1
|
Zhou B, Guo Y, Xue Y, Ji X, Huang Y. Comprehensive insights into the mechanism of keratin degradation and exploitation of keratinase to enhance the bioaccessibility of soybean protein. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:177. [PMID: 37978558 PMCID: PMC10655438 DOI: 10.1186/s13068-023-02426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Keratin is a recalcitrant protein and can be decomposed in nature. However, the mechanism of keratin degradation is still not well understood. In this study, Bacillus sp. 8A6 can completely degrade the feather in 20 h, which is an efficient keratin degrader reported so far. Comprehensive transcriptome analysis continuously tracks the metabolism of Bacillus sp. 8A6 throughout its growth in feather medium. It reveals for the first time how the strain can acquire nutrients and energy in an oligotrophic feather medium for proliferation in the early stage. Then, the degradation of the outer lipid layer of feather can expose the internal keratin structure for disulfide bonds reduction by sulfite from the newly identified sulfite metabolic pathway, disulfide reductases and iron uptake. The resulting weakened keratin has been further proposedly de-assembled by the S9 protease and hydrolyzed by synergistic effects of the endo, exo and oligo-proteases from S1, S8, M3, M14, M20, M24, M42, M84 and T3 families. Finally, bioaccessible peptides and amino acids are generated and transported for strain growth. The keratinase has been applied for soybean hydrolysis, which generates 2234 peptides and 559.93 mg/L17 amino acids. Therefore, the keratinases, inducing from the poultry waste, have great potential to be further applied for producing bioaccessible peptides and amino acids for feed industry.
Collapse
Affiliation(s)
- Beiya Zhou
- College of Mathematical Sciences, Bohai University, Jinzhou, 121013, Liaoning, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Huizhou Institute of Green Energy and Advanced Materials, Huizhou, 516000, Guangdong, China
| | - Yandong Guo
- College of Mathematical Sciences, Bohai University, Jinzhou, 121013, Liaoning, China.
| | - Yaju Xue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiuling Ji
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuhong Huang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
2
|
Song P, Zhang X, Wang S, Xu W, Wang F, Fu R, Wei F. Microbial proteases and their applications. Front Microbiol 2023; 14:1236368. [PMID: 37779686 PMCID: PMC10537240 DOI: 10.3389/fmicb.2023.1236368] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Proteases (proteinases or peptidases) are a class of hydrolases that cleave peptide chains in proteins. Endopeptidases are a type of protease that hydrolyze the internal peptide bonds of proteins, forming shorter peptides; exopeptidases hydrolyze the terminal peptide bonds from the C-terminal or N-terminal, forming free amino acids. Microbial proteases are a popular instrument in many industrial applications. In this review, the classification, detection, identification, and sources of microbial proteases are systematically introduced, as well as their applications in food, detergents, waste treatment, and biotechnology processes in the industry fields. In addition, recent studies on techniques used to express heterologous microbial proteases are summarized to describe the process of studying proteases. Finally, future developmental trends for microbial proteases are discussed.
Collapse
Affiliation(s)
- Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Xue Zhang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shuhua Wang
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
| | - Wei Xu
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Fei Wang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Rongzhao Fu
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Feng Wei
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
3
|
Unveiling the keratinolytic transcriptome of the black carpet beetle (Attagenus unicolor) for sustainable poultry feather recycling. Appl Microbiol Biotechnol 2021; 105:5577-5587. [PMID: 34226961 DOI: 10.1007/s00253-021-11427-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 01/14/2023]
Abstract
The black carpet beetle (BCB) is a household pest unique in its ability to digest complex proteins such as keratin that makes up the majority of feather structure. Despite voluminous yield and high protein content ( > 85%), feathers are poorly digested by most known organisms and are thereby rendered an environmental hazard. Furthermore, keratinolytic microbial strains are typically thermophilic and therefore economically and environmentally unsustainable. Given the BCB's ability to digest wool, feathers, and other keratin-rich materials, we assembled a de novo transcriptome of larvae fed on either feathers or standard chow. All proteolytic enzymes were identified via homology to the MEROPS database and subsequently annotated for a complete overview of enzymatic activity and distribution of peptidase clans in the transcriptome. Both differential expression and sequence homology screening were then used to identify potentially keratinolytic candidates from the assembly to be used in future expression experiments. The BCB transcriptome showed a high proportion of serine (22.6%) and cysteine (18.9%) proteases as well as metallopeptidases (25.5%) compared with other insect species. Regarding differential expression, serine and metalloproteases represented a large proportion of upregulated genes in the feather-fed group, constituting 42.9% and 57.1% of upregulated proteases, respectively. Additionally, several candidate transcripts identified through homology screening showed significant sequence overlap to seven existing keratinases, indicating a strong likelihood of keratinolytic function in this organism. KEY POINTS: • A de novo transcriptome of black carpet beetle larvae was assembled. • The transcriptome consisted of 67% of serine, cysteine, and metalloproteases. • Differential transcriptomes of beetles fed feather and chow were compared.
