1
|
Kordi M, Talkhounche PG, Vahedi H, Farrokhi N, Tabarzad M. Heterologous Production of Antimicrobial Peptides: Notes to Consider. Protein J 2024; 43:129-158. [PMID: 38180586 DOI: 10.1007/s10930-023-10174-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Heavy and irresponsible use of antibiotics in the last century has put selection pressure on the microbes to evolve even faster and develop more resilient strains. In the confrontation with such sometimes called "superbugs", the search for new sources of biochemical antibiotics seems to have reached the limit. In the last two decades, bioactive antimicrobial peptides (AMPs), which are polypeptide chains with less than 100 amino acids, have attracted the attention of many in the control of microbial pathogens, more than the other types of antibiotics. AMPs are groups of components involved in the immune response of many living organisms, and have come to light as new frontiers in fighting with microbes. AMPs are generally produced in minute amounts within organisms; therefore, to address the market, they have to be either produced on a large scale through recombinant DNA technology or to be synthesized via chemical methods. Here, heterologous expression of AMPs within bacterial, fungal, yeast, plants, and insect cells, and points that need to be considered towards their industrialization will be reviewed.
Collapse
Affiliation(s)
- Masoumeh Kordi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Parnian Ghaedi Talkhounche
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Helia Vahedi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Naser Farrokhi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
The First Homologous Expression System for the β-Lytic Protease of Lysobacter capsici VKM B-2533 T, a Promising Antimicrobial Agent. Int J Mol Sci 2022; 23:ijms23105722. [PMID: 35628535 PMCID: PMC9145596 DOI: 10.3390/ijms23105722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
A successful homologous expression system based on Lysobacter capsici VKM B-2533T and the plasmid pBBR1-MCS5 was first developed for a promising bacteriolytic enzyme of this bacterium, β-lytic protease (Blp). In the expression strains, blp gene expression under the regulation of the GroEL(A) and T5 promoters increased by 247- and 667-fold, respectively, as compared with the wild-type strain. After the cultivation of the expression strains L. capsici PGroEL(A)-blp and L. capsici PT5-blp, the Blp yield increased by 6.7- and 8.5-fold, respectively, with respect to the wild-type strain. The cultivation of the expression strain L. capsici PT5-blp was successfully scaled up. Under fermentation conditions the yield of the enzyme increased by 1.6-fold. The developed homologous system was used to express the gene of the bacteriolytic serine protease (Serp) of L. capsici VKM B-2533T. The expression of the serp gene in L. capsici PT5-serp increased by 585-fold. The developed homologous system for the gene expression of bacteriolytic Lysobacter enzymes is potentially biotechnologically valuable, and is promising for creating highly efficient expression strains.
Collapse
|
3
|
Wu Y, Pang X, Wu Y, Liu X, Zhang X. Enterocins: Classification, Synthesis, Antibacterial Mechanisms and Food Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072258. [PMID: 35408657 PMCID: PMC9000605 DOI: 10.3390/molecules27072258] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/15/2023]
Abstract
Enterococci, a type of lactic acid bacteria, are widely distributed in various environments and are part of the normal flora in the intestinal tract of humans and animals. Although enterococci have gradually evolved pathogenic strains causing nosocomial infections in recent years, the non-pathogenic strains have still been widely used as probiotics and feed additives. Enterococcus can produce enterocin, which are bacteriocins considered as ribosomal peptides that kill or inhibit the growth of other microorganisms. This paper reviews the classification, synthesis, antibacterial mechanisms and applications of enterocins, and discusses the prospects for future research.
Collapse
Affiliation(s)
- Yajing Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
| | - Xinxin Pang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
| | - Yansha Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
| | - Xiayu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
| | - Xinglin Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
- College of Agriculture and Forestry, Linyi University, Linyi 276005, China
- Correspondence: ; Tel.: +86-571-86984316
| |
Collapse
|
4
|
Salehzadeh S, Tabatabaei M, Derakhshandeh A, Karbalaei-Heidari H, Kazemipour N. A novel approach of recombinant laterosporulin production using the N-SH2 domain of SHP-2. BMC Biotechnol 2021; 21:60. [PMID: 34674683 PMCID: PMC8529825 DOI: 10.1186/s12896-021-00721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
Background The current study was aimed at evaluating the role of the N-SH2 domain of SHP-2 as a partner protein in the expression of a toxic peptide, laterosporulin (LTS). We also investigated its effects on the formation of the disulfide bond and functional folding of the peptide in vitro. The N-SH2-LTS protein was expressed as a His-tagged fusion protein, capable of undergoing enzymatic cleavage. Results Based on the data presented herein, the total yield of the folded fusion protein from inclusion bodies was found to be about 105 mg/l, demonstrating a high-level of heterologous expression. After enzymatic cleavage, 1.5 mg of the folded recombinant laterosporulin was obtained from each 10 mg of the fusion protein. The purity of the recombinant laterosporulin was analyzed by RP-HPLC, to yield peptides with suitable purity (85%). Conclusions Our findings indicated the advantages of using the N-SH2 domain of SHP-2 as a rapid and easy approach not only in producing easy target proteins but also in its function as a chaperone. N-SH2 domain of SHP-2 can influence on the purification of laterosporulin at reasonable yield and in a cost-effective fashion. The N-SH2 domain of SHP-2 as a protein chaperone may be potentially favorable to produce other proteins with disulfide bonds. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00721-7.
