efficient increase of the novel recombinant human plasminogen activator expression level and stability through the use of homozygote transgenic rabbits. Int J Mol Med 2018; 42:2269-2275. [PMID: 30015826 DOI: 10.3892/ijmm.2018.3754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 06/19/2018] [Indexed: 11/05/2022] Open
Abstract
Expression efficacy of recombinant protein in current expression systems is generally low. Therefore, the expression levels of recombinant proteins in the breast milk of transgenic animals are typically low. In view of this, the present study aimed to construct homozygous transgenic rabbits with a high expression level of recombinant human plasminogen activator (rhPA) during the entire lactation period. Homozygous transgenic rabbits were obtained using an effective rhPA mammary‑specific expression vector PCL25/rhPA. The expression level and thrombolytic ability of rhPA in the milk of both homozygous and hemizygous rabbits were detected by enzyme‑linked immunosorbent and fibrin agarose plate assays. It was observed that the expression of rhPA was constant during the entire lactation period in homozygous rabbits, while the expression of rhPA declined slowly in hemizygote rhPA transgenic rabbits during the lactation period. In addition, the expression of rhPA in homozygous transgenic rabbit was ~950 µg/ml, which was markedly higher in comparison with that in hemizygote rabbits. Furthermore, increased gene copy number was observed to increase the expression level of rhPA at the same integration vector.
Collapse
Affiliation(s)
- Zhengyi He
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Lei Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Ting Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Minya Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Daijin Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Tingting Yuan
- Medical College of Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yuguo Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yong Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
8
|
Expression and bioactivity of human α-fetoprotein in a Bac-to-Bac system. Biosci Rep 2017; 37:BSR20160161. [PMID: 27913752 PMCID: PMC5240590 DOI: 10.1042/bsr20160161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 12/17/2022] Open
Abstract
α-fetoprotein (AFP) is an early serum growth factor in foetal embryonic development and hepatic oncogenesis. A growing number of investigations of AFP as a tumour-specific biomarker have concluded that AFP is an important target for cancer treatment. AFP also plays an immunomodulatory role in the treatment of several autoimmune diseases, such as rheumatoid arthritis, multiple sclerosis, myasthenia gravis and thyroiditis. In an effort to support biochemical screening and drug design and discovery, we attempted to express and purify human AFP in a Bac-to-Bac system. Two key factors affecting the expression of recombinant human AFP (R-AFP), namely the infectious baculovirus inoculum volume and the culturing time post-infection, were optimized to maximize the yield. We achieved a high yield of approximately 1.5 mg/l of harvested medium with a 72–96 h incubation period after infection and an inoculum volume ratio of 1:100. We also assessed the role of R-AFP in the proliferation of the human liver cancer cell line Bel 7402, and the results indicated that R-AFP promoted the growth of hepatoma cells. We concluded that this method can produce high yields of R-AFP, which can be used for studies related to AFP.
Collapse
|
9
|
Morozkina EV, Vavilova EA, Zatcepin SS, Klyachko EV, Yagudin TA, Chulkin AM, Dudich IV, Semenkova LN, Churilova IV, Benevolensky SV. Engineering of a System for the Production of Mutant Human Alpha-Fetoprotein in the Methylotrophic Yeast Pichia pastoris. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816020125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Pardee AD, Shi J, Butterfield LH. Tumor-derived α-fetoprotein impairs the differentiation and T cell stimulatory activity of human dendritic cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:5723-32. [PMID: 25355916 DOI: 10.4049/jimmunol.1400725] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Several tumor-derived factors have been implicated in dendritic cell (DC) dysfunction in cancer patients. α-fetoprotein (AFP) is an oncofetal Ag that is highly expressed in abnormalities of prenatal development and several epithelial cancers, including hepatocellular carcinoma (HCC). In HCC patients exhibiting high levels of serum AFP, we observed a lower ratio of myeloid/plasmacytoid circulating DCs compared with patients with low serum AFP levels and healthy donors. To test the effect of AFP on DC differentiation in vitro, peripheral blood monocytes from healthy donors were cultured in the presence of cord blood-derived normal AFP (nAFP) or HCC tumor-derived AFP (tAFP), and DC phenotype and function were assessed. Although the nAFP and tAFP isoforms only differ at one carbohydrate group, low (physiological) levels of tAFP, but not nAFP, significantly inhibited DC differentiation. tAFP-conditioned DCs expressed diminished levels of DC maturation markers, retained a monocyte-like morphology, exhibited limited production of inflammatory mediators, and failed to induce robust T cell proliferative responses. Mechanistic studies revealed that the suppressive activity of tAFP is dependent on the presence of low molecular mass (LMM) species that copurify with tAFP and function equivalently to the LMM fractions of both tumor and nontumor cell lysates. These data reveal the unique ability of tAFP to serve as a chaperone protein for LMM molecules, both endogenous and ubiquitous in nature, which function cooperatively to impair DC differentiation and function. Therefore, novel therapeutic approaches that antagonize the regulatory properties of tAFP will be critical to enhance immunity and improve clinical outcomes.