Collapse
|
4
|
de Menezes CLA, Santos RDC, Santos MV, Boscolo M, da Silva R, Gomes E, da Silva RR. Industrial sustainability of microbial keratinases: production and potential applications. World J Microbiol Biotechnol 2021; 37:86. [DOI: 10.1007/s11274-021-03052-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
|
5
|
Microbial enzymes catalyzing keratin degradation: Classification, structure, function. Biotechnol Adv 2020; 44:107607. [PMID: 32768519 PMCID: PMC7405893 DOI: 10.1016/j.biotechadv.2020.107607] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
Keratin is an insoluble and protein-rich epidermal material found in e.g. feather, wool, hair. It is produced in substantial amounts as co-product from poultry processing plants and pig slaughterhouses. Keratin is packed by disulfide bonds and hydrogen bonds. Based on the secondary structure, keratin can be classified into α-keratin and β-keratin. Keratinases (EC 3.4.-.- peptide hydrolases) have major potential to degrade keratin for sustainable recycling of the protein and amino acids. Currently, the known keratinolytic enzymes belong to at least 14 different protease families: S1, S8, S9, S10, S16, M3, M4, M14, M16, M28, M32, M36, M38, M55 (MEROPS database). The various keratinolytic enzymes act via endo-attack (proteases in families S1, S8, S16, M4, M16, M36), exo-attack (proteases in families S9, S10, M14, M28, M38, M55) or by action only on oligopeptides (proteases in families M3, M32), respectively. Other enzymes, particularly disulfide reductases, also play a key role in keratin degradation as they catalyze the breakage of disulfide bonds for better keratinase catalysis. This review aims to contribute an overview of keratin biomass as an enzyme substrate and a systematic analysis of currently sequenced keratinolytic enzymes and their classification and reaction mechanisms. We also summarize and discuss keratinase assays, available keratinase structures and finally examine the available data on uses of keratinases in practical biorefinery protein upcycling applications.
Collapse
|
6
|
Babalola MO, Ayodeji AO, Bamidele OS, Ajele JO. Biochemical characterization of a surfactant-stable keratinase purified from Proteus vulgaris EMB-14 grown on low-cost feather meal. Biotechnol Lett 2020; 42:2673-2683. [PMID: 32740782 DOI: 10.1007/s10529-020-02976-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/25/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVES The bioaccumulation of keratinous wastes from poultry and dairy industries poses a danger of instability to the biosphere due to resistance to common proteolysis and as such, microbial- and enzyme-mediated biodegradation are discussed. RESULTS In submerged fermentation medium, Proteus vulgaris EMB-14 utilized and efficiently degraded feather, fur and scales by secreting exogenous keratinase. The keratinase was purified 14-fold as a monomeric 49 kDa by DEAE-Sephadex A-50 anion exchange and Sephadex G-100 size-exclusion chromatography. It exhibited optimum activity at pH 9.0 and 60 °C and was alkaline thermostable (pH 7.0-11.0), retaining 87% of initial activity after 1 h pre-incubation at 60 °C. The Km and Vmax of the keratinase with keratin azure were respectively 0.283 mg/mL and 0.241 U/mL/min. Activity of P. vulgaris keratinase was stimulated by Ca2+, Mg2+, Zn2+, Na+ and maintained in the presence of some denaturing agents, except β-mercaptoethanol while Cu2+ and Pb2+ showed competitive and non-competitive inhibition with Ki 6.5 mM and 17.5 mM, respectively. CONCLUSION This purified P. vulgaris keratinase could be surveyed for the biotechnological transformation of bioorganic keratinous wastes into valuable products such as soluble peptides, cosmetics and biodegradable thermoplastics.