Collapse
Affiliation(s)
- Simin Salehzadeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mohammad Tabatabaei
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Nasrin Kazemipour
- Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
5
|
Cui Y, Luo L, Wang X, Lu Y, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: A review. Compr Rev Food Sci Food Saf 2020; 20:863-899. [PMID: 33443793 DOI: 10.1111/1541-4337.12658] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Bacteriocins are generally considered as low-molecular-weight ribosomal peptides or proteins synthesized by G+ and G- bacteria that inhibit or kill other related or unrelated microorganisms. However, low yield is an important factor restricting the application of bacteriocins. This paper reviews mining methods, heterologous expression in different systems, the purification technologies applied to bacteriocins, and identification methods, as well as the antibacterial mechanism and applications in three different food systems. Bioinformatics improves the efficiency of bacteriocins mining. Bacteriocins can be heterologously expressed in different expression systems (e.g., Escherichia coli, Lactobacillus, and yeast). Ammonium sulfate precipitation, dialysis membrane, pH-mediated cell adsorption/desorption, solvent extraction, macroporous resin column, and chromatography are always used as purification methods for bacteriocins. The bacteriocins are identified through electrophoresis and mass spectrum. Cell envelope (e.g., cell permeabilization and pore formation) and inhibition of gene expression are common antibacterial mechanisms of bacteriocins. Bacteriocins can be added to protect meat products (e.g., beef and sausages), dairy products (e.g., cheese, milk, and yogurt), and vegetables and fruits (e.g., salad, apple juice, and soybean sprouts). The future research directions are also prospected.
Collapse
Affiliation(s)
- Yanlong Cui
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lingli Luo
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yingying Lu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yanglei Yi
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuanyuan Shan
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Bianfang Liu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuan Zhou
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Tseng CC, Murni L, Han TW, Arfiati D, Shih HT, Hu SY. Molecular Characterization and Heterologous Production of the Bacteriocin Peocin, a DNA Starvation/Stationary Phase Protection Protein, from Paenibacillus ehimensis NPUST1. Molecules 2019; 24:molecules24132516. [PMID: 31324069 PMCID: PMC6650805 DOI: 10.3390/molecules24132516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022] Open
Abstract
The production of a bacteriocin-like substance with antimicrobial activity, named peocin, by the probiotic Paenibacillus ehimensis NPUST1 was previously reported by our laboratory. The present study aimed to identify peocin and increase the peocin yield by heterologous expression in Escherichia coli BL21(DE3). Peocin was identified as a DNA starvation/stationary phase protection protein, also called DNA-binding protein from starved cells (Dps), by gel overlay and LC-MS/MS analysis. For mass production of peocin, fed-batch cultivation of E. coli was performed using a pH-stat control system. Purification by simple nickel affinity chromatography and dialysis yielded 45.3 mg of purified peocin from a 20-mL fed-batch culture (49.3% recovery). The biological activity of the purified peocin was confirmed by determination of the MIC and MBC against diverse pathogens. Purified peocin exhibited antimicrobial activity against aquatic, food spoilage, clinical and antibiotic-resistant pathogens. In an in vivo challenge test, zebrafish treated with purified peocin exhibited significantly increased survival rates after A. hydrophila challenge. The present study is the first to show the antimicrobial activity of Dps and provides an efficient strategy for production of bioactive peocin, which will aid the development of peocin as a novel antimicrobial agent with potential applications in diverse industries.
Collapse
Affiliation(s)
- Chung-Chih Tseng
- Department of Dentistry, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 81357, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Lini Murni
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Fisheries and Marine Science, University of Brawijaya, Malang 65145, Indonesia
| | - Tai-Wei Han
- Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Diana Arfiati
- Department of Fisheries and Marine Science, University of Brawijaya, Malang 65145, Indonesia
| | - Hui-Tsu Shih
- Department of Clinical pharmacy, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 81357, Taiwan.
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 912, Taiwan.
| |
Collapse
|
7
|
Class III bacteriocin Helveticin-M causes sublethal damage on target cells through impairment of cell wall and membrane. ACTA ACUST UNITED AC 2018; 45:213-227. [DOI: 10.1007/s10295-018-2008-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/09/2018] [Indexed: 01/10/2023]
Abstract
Abstract
Helveticin-M, a novel Class III bacteriocin produced by Lactobacillus crispatus exhibited an antimicrobial activity against Staphylococcus aureus, S. saprophyticus, and Enterobacter cloacae. To understand how Helveticin-M injured target cells, Helveticin-M was cloned and heterologously expressed in Escherichia coli. Subsequently, the cell wall organization and cell membrane integrity of target cells were determined. The mechanism of cellular damage differed according to bacterial species. Based on morphology analysis, Helveticin-M disrupted the cell wall of Gram-positive bacteria and disorganized the outer membrane of Gram-negative bacteria, therefore, altering surface structure. Helveticin-M also disrupted the inner membrane, as confirmed by leakage of intracellular ATP from cells and depolarization of membrane potential of target bacteria. Based on cell population analysis, Helveticin-M treatment caused the increase of cell membrane permeability, but the cytosolic enzymes were not influenced, indicating that it was the sublethal injury. Therefore, the mode of Helveticin-M action is bacteriostatic rather than bactericidal.