Collapse
Affiliation(s)
- Angela D Pardee
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Jian Shi
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Lisa H Butterfield
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
| |
Collapse
|
11
|
Hrynyk M, Neufeld RJ. Insulin and wound healing. Burns 2014; 40:1433-46. [PMID: 24810536 DOI: 10.1016/j.burns.2014.03.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 02/27/2014] [Accepted: 03/28/2014] [Indexed: 12/11/2022]
Abstract
Skin is a dynamic and complex organ that relies on the interaction of different cell types, biomacromolecules and signaling molecules. Injury triggers a cascade of events designed to quickly restore skin integrity. Depending on the size and severity of the wound, extensive physiological and metabolic changes can occur, resulting in impaired wound healing and increased morbidity resulting in higher rates of death. While wound dressings provide a temporary barrier, they are inherently incapable of significantly restoring metabolic upsets, post-burn insulin resistance, and impaired wound healing in patients with extensive burns. Exogenous insulin application has therefore been investigated as a potential therapeutic intervention for nearly a century to improve wound recovery. This review will highlight the important achievements that demonstrate insulin's ability to stimulate cellular migration and burn wound recovery, as well as providing a perspective on future therapeutic applications and research directions.
Collapse
Affiliation(s)
- Michael Hrynyk
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Ronald J Neufeld
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| |
Collapse
|
12
|
Khodarovich YM, Goldman IL, Sadchikova ER, Georgiev PG. Expression of eukaryotic recombinant proteins and deriving them from the milk of transgenic animals. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813090020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Wang Y, Zhao S, Bai L, Fan J, Liu E. Expression systems and species used for transgenic animal bioreactors. BIOMED RESEARCH INTERNATIONAL 2013; 2013:580463. [PMID: 23586046 PMCID: PMC3613084 DOI: 10.1155/2013/580463] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/15/2013] [Accepted: 02/17/2013] [Indexed: 01/05/2023]
Abstract
Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals) and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm cocoon), the mammary glands of transgenic animals have enormous potential. Compared with other mammalian species (pig, goat, sheep, and cow) that are currently being studied as bioreactors, rabbits offer many advantages: high fertility, easy generation of transgenic founders and offspring, insensitivity to prion diseases, relatively high milk production, and no transmission of severe diseases to humans. Noticeably, for a small- or medium-sized facility, the rabbit system is ideal to produce up to 50 kg of protein per year, considering both economical and hygienic aspects; rabbits are attractive candidates for the mammary-gland-specific expression of recombinant proteins. We also reviewed recombinant proteins that have been produced by targeted expression in the mammary glands of rabbits and discussed the limitations of transgenic animal bioreactors.
Collapse
Affiliation(s)
- Yanli Wang
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
- Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
- Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Liang Bai
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
- Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
- Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| |
Collapse
|
14
|
Zubkova ES, Semenkova LN, Dudich IV, Dudich EI, Khromykh LM, Makarevich PI, Parfenova EV, Men'shikov MI. [Recombinant human alpha-fetoprotein as a regulator of adipose tissue stromal cell activity]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013; 38:524-34. [PMID: 23342486 DOI: 10.1134/s1068162012050147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recombinant human alpha-fetoprotein (rhAFP) expressed in yeast system as a glycoprotein, was isolated and purified to 98% by multistep method. The testing of the rhAFP in the culture of adipose tissue stromal cells (hASC) has revealed its ability to enhance hASC proliferation and migration as well as vascular endothelial growth factor production, with no significant influence on cell invasion and matrix metalloproteinase-2 and -9 secretion. It has been also estimated that rhAFP is internalized in hASC via clathrin-dependent mechanism. A study in the murine experimental model of hindlimb ischemia has shown the capability of rhAFP to enhance blood flow recovery. These data suggest that rhAFP is a promising agent for enhancement of the hASC regenerative ability.