Collapse
Affiliation(s)
- Michael O Babalola
- Enzymology and Microbial Biotechnology Unit, Department of Biochemistry, The Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Adeyemi O Ayodeji
- Enzymology and Microbial Biotechnology Unit, Department of Biochemistry, The Federal University of Technology, P.M.B. 704, Akure, Nigeria.
| | - Olufemi S Bamidele
- Enzymology and Microbial Biotechnology Unit, Department of Biochemistry, The Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Joshua O Ajele
- Enzymology and Microbial Biotechnology Unit, Department of Biochemistry, The Federal University of Technology, P.M.B. 704, Akure, Nigeria
| |
Collapse
|
7
|
Challenges and Opportunities in Identifying and Characterising Keratinases for Value-Added Peptide Production. Catalysts 2020. [DOI: 10.3390/catal10020184] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Keratins are important structural proteins produced by mammals, birds and reptiles. Keratins usually act as a protective barrier or a mechanical support. Millions of tonnes of keratin wastes and low value co-products are generated every year in the poultry, meat processing, leather and wool industries. Keratinases are proteases able to breakdown keratin providing a unique opportunity of hydrolysing keratin materials like mammalian hair, wool and feathers under mild conditions. These mild conditions ameliorate the problem of unwanted amino acid modification that usually occurs with thermochemical alternatives. Keratinase hydrolysis addresses the waste problem by producing valuable peptide mixes. Identifying keratinases is an inherent problem associated with the search for new enzymes due to the challenge of predicting protease substrate specificity. Here, we present a comprehensive review of twenty sequenced peptidases with keratinolytic activity from the serine protease and metalloprotease families. The review compares their biochemical activities and highlights the difficulties associated with the interpretation of these data. Potential applications of keratinases and keratin hydrolysates generated with these enzymes are also discussed. The review concludes with a critical discussion of the need for standardized assays and increased number of sequenced keratinases, which would allow a meaningful comparison of the biochemical traits, phylogeny and keratinase sequences. This deeper understanding would facilitate the search of the vast peptidase family sequence space for novel keratinases with industrial potential.
Collapse
|
8
|
Tao LY, Gong JS, Su C, Jiang M, Li H, Li H, Lu ZM, Xu ZH, Shi JS. Mining and Expression of a Metagenome-Derived Keratinase Responsible for Biosynthesis of Silver Nanoparticles. ACS Biomater Sci Eng 2018; 4:1307-1315. [DOI: 10.1021/acsbiomaterials.7b00687] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Li-Yan Tao
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Jin-Song Gong
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Chang Su
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Min Jiang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Heng Li
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Hui Li
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhen-Ming Lu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zheng-Hong Xu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Jin-Song Shi
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
9
|
Bhange K, Chaturvedi V, Bhatt R. Simultaneous production of detergent stable keratinolytic protease, amylase and biosurfactant by Bacillus subtilis PF1 using agro industrial waste. ACTA ACUST UNITED AC 2016; 10:94-104. [PMID: 28352529 PMCID: PMC5040875 DOI: 10.1016/j.btre.2016.03.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 11/26/2022]
Abstract
Keratinolytic protease, amylase and Biosurfactant was produced in a single medium. Medium composition was optimized statistically in Design Expert software. Optimization resulted in a 1.2, 0.84 and 2.28% increase in keratinase, amylase and biosurfactant production. The isolated enzymes and biosurfactants may find applications in the effective removal of stains.
The present study is an attempt to optimize simultaneous production of keratinolytic protease, amylase and biosurfactant from feather meal, potato peel and rape seed cake in a single media by response surface methodology to evaluate their biochemical properties for detergent additive. The optimization was carried out using 20 run, 3 factor and 5-level of central composite design on design expert software which resulted in a 1.2, 0.84 and 2.28 fold increase in protease, amylase and biosurfactant production. The proteolytic activity was found to be optimum at pH 9.0 and 60 °C while optimum amylolytic activity was recorded at pH 6.0 and 70 °C respectively. Both enzymes were found to be stable in the presence of organic solvents, ionic and commercial detergent and oxidizing agents. The biosurfactant was extracted with chloroform and was found to be stable at varying pH and temperature; however a reduction in the activity was observed at temperature higher than 70 °C. The isolated enzymes and biosurfactants may find applications in the effective removal of stains.
Collapse
Affiliation(s)
- Khushboo Bhange
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | | | - Renu Bhatt
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| |
Collapse
|
10
|
Fang Z, Zhang J, Liu B, Du G, Chen J. Enhancement of the catalytic efficiency and thermostability of Stenotrophomonas sp. keratinase KerSMD by domain exchange with KerSMF. Microb Biotechnol 2015; 9:35-46. [PMID: 26552936 PMCID: PMC4720410 DOI: 10.1111/1751-7915.12300] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 11/29/2022] Open
Abstract
In this study, we enhanced the catalytic efficiency and thermostability of keratinase KerSMD by replacing its N/C-terminal domains with those from a homologous protease, KerSMF, to degrade feather waste. Replacement of the N-terminal domain generated a mutant protein with more than twofold increased catalytic activity towards casein. Replacement of the C-terminal domain obviously improved keratinolytic activity and increased the k(cat)/K(m) value on a synthetic peptide, succinyl-Ala-Ala-Pro-Phe-p-nitroanilide, by 54.5%. Replacement of both the N- and C-terminal domains generated a more stable mutant protein, with a Tm value of 64.60 ± 0.65°C and a half-life of 244.6 ± 2 min at 60°C, while deletion of the C-terminal domain from KerSMD or KerSMF resulted in mutant proteins exhibiting high activity under mesophilic conditions. These findings indicate that the pre-peptidase C-terminal domain and N-propeptide are not only important for substrate specificity, correct folding and thermostability but also support the ability of the enzyme to convert feather waste into feed additives.
Collapse
Affiliation(s)
- Zhen Fang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China.,School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Baihong Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China.,School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
11
|
Cloning, over expression and functional attributes of serine proteases from Oceanobacillus iheyensis O.M.A18 and Haloalkaliphilic bacterium O.M.E12. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Zymogram Analysis of Alkaline Keratinase Produced by Nitrogen Fixing Bacillus pumilus ZED17 Exhibiting Multiprotease Enzyme Activities. Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.7974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
Habbeche A, Saoudi B, Jaouadi B, Haberra S, Kerouaz B, Boudelaa M, Badis A, Ladjama A. Purification and biochemical characterization of a detergent-stable keratinase from a newly thermophilic actinomycete Actinomadura keratinilytica strain Cpt29 isolated from poultry compost. J Biosci Bioeng 2013; 117:413-21. [PMID: 24140106 DOI: 10.1016/j.jbiosc.2013.09.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 11/20/2022]
Abstract
An extracellular thermostable keratinase (KERAK-29) was purified and biochemically characterized from a thermophilic actinomycete Actinomadura keratinilytica strain Cpt29 newly isolated from Algerian poultry compost. The isolate exhibited high keratinase production when grown in chicken feather meal media (24,000 U/ml). Based on matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis, the purified enzyme is a monomer with a molecular mass of 29,233.10-Da. The data revealed that the 25 N-terminal residue sequence displayed by KERAK-29 was TQADPPSWGLNNIDRQTAFTKATSI, which showed high homology with those of Streptomyces proteases. This keratinase was completely inhibited by phenylmethanesulfonyl fluoride (PMSF) and diiodopropyl fluorophosphates (DFP), which suggests that it belongs to the serine protease family. Using keratin azure as a substrate, the optimum pH and temperature values for keratinase activity were pH 10 and 70°C, respectively. KERAK-29 was stable between 20 and 60°C and pH 3 and 10 for 5 and 120 h, respectively, and its thermoactivity and thermostability were enhanced in the presence of 5 mM Mn(2+). Its catalytic efficiency was higher than that of the KERAB keratinase from Streptomyces sp. strain AB1. KERAK-29 was also noted to show high keratinolytic activity and significant stability in the presence of detergents, which made it able to accomplish the entire feather-biodegradation process on its own. The ability of the A. keratinilytica strain Cpt29 to grow and produce substantial levels of keratinase using feather as a substrate could open new promising opportunities for the valorization of keratin-containing wastes and reduction of its impacts on the environment.