Collapse
|
15
|
Dudich E, Dudich I, Semenkova L, Benevolensky S, Morozkina E, Marchenko A, Zatcepin S, Dudich D, Soboleva G, Khromikh L, Roslovtceva O, Tatulov E. Engineering of the Saccharomyces cerevisiae yeast strain with multiple chromosome-integrated genes of human alpha-fetoprotein and its high-yield secretory production, purification, structural and functional characterization. Protein Expr Purif 2012; 84:94-107. [PMID: 22561245 DOI: 10.1016/j.pep.2012.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 04/11/2012] [Accepted: 04/14/2012] [Indexed: 11/20/2022]
Abstract
Alpha-fetoprotein (AFP) is a biological drug candidate of high medicinal potential in the treatment of autoimmune diseases, cancer, and regenerative medicine. Large-scale production of recombinant human alpha-fetoprotein (rhAFP) is desirable for structural and functional studies and applied research. In this study we cloned and expressed in the secreted form wild-type glycosylated human rhAFP and non-glycosylated mutant rhAFP(0) (N233S) in the yeast strain Saccharomyces cerevisiae with multiple chromosome-integrated synthetic human AFP genes. RhAFP and rhAFP(0) were successfully produced and purified from the culture liquids active naturally folded proteins. Elimination of the glycosylation by mutation reduced rhAFP(0) secretion about threefold as compared to the wild-type protein showing critical role of the N-linked glycan for heterologous protein folding and secretion. Structural similarity of rhAFP and rhAFP(0) with natural embryonic eAFP was confirmed by circular dichroism technique. Functional tests demonstrated similar type of tumor suppressive and immunosuppressive activity for both recombinant species rhAFP and rhAFP(0) as compared to natural eAFP. It was documented that both types of biological activities attributed to rhAFP and rhAFP(0) are due to the fast induction of apoptosis in tumor cells and mitogen-activated lymphocytes. Despite the fact that rhAFP and rhAFP(0) demonstrated slightly less effective tumor suppressive activity as compared to eAFP but rhAFP(0) had produced statistically notable increase in its ability to induce inhibition of in vitro lymphocyte proliferation as compared to the glycosylated rhAFP and eAFP. We conclude that N-linked glycosylation of rhAFP is required for efficient folding and secretion. However the presence of N-linked sugar moiety was shown to be unimportant for tumor suppressive activity but was critically important for its immunoregulative activity which demonstrates that different molecular mechanisms are involved in these two types of biological functional activities attributed to AFP.
Collapse
Affiliation(s)
- Elena Dudich
- Institute of Immunological Engineering, Lyubuchany, Moscow Region, Chekhov District 142380, Russia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Boulanger L, Passet B, Pailhoux E, Vilotte JL. Transgenesis applied to goat: current applications and ongoing research. Transgenic Res 2012; 21:1183-90. [DOI: 10.1007/s11248-012-9618-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
|
17
|
Sharapova OA, Yurkova MS, Laurinavichyute DK, Andronova SM, Fedorov AN, Severin SE, Severin ES. Efficient refolding of a hydrophobic protein with multiple S-S bonds by on-resin immobilized metal affinity chromatography. J Chromatogr A 2011; 1218:5115-9. [PMID: 21676401 DOI: 10.1016/j.chroma.2011.05.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/17/2011] [Accepted: 05/20/2011] [Indexed: 11/27/2022]
Abstract
The efficient refolding of recombinant proteins produced in the form of inclusion bodies (IBs) in Escherichia coli still is a complicated experimental problem especially for large hydrophobic highly disulfide-bonded proteins. The aim of this work was to develop highly efficient and simple refolding procedure for such a protein. The recombinant C-terminal fragment of human alpha-fetoprotein (rAFP-Cterm), which has molecular weight of 26 kDa and possesses 6 S-S bonds, was expressed in the form of IBs in E. coli. The C-terminal 7× His tag was introduced to facilitate protein purification and refolding. The refolding procedure of the immobilized protein by immobilized metal chelating chromatography (IMAC) was developed. Such hydrophobic highly disulfide-bonded proteins tend to irreversibly bind to traditionally used agarose-based matrices upon attempted refolding of the immobilized protein. Indeed, the yield of rAFP-Cterm upon its refolding by IMAC on agarose-based matrix was negligible with bulk of the protein irreversibly stacked to the resin. The key has occurred to be using IMAC based on silica matrix. This increased on-resin refolding yield of the target protein from almost 0 to 60% with purity 98%. Compared to dilution refolding of the same protein, the productivity of the developed procedure was two orders higher. There was no need for further purification or concentration of the renatured protein. The usage of silica-based matrix for the refolding of immobilized proteins by IMAC can improve and facilitate the experimental work for difficult-to-refold proteins.