Collapse
Affiliation(s)
- Amina Habbeche
- Laboratory of Applied Biochemistry and Microbiology (LABM), Faculty of Science of Annaba (FSA), Badji Mokhtar-Annaba University, P.O. Box 12, 23000 Annaba, Algeria
| | - Boudjema Saoudi
- Laboratory of Applied Biochemistry and Microbiology (LABM), Faculty of Science of Annaba (FSA), Badji Mokhtar-Annaba University, P.O. Box 12, 23000 Annaba, Algeria
| | - Bassem Jaouadi
- Laboratory of Microorganisms and Biomolecules (LMB), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Soumaya Haberra
- Laboratory of Applied Biochemistry and Microbiology (LABM), Faculty of Science of Annaba (FSA), Badji Mokhtar-Annaba University, P.O. Box 12, 23000 Annaba, Algeria
| | - Bilal Kerouaz
- Laboratory of Applied Biochemistry and Microbiology (LABM), Faculty of Science of Annaba (FSA), Badji Mokhtar-Annaba University, P.O. Box 12, 23000 Annaba, Algeria
| | - Mokhtar Boudelaa
- Laboratory of Applied Biochemistry and Microbiology (LABM), Faculty of Science of Annaba (FSA), Badji Mokhtar-Annaba University, P.O. Box 12, 23000 Annaba, Algeria
| | - Abdelmalek Badis
- Laboratory of Natural Products Chemistry and Biomolecules (LNPCB), University of Saàd Dahlab (USD) of Blida, P.O. Box 270, 09000 Blida, Algeria
| | - Ali Ladjama
- Laboratory of Applied Biochemistry and Microbiology (LABM), Faculty of Science of Annaba (FSA), Badji Mokhtar-Annaba University, P.O. Box 12, 23000 Annaba, Algeria.
| |
Collapse
|
14
|
Daroit DJ, Brandelli A. A current assessment on the production of bacterial keratinases. Crit Rev Biotechnol 2013; 34:372-84. [DOI: 10.3109/07388551.2013.794768] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Anitha T, Palanivelu P. Purification and characterization of an extracellular keratinolytic protease from a new isolate of Aspergillus parasiticus. Protein Expr Purif 2013; 88:214-20. [DOI: 10.1016/j.pep.2013.01.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/07/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
|
16
|
Joshi S, Satyanarayana T. Characteristics and applications of a recombinant alkaline serine protease from a novel bacterium Bacillus lehensis. BIORESOURCE TECHNOLOGY 2013; 131:76-85. [PMID: 23340105 DOI: 10.1016/j.biortech.2012.12.124] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 05/25/2023]
Abstract
A highly alkaline protease (BLAP) from a novel psychrotolerant and alkaliphilic bacterium, Bacillus lehensis was cloned and expressed in Escherichia coli. BLAP belongs to subtilase S8 family of proteases, comprising 27 aa secretion signal, 83 aa prosequence and 269 aa mature BLAP. The amino acids Asp 141, His 171 and Ser 324 form catalytic triad, while Ile 214, Leu 233 and Asn 267 are other active site moieties. Recombinant alkaline protease (rBLAP) is a monomeric protein of 39.0±1.0kDa, and it is active over broad pH (8-12) and temperature (30-60°C) ranges, with optima at pH 12.8 and 50°C. rBLAP is stimulated by SDS, Co(2+), Ca(2+), β-ME, and inhibited by Hg(2+) and PMSF. The rBLAP is compatible with commercial detergents, useful in silk degumming and silver recovery from the used photographic films and a potent biocontrol agent for arresting the development of eggs of the nematode Meloidogyne incognita.
Collapse
Affiliation(s)
- Swati Joshi
- Department of Microbiology, University of Delhi South Campus, New Delhi 110 021, India
| | | |
Collapse
|
17
|
Improvement of expression level of keratinase Sfp2 from Streptomyces fradiae by site-directed mutagenesis of its N-terminal pro-sequence. Biotechnol Lett 2013; 35:743-9. [DOI: 10.1007/s10529-013-1139-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/08/2013] [Indexed: 10/27/2022]
|
18
|
Cloning, expression, and characterization of serine protease from thermophilic fungus Thermoascus aurantiacus var. levisporus. J Microbiol 2011; 49:121-9. [DOI: 10.1007/s12275-011-9355-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 09/02/2010] [Indexed: 10/18/2022]
|
19
|
Duarte TR, Oliveira SS, Macrae A, Cedrola SML, Mazotto AM, Souza EP, Melo ACN, Vermelho AB. Increased expression of keratinase and other peptidases by Candida parapsilosis mutants. Braz J Med Biol Res 2011; 44:212-6. [PMID: 21399854 DOI: 10.1590/s0100-879x2011007500011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Accepted: 01/10/2010] [Indexed: 11/22/2022] Open
Abstract
Keratinases are enzymes of great importance involved in pathogenic processes of some fungi. They also have a widespread ecological role since they are responsible for the degradation and recycling of keratin. On the one hand, studying them furthers our knowledge of pathogenicity mechanisms, which has important implications for human health, and on the other hand, understanding their ecological role in keratin recycling has biotechnological potential. Here, a wild-type keratinolytic Candida parapsilosis strain isolated from a poultry farm was treated with ethyl methanesulfonate in order to generate mutants with increased keratinase activity. Mutants were then cultured on media with keratin extracted from chicken feathers as the sole source of nitrogen and carbon. Approximately 500 mutants were screened and compared with the described keratinolytic wild type. Three strains, H36, I7 and J5, showed enhanced keratinase activity. The wild-type strain produced 80 U/mL of keratinolytic activity, strain H36 produced 110 U/mL, strain I7, 130 U/mL, and strain J5, 140 U/mL. A 70% increase in enzyme activity was recorded for strain J5. Enzymatic activity was evaluated by zymograms with proteic substrates. A peptidase migrating at 100 kDa was detected with keratin, bovine serum albumin and casein. In addition, a peptidase with a molecular mass of 50 kDa was observed with casein in the wild-type strain and in mutants H36 and J5. Gelatinase activity was detected at 60 kDa. A single band of 35 kDa was found in wild-type C. parapsilosis and in mutants with hemoglobin substrate.