Collapse
Affiliation(s)
- Olga A Sharapova
- Moscow Research Institute of Medical Ecology, Simpheropolski blvd.8, Moscow, 117638, Russia
| | | | | | | | | | | | | |
Collapse
|
18
|
Sharapova OA, Pozdniakova NV, Laurinavichiute DK, Iurkova MS, Posypanova GA, Andronova SM, Fedorov AN, Severin SE, Severin ES. [Purification and characterization of recombinant human alpha-fetoprotein fragment, corresponding to the C-terminal structural domain]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 36:760-8. [PMID: 21317941 DOI: 10.1134/s106816201006004x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human alpha-fetoprotein (hAFP) is the main human oncofetal protein. Receptor of hAFP is expressed on the surface of different types of cancer cells, but not produced by normal cells of the adult organism. The hAFP interacts with the receptor via its third domain. The conjugates of native hAFP with a variety of natural cytostatic agents inhibit growth of cancer cells in vivo and in vitro. The C-terminal hAFP fragment comprising amino acids from 404 to 595 of the native hAFP was expressed in E. coli BL21 (DE3) strain. The level of the protein expression was no less than 150 mg/l. Highly efficient purification and refolding procedures were developed. The final protein yield was no less than 50% with purity of about 95%. Refolded rAFP3D bound specifically with cancer cells carrying hAFP receptor and was accumulated by them. This rAFP3D can be used as a carrier for the targeted drug delivery to cancer cells.
Collapse
|
19
|
Sharapova OA, Pozdnykova NV, Laurinavichyute DK, Yurkova MS, Posypanova GA, Fedorov AN, Severin SE, Severin ES. High-efficient expression, refolding and purification of functional recombinant C-terminal fragment of human alpha-fetoprotein. Protein Expr Purif 2010; 73:31-5. [DOI: 10.1016/j.pep.2010.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 03/24/2010] [Accepted: 03/29/2010] [Indexed: 11/24/2022]
|
20
|
Chen Y, Leong SSJ. High productivity refolding of an inclusion body protein using pulsed-fed size exclusion chromatography. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Hrynyk M, Martins-Green M, Barron AE, Neufeld RJ. Sustained prolonged topical delivery of bioactive human insulin for potential treatment of cutaneous wounds. Int J Pharm 2010; 398:146-54. [PMID: 20691251 DOI: 10.1016/j.ijpharm.2010.07.052] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/19/2010] [Accepted: 07/26/2010] [Indexed: 11/16/2022]
Abstract
Skin damaged by heat, radiation, or chemical exposure is difficult to treat and slow to heal. Indeed full restoration of the tissue is difficult to obtain. Sub-dermal insulin injection was recently shown to stimulate wound healing of the skin by accelerating wound closure, stimulating angiogenesis and inducing a regenerative process of healing. We have developed a topical delivery vehicle that is capable of releasing therapeutic levels of bioactive insulin for several weeks with the potential to stimulate and sustain healing. By encapsulating the crystalline form of insulin within poly(d,l-lactide-co-glycolide) microspheres, we succeeded in stabilizing and then releasing bioactive insulin for up to 25 days. To measure bioactivity we used Rat L6 myofibroblasts, stimulated them with this slow release insulin and determined activation of the receptors on the cell surface by quantifying AKT phosphorylation. There was only a minor and gradual decrease in AKT phosphorylation over time. To determine whether the slow release insulin could stimulate keratinocyte migration, wounding was simulated by scratching confluent cultures of human keratinocytes (HaCaT). Coverage of the scratch "wounds" was significantly faster in the presence of insulin released from microspheres than in the insulin-free control. Extended and sustained topical delivery of active insulin from a stable protein crystal-based reservoir shows promise in promoting tissue healing.