Collapse
Affiliation(s)
- T R Duarte
- Laboratório Proteases de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, RJ, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Daroit DJ, Corrêa APF, Segalin J, Brandelli A. Characterization of a keratinolytic protease produced by the feather-degrading Amazonian bacteriumBacillussp. P45. BIOCATAL BIOTRANSFOR 2010. [DOI: 10.3109/10242422.2010.532549] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Li AN, Li DC. Cloning, expression and characterization of the serine protease gene from Chaetomium thermophilum. J Appl Microbiol 2010; 106:369-80. [PMID: 19200305 DOI: 10.1111/j.1365-2672.2008.04042.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Microbial proteases play an essential role in scientific research and commercial applications. This study is to clone, sequence, and express a thermostable protease gene from the thermophilic fungi Chaetomium thermophilum and to generate yeast strains expressing C. thermophilum protease suitable for industrial applications. METHODS AND RESULTS Degenerate primers were designed based on the conserved domain of other identified serine proteases and cDNA fragment of C. thermophilum gene pro was obtained through reverse transcriptase-polymerase chain reaction (RT-PCR). The full-length cDNA of 2007 bp was generated using RACE amplification. The cDNA contains an open reading frame of 1596 bp encoding 532 amino acids. Sequence analysis of the deduced amino acid sequence revealed high homology with the catalytic domains of the subtilisin serine proteases. The C. thermophilum gene pro was expressed in Escherichia coli BL21 (DE3) and Pichia pastoris, respectively and soluble protein was obtained in P. pastoris. The expressed protease was secreted into the culture medium by the yeast in a functional active form and the purified recombinant protease exhibits optimum catalytic activity at pH 8.0 and 60 degrees C. The enzyme is stable at 60 degrees C. The integration of gene pro into P. pastoris genome is stable after 10 generations and the yeast transformants showed a consistent protease expression. CONCLUSIONS Gene pro encoding a serine protease from C. thermophilum was cloned, sequenced, and overexpressed successfully in P. pastoris. The expressed protease was purified and the properties of the recombinant protease are characterized. SIGNIFICANCE AND IMPACT OF THE STUDY Chaetomium thermophilum is a soil-borne thermophilic fungus and the protease cloned from it is stable in a high temperature and a wide rage of pH. The overexpression of the enzyme in a mesophilic micro-organism offers a potential value for scientific research and commercial applications.
Collapse
Affiliation(s)
- A-N Li
- Department of Environmental Biology, Shandong Agricultural University, Taian, Shandong, China
| | | |
Collapse
|
22
|
Biochemical features of microbial keratinases and their production and applications. Appl Microbiol Biotechnol 2009; 85:1735-50. [DOI: 10.1007/s00253-009-2398-5] [Citation(s) in RCA: 304] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/02/2009] [Accepted: 12/02/2009] [Indexed: 11/25/2022]
|
23
|
Lin HH, Yin LJ, Jiang ST. Functional expression and characterization of keratinase from Pseudomonas aeruginosa in Pichia pastoris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:5321-5325. [PMID: 19445464 DOI: 10.1021/jf900417t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recombinant keratinase (rK) from Pseudomonas aeruginosa was secreted by Pichia pastoris SMD1168H with a final yield of 580 mg/L (1.03 kU/mL) after 72 h of induction. The rK was purified after nickel affinity chromatography and was stable at pH 6.0-9.0 and 10-60 degrees C. It was nonglycosylated protein with a molecular mass of 33 kDa and had an optimal pH and temperature at 8.0 and 60 degrees C, respectively. Ba(2+), Ca(2+), Mg(2+), Mn(2+), Zn(2+), dithiothreitol, glutathione, and beta-mercaptoethanol activated, while Cu(2+), Fe(2+), Hg(2+), Fe(3+), ethylene glycol tetraacetic acid, ethylene diamine tetraacetic acid, and p-chloromercuribenzoate inhibited its activity. rK could hydrolyze broad substrates and cleave hydrophobic and aromatic amino acids at P(1) position, behaving as those from the wild type strain and E. coli transformant.
Collapse
Affiliation(s)
- Hsin-Hung Lin
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | | | | |
Collapse
|
24
|
Khardenavis AA, Kapley A, Purohit HJ. Processing of poultry feathers by alkaline keratin hydrolyzing enzyme from Serratia sp. HPC 1383. WASTE MANAGEMENT (NEW YORK, N.Y.) 2009; 29:1409-1415. [PMID: 19101133 DOI: 10.1016/j.wasman.2008.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 09/20/2008] [Accepted: 10/17/2008] [Indexed: 05/27/2023]
Abstract
The present study describes the production and characterization of a feather hydrolyzing enzyme by Serratia sp. HPC 1383 isolated from tannery sludge, which was identified by the ability to form clear zones around colonies on milk agar plates. The proteolytic activity was expressed in terms of the micromoles of tyrosine released from substrate casein per ml per min (U/mL min). Induction of the inoculum with protein was essential to stimulate higher activity of the enzyme, with 0.03% feathermeal in the inoculum resulting in increased enzyme activity (45U/mL) that further increased to 90U/mL when 3d old inoculum was used. The highest enzyme activity, 130U/mL, was observed in the presence of 0.2% yeast extract. The optimum assay temperature and pH for the enzyme were found to be 60 degrees C and 10.0, respectively. The enzyme had a half-life of 10min at 60 degrees C, which improved slightly to 18min in presence of 1mM Ca(2+). Inhibition of the enzyme by phenylmethyl sulfonyl fluoride (PMSF) indicated that the enzyme was a serine protease. The enzyme was also partially inhibited (39%) by the reducing agent beta-mercaptoethanol and by divalent metal ions such as Zn(2+) (41% inhibition). However, Ca(2+) and Fe(2+) resulted in increases in enzyme activity of 15% and 26%, respectively. The kinetic constants of the keratinase were found to be 3.84 microM (K(m)) and 108.7 microM/mLmin (V(max)). These results suggest that this extracellular keratinase may be a useful alternative and eco-friendly route for handling the abundant amount of waste feathers or for applications in other industrial processes.
Collapse
Affiliation(s)
- Anshuman A Khardenavis
- National Environmental Engineering Research Institute, Nagpur 440 020, Maharashtra, India
| | | | | |
Collapse
|
25
|
A New Aminopeptidase from the Keratin-Degrading Strain Streptomyces fradiae var. k11. Appl Biochem Biotechnol 2009; 160:730-9. [DOI: 10.1007/s12010-009-8537-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 01/20/2009] [Indexed: 10/21/2022]
|
26
|
Radha S, Gunasekaran P. Purification and characterization of keratinase from recombinant Pichia and Bacillus strains. Protein Expr Purif 2008; 64:24-31. [PMID: 18996485 DOI: 10.1016/j.pep.2008.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 10/19/2008] [Accepted: 10/20/2008] [Indexed: 11/18/2022]
Abstract
The keratinase gene from Bacillus licheniformis MKU3 was cloned and successfully expressed in Bacillus megaterium MS941 as well as in Pichia pastoris X33. Compared with parent strain, the recombinant B. megaterium produced 3-fold increased level of keratinase while the recombinant P. pastoris strain had produced 2.9-fold increased level of keratinase. The keratinases from recombinant P. pastoris (pPZK3) and B. megaterium MS941 (pWAK3) were purified to 67.7- and 85.1-folds, respectively, through affinity chromatography. The purified keratinases had the specific activity of 365.7 and 1277.7 U/mg, respectively. Recombinant keratinase from B. megaterium was a monomeric protein with an apparent molecular mass of 30 kDa which was appropriately glycosylated in P. pastoris to have a molecular mass of 39 kDa. The keratinases from both recombinant strains had similar properties such as temperature and pH optimum for activity, and sensitivity to various metal ions, additives and inhibitors. There was considerable enzyme stability due to its glycosylation in yeast system. At pH 11 the glycosylated keratinase retained 95% of activity and 75% of its activity at 80 degrees C. The purified keratinase hydrolyzed a broad range of substrates and displayed effective degradation of keratin substrates. The K(m) and V(max) of the keratinase for the substrate N-succinyl-Ala-Ala-Pro-Phe-pNA was found to be 0.201 mM and 61.09 U/s, respectively. Stability in the presence of detergents, surfactants, metal ions and solvents make this keratinase suitable for industrial processes.
Collapse
Affiliation(s)
- Selvaraj Radha
- Department of Genetics, Center for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, India
| | | |
Collapse
|
27
|
Zhang Y, Meng K, Wang Y, Luo H, Yang P, Shi P, Wu N, Fan Y, Li J, Yao B. A novel proteolysis-resistant lipase from keratinolytic Streptomyces fradiae var. k11. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2007.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|