Collapse
Affiliation(s)
- Michael Hrynyk
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | | | | | | |
Collapse
|
22
|
He Z, Zhao Y, Mei G, Li N, Chen Y. Could protein tertiary structure influence mammary transgene expression more than tissue specific codon usage? Transgenic Res 2010; 19:519-33. [PMID: 20563642 PMCID: PMC2902731 DOI: 10.1007/s11248-010-9411-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 05/19/2010] [Indexed: 12/03/2022]
Abstract
Animal mammary glands have been successfully employed to produce therapeutic recombinant human proteins. However, considerable variation in animal mammary transgene expression efficiency has been reported. We now consider whether aspects of codon usage and/or protein tertiary structure underlie this variation in mammary transgene expression.
Collapse
Affiliation(s)
- Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006, Guangzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
23
|
Adsorptive refolding of a highly disulfide-bonded inclusion body protein using anion-exchange chromatography. J Chromatogr A 2009; 1216:4877-86. [PMID: 19419725 DOI: 10.1016/j.chroma.2009.04.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/09/2009] [Accepted: 04/14/2009] [Indexed: 11/20/2022]
Abstract
alpha-Fetoprotein (AFP) is a prospective biopharmaceutical candidate currently undergoing advanced-stage clinical trials for autoimmune indications. The high AFP expression yields in the form of inclusion bodies in Escherichia coli renders the inclusion body route potentially advantageous for process scale commercial manufacture, if high-throughput refolding can be achieved. This study reports the successful development of an 'anion-exchange chromatography'-based refolding process for recombinant human AFP (rhAFP), which carries the challenges of contaminant spectrum and molecule complexity. rhAFP was readily refolded on-column at rhAFP concentrations unachievable with dilution refolding due to viscosity and solubility constraints. DEAE-FF functioned as a refolding enhancer to achieve rhAFP refolding yield of 28% and product purity of 95% in 3h, at 1mg/ml protein refolding concentration. Optimization of both refolding and chromatography column operation parameters (i.e. resin chemistry, column geometry, redox potential and feed conditioning) significantly improved rhAFP refolding efficiency. Compared to dilution refolding, on-column rhAFP refolding productivity was 9-fold higher, while that of off-column refolding was more than an order of magnitude higher. Successful demonstration that a simple anion-exchange column can, in a single step, readily refold and purify semi-crude rhAFP comprising 16 disulfide bonds, will certainly extend the application of column refolding to a myriad of complex industrial inclusion body proteins.
Collapse
|
24
|
Irony-Tur-Sinai M, Grigoriadis N, Tsiantoulas D, Touloumi O, Abramsky O, Brenner T. Immunomodulation of EAE by alpha-fetoprotein involves elevation of immune cell apoptosis markers and the transcription factor FoxP3. J Neurol Sci 2009; 279:80-7. [PMID: 19171355 DOI: 10.1016/j.jns.2008.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 11/16/2008] [Accepted: 12/09/2008] [Indexed: 11/16/2022]
Abstract
Alpha-fetoprotein (AFP) is an immunomodulatory glycoprotein associated with the normal growth of the mammalian fetus. Ws have shown that treatment with recombinant human AFP (rhAFP) reduced lymphocyte reactivity and the extent of neuroinflammation in mice with experimental autoimmune encephalomyelitis (EAE). In the present study we found involvement of AFP in immune cell apoptosis, attesting to its possible mechanism of action. AFP increased the expression of the Bax, Bid, Bad and ApaF genes in peripheral lymphocytes, together with an enhanced expression of Caspase-3, Fas, FasL and TRAIL among infiltrating immune cells. The induction of apoptosis markers was accompanied with an increased expression of Foxp3 in lymph node cells, as well as accumulation of CD4+Foxp3+ regulatory T cells in the CNS. Overall, these immunological alterations gave rise to a milder disease and accelerated remission rate. Our results suggest a new role for AFP in controlling the autoimmune inflammation associated with EAE.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Apoptosis/drug effects
- Apoptosis/physiology
- Brain/pathology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- Forkhead Transcription Factors/metabolism
- Humans
- Lymph Nodes/cytology
- Lymph Nodes/drug effects
- Lymphocytes/drug effects
- Lymphocytes/physiology
- Mice
- Mice, Inbred C57BL
- Neuroimmunomodulation/drug effects
- Recombinant Proteins/therapeutic use
- Remission Induction
- Spinal Cord/drug effects
- Spinal Cord/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/physiology
- alpha-Fetoproteins/biosynthesis
- alpha-Fetoproteins/therapeutic use
Collapse
Affiliation(s)
- Michal Irony-Tur-Sinai
- Laboratory of Neuroimmunology, Department of Neurology, the Agnes-Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
25
|
Bösze Z, Baranyi M, Whitelaw CBA. Producing recombinant human milk proteins in the milk of livestock species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 606:357-93. [PMID: 18183938 DOI: 10.1007/978-0-387-74087-4_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Recombinant human proteins produced by the mammary glands of genetically modified transgenic livestock mammals represent a special aspect of milk bioactive components. For therapeutic applications, the often complex posttranslational modifications of human proteins should be recapitulated in the recombinant products. Compared to alternative production methods, mammary gland production is a viable option, underlined by a number of transgenic livestock animal models producing abundant biologically active foreign proteins in their milk. Recombinant proteins isolated from milk have reached different phases of clinical trials, with the first marketing approval for human therapeutic applications from the EMEA achieved in 2006.
Collapse
|
26
|
Baldassarre H, Hockley DK, Doré M, Brochu E, Hakier B, Zhao X, Bordignon V. Lactation performance of transgenic goats expressing recombinant human butyryl-cholinesterase in the milk. Transgenic Res 2007; 17:73-84. [PMID: 17851771 DOI: 10.1007/s11248-007-9137-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 08/16/2007] [Indexed: 11/25/2022]
Abstract
The production of recombinant proteins in the milk of transgenic animals has attracted significant interest in the last decade, as a valuable alternative for the production of recombinant proteins that cannot be or are inefficiently produced using conventional systems based on microorganisms or animal cells. Several recombinant proteins of pharmaceutical and biomedical interest have been successfully expressed in high quantities (g/l) in the milk of transgenic animals. However, this productivity may be associated with a compromised mammary physiology resulting, among other things, from the extraordinary demand placed on the mammary secretory cells. In this study we evaluated the lactation performance of a herd of 50 transgenic goats expressing recombinant human butyryl-cholinesterase (rBChE) in the milk. Our findings indicate that high expression levels of rBChE (range 1-5 g/l) are produced in these animals at the expense of an impaired lactation performance. The key features characterizing these transgenic performances were the decreased milk production, the reduced milk fat content which was associated with an apparent disruption in the lipid secretory mechanism at the mammary epithelium level, and a highly increased presence of leukocytes in milk which is not associated with mammary infection. Despite of having a compromised lactation performance, the amount of rBChE produced per transgenic goat represents several orders of magnitude more than the amount of rBChE present in the blood of hundreds of human donors, the only other available source of rBChE for pharmaceutical and biodefense applications. As a result, this development constitutes another successful example in the application of transgenic animal technology.
Collapse
|
27
|
Pollard LC, Murray J, Moody M, Stewart EJ, Choy EHS. A randomised, double-blind, placebo-controlled trial of a recombinant version of human alpha-fetoprotein (MM-093) in patients with active rheumatoid arthritis. Ann Rheum Dis 2007; 66:687-9. [PMID: 17114190 PMCID: PMC1954634 DOI: 10.1136/ard.2006.059436] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2006] [Indexed: 12/21/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) tends to remit during pregnancy, with more patients achieving remission in the third trimester, coinciding with an increase in levels of alpha-fetoprotein (AFP). In vitro and animal studies have shown that AFP has immunomodulatory properties. MM-093 is a non-glycosylated, recombinant version of human AFP. OBJECTIVE To assess the safety, tolerability and clinical effects of MM-093 during a 12-week, randomised, double-blind, placebo-controlled study. METHODS 12 patients with RA, who had active disease and were on stable doses of methotrexate, received weekly subcutaneous injections of placebo or 21 mg of MM-093. Assessments were carried out at baseline and weekly thereafter. RESULTS Baseline characteristics were similar in both groups. There was one dropout in the placebo group, due to flare of disease. Treatment with MM-093 was well tolerated. No serious adverse event was observed. By day 85, MM-093 produced a significant mean improvement from baseline in Disease Activity Score 28 (DAS28; 0.913 vs 0.008, p = 0.033) and patient's global assessment (28.9% vs -36.3%, p = 0.02) compared with placebo. CONCLUSION This is the first randomised, controlled trial of MM-093, a recombinant version of human AFP, in patients with RA. MM-093 was well tolerated. Evidence of efficacy was observed, suggesting that MM-093 may have therapeutic potential in RA.
Collapse
Affiliation(s)
- L C Pollard
- Sir Alfred Baring Garrod Clinical Trials Unit, Academic Department of Rheumatology, King's College London, London SE5 9RJ, UK
| | | | | | | | | |
Collapse
|
28
|
Shen W, Lan G, Yang X, Li L, Min L, Yang Z, Tian L, Wu X, Sun Y, Chen H, Tan J, Deng J, Pan Q. Targeting the exogenoushtPAm gene on goat somatic cellbeta-casein locus for transgenic goat production. Mol Reprod Dev 2007; 74:428-34. [PMID: 16998796 DOI: 10.1002/mrd.20595] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Combining gene targeting of animal somatic cells with nuclear transfer technique has provided a powerful method to produce transgenic animal mammary gland bioreactor. The objective of this study is to make an efficient and reproducible gene targeting in goat fetal fibroblasts by inserting the exogenous htPAm cDNA into the beta-casein locus with liposomes or electroporation so that htPAm protein might be produced in gene-targeted goat mammary gland. By gene-targeting technique, the exogenous htPAm gene was inserted to milk goat beta-casein gene sequences. Fetal fibroblasts were isolated from Day 35 fetuses of Guanzhong milk goats, and transfected with linear gene-targeting vector pGBC4htPAm using Lipefectamin-2000 and electoporation, respectively. Forty-eight gene-targeted cell colonies with homologous recombination were obtained, and three cell colonies were verified by DNA sequence analysis within the homologous recombination region. Using gene-targeted cell lines as donor cells for nuclear transfer, a total of 600 reconstructed embryos had been obtained, and 146 developed cloned embryos were transferred to 16 recipient goats, and finally three goats showed pregnancy at Day 90.
Collapse
Affiliation(s)
- Wei Shen
- Department of Animal Sciences, Institute of Animal Reproduction, Development and Genetic Engineering, Laiyang Agricultural University, Qingdao, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Leong SSJ, Middelberg APJ. A simplified bioprocess for human alpha-fetoprotein production from inclusion bodies. Biotechnol Bioeng 2007; 97:99-117. [PMID: 17115449 DOI: 10.1002/bit.21271] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A simple and effective Escherichia coli (E. coli) bioprocess is demonstrated for the preparation of recombinant human alpha-fetoprotein (rhAFP), a pharmaceutically promising protein that has important immunomodulatory functions. The new rhAFP process employs only unit operations that are easy to scale and validate, and reduces the complexity embedded in existing inclusion body processing methods. A key requirement in the establishment of this process was the attainment of high purity rhAFP prior to protein refolding because (i) rhAFP binds easily to hydrophobic contaminants once refolded, and (ii) rhAFP aggregates during renaturation, in a contaminant- dependent way. In this work, direct protein extraction from cell suspension was coupled with a DNA precipitation-centrifugation step prior to purification using two simple chromatographic steps. Refolding was conducted using a single-step, redox-optimized dilution refolding protocol, with refolding success determined by reversed phase HPLC analysis, ELISA, and circular dichroism spectroscopy. Quantitation of DNA and protein contaminant loads after each unit operation showed that contaminant levels were reduced to levels comparable to traditional flowsheets. Protein microchemical modification due to carbamylation in this urea-based process was identified and minimized, yielding a final refolded and purified product that was significantly purified from carbamylated variants. Importantly, this work conclusively demonstrates, for the first time, that a chemical extraction process can substitute the more complex traditional inclusion body processing flowsheet, without compromising product purity and yield. This highly intensified and simplified process is expected to be of general utility for the preparation of other therapeutic candidates expressed as inclusion bodies.
Collapse
Affiliation(s)
- Susanna S J Leong
- Centre for Biomolecular Engineering, Division of Chemical Engineering, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | |
Collapse
|
30
|
Abstract
The effect of glycosylation on AFP foldability was investigated by parallel quantitative and qualitative analyses of the refolding of glycosylated and nonglycosylated AFP variants. Both variants were successfully refolded by dialysis from the denatured-reduced state, attaining comparable "refolded peak" profiles and refolding yields as determined by reversed-phase HPLC analysis. Both refolded variants also showed comparable spectroscopic fingerprints to each other and to their native counterparts, as determined by circular dichroism spectroscopy. Inclusion body-derived AFP was also readily refolded via dilution under the same redox conditions as dialysis refolding, showing comparable circular dichroism fingerprints as native nonglycosylated AFP. Quantitative analyses of inclusion body-derived AFP showed sensitivity of AFP aggregation to proteinaceous and nonproteinaceous inclusion body contaminants, where refolding yields increased with increasing AFP purity. All of the refolded AFP variants showed positive responses in ELISA that corresponded with the attainment of a bioactive conformation. Contrary to previous reports that the denaturation of cord serum AFP is an irreversible process, these results clearly show the reversibility of AFP denaturation when refolded under a redox-controlled environment, which promotes correct oxidative disulfide shuffling. The successful refolding of inclusion body-derived AFP suggests that fatty acid binding may not be required for the attainment of a rigid AFP tertiary structure, contrary to earlier studies. The overall results from this work demonstrate that foldability of the AFP molecule from its denatured-reduced state is independent of its starting source, the presence or absence of glycosylation and fatty acids, and the refolding method used (dialysis or dilution).
Collapse
Affiliation(s)
- Susanna S J Leong
- Centre for Biomolecular Engineering, The University of Queensland, St. Lucia, Australia.
| | | |
Collapse
|
31
|
McEvoy TG, Alink FM, Moreira VC, Watt RG, Powell KA. Embryo technologies and animal health – consequences for the animal following ovum pick-up, in vitro embryo production and somatic cell nuclear transfer. Theriogenology 2006; 65:926-42. [PMID: 16280157 DOI: 10.1016/j.theriogenology.2005.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mammalian reproductive technologies that aim either to complement or to transcend conventional livestock breeding options have contributed to some of the most remarkable achievements in the field of reproductive biology in recent decades. In so doing they have extended our horizons in two distinct dimensions, the first concerning what it is technically possible to achieve and the second relating to the time-frame within which an individual's life-long developmental capability is initially established and ultimately realized or undermined. Our impressions of the benefits and values, or otherwise, of technologies such as in vitro embryo production and nuclear transfer are rightly influenced by the extent to which they impinge on the health of animals either subjected to or derived from them. Here, we consider some of the health implications of oocyte/embryo-centric technologies applied to farm livestock.
Collapse
Affiliation(s)
- T G McEvoy
- Scottish Agricultural College, Ferguson Building, Sustainable Livestock Systems Group, Craibstone Estate, Bucksburn, Aberdeen, Scotland, UK.
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Irony-Tur-Sinai M, Grigoriadis N, Lourbopoulos A, Pinto-Maaravi F, Abramsky O, Brenner T. Amelioration of autoimmune neuroinflammation by recombinant human alpha-fetoprotein. Exp Neurol 2006; 198:136-44. [PMID: 16423348 DOI: 10.1016/j.expneurol.2005.11.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2005] [Revised: 10/19/2005] [Accepted: 11/18/2005] [Indexed: 11/24/2022]
Abstract
Alpha-fetoprotein (AFP) is a 65-kDa oncofetal glycoprotein found in fetal and maternal fluids during pregnancy. Clinical remissions during pregnancy have been observed in several autoimmune diseases, such as multiple sclerosis (MS), and have been attributed to the presence of pregnancy-associated natural immune-reactive substances, including AFP which can exert immunomodulatory effects on immune cells. In this study, we tested the effect of recombinant human AFP (rhAFP) isolated from transgenic goats, which contain the genomic DNA for hAFP, on experimental autoimmune encephalomyelitis (EAE), the animal model used for the study of MS. RhAFP treatment markedly improved the clinical manifestations of EAE, preventing central nervous system (CNS) inflammation and axonal degeneration. RhAFP exerted a broad immunomodulating activity, influencing the various populations of immune cells. T cells from treated mice had significantly reduced activity towards the encephalitogenic peptide of myelin oligodendrocyte glycoprotein (MOG), exhibiting less proliferation and reduced Th1 cytokine secretion. Moreover, AFP affected the humoral response, causing an inhibition in MOG-specific antibody production. The expression of CD11b, MHC class II and the chemokine receptor CCR5 was also down-regulated. This is the first study demonstrating reduced inflammation and axonal damage exerted by recombinant AFP. In light of our findings, rhAFP may serve as a potential candidate for treatment of MS and other autoimmune diseases.
Collapse
Affiliation(s)
- Michal Irony-Tur-Sinai
- Laboratory of Neuroimmunology, Department of Neurology, the Agnes-Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, PO Box 12000, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
34
|
Fee CJ, Chand A. Design Considerations for the Batch Capture of Proteins from Raw Whole Milk by Ion Exchange Chromatography. Chem Eng Technol 2005. [DOI: 10.1002/ceat.200500124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|