Collapse
|
8
|
Ankaiah D, Esakkiraj P, Perumal V, Ayyanna R, Venkatesan A. Probiotic characterization of Enterococcus faecium por1: Cloning, over expression of Enterocin-A and evaluation of antibacterial, anti-cancer properties. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
9
|
Johnson EM, Jung DYG, Jin DYY, Jayabalan DR, Yang DSH, Suh JW. Bacteriocins as food preservatives: Challenges and emerging horizons. Crit Rev Food Sci Nutr 2017; 58:2743-2767. [PMID: 28880573 DOI: 10.1080/10408398.2017.1340870] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The increasing demand for fresh-like food products and the potential health hazards of chemically preserved and processed food products have led to the advent of alternative technologies for the preservation and maintenance of the freshness of the food products. One such preservation strategy is the usage of bacteriocins or bacteriocins producing starter cultures for the preservation of the intended food matrixes. Bacteriocins are ribosomally synthesized smaller polypeptide molecules that exert antagonistic activity against closely related and unrelated group of bacteria. This review is aimed at bringing to lime light the various class of bacteriocins mainly from gram positive bacteria. The desirable characteristics of the bacteriocins which earn them a place in food preservation technology, the success story of the same in various food systems, the various challenges and the strategies employed to put them to work efficiently in various food systems has been discussed in this review. From the industrial point of view various aspects like the improvement of the producer strains, downstream processing and purification of the bacteriocins and recent trends in engineered bacteriocins has also been briefly discussed in this review.
Collapse
Affiliation(s)
- Eldin Maliyakkal Johnson
- a Centre for Nutraceutical and Pharmaceutical Materials , College of Natural Science , Myongji University , Yongin , Korea.,b Food Microbiology and Bioprocess Laboratory , Department of Life Science, National Institute of Technology , Rourkela, Odisha , India
| | - Dr Yong-Gyun Jung
- c Interdisciplinary Program of Biomodulation , College of Natural Science , Myongji University , Yongin , Korea
| | - Dr Ying-Yu Jin
- d Myongji University Bioefficiency Research Centre , College of Natural Science , Myongji University , Yongin , Korea
| | - Dr Rasu Jayabalan
- b Food Microbiology and Bioprocess Laboratory , Department of Life Science, National Institute of Technology , Rourkela, Odisha , India
| | - Dr Seung Hwan Yang
- e Department of Biotechnology , Chonnam National University-Yeosu Campus , Yeosu , Korea
| | - Joo Won Suh
- a Centre for Nutraceutical and Pharmaceutical Materials , College of Natural Science , Myongji University , Yongin , Korea.,f Division of Bioscience and Bioinformatics , College of Natural Science, Myongji University , Yongin , Korea
| |
Collapse
|
10
|
Kayalvizhi N, Rameshkumar N, Gunasekaran P. Cloning and characterization of mersacidin like bacteriocin from Bacillus licheniformis MKU3 in Escherichia coli. Journal of Food Science and Technology 2016; 53:2298-306. [PMID: 27407196 DOI: 10.1007/s13197-016-2195-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/26/2014] [Accepted: 07/31/2014] [Indexed: 11/25/2022]
Abstract
A putative gene encoding mersacidin like lantibiotic bacteriocin (lanA) was identified in Bacillus licheniformis genome. The lanA open reading frame codes for 74 amino acids with calculated isoelectric point of 6.7 and molecular mass of 8.2 kDa. The lanA gene was amplified from B. licheniformis MKU3, cloned in pQE30 vector and overexpressed in Escherichia coli M15. The recombinant peptide was purified to homogeneity using Ni-NTA chromatography and the SDS-PAGE analysis of the purified peptide revealed it to be a monomer with molecular mass of ~8.5 kDa. The purified bacteriocin showed wide spectrum activity against gram-positive pathogens. The peptide was found to be stable under in wide range of pH, temperature tolerant and resistant to the proteolytic enzymes. The stable nature of the bacteriocin to high temperature and resistant to various chemicals it also exhibited antimicrobial activity against food-borne pathogens make this bacteriocin as potent attractive antimicrobial agent in food products.
Collapse
Affiliation(s)
| | - Neelamegam Rameshkumar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, 620 024 Tamil Nadu India
| | - Paramasamy Gunasekaran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021 Tamil Nadu India
| |
Collapse
|
11
|
Meng F, Zhao H, Zhang C, Lu F, Bie X, Lu Z. Expression of a novel bacteriocin—the plantaricin Pln1—in Escherichia coli and its functional analysis. Protein Expr Purif 2016; 119:85-93. [DOI: 10.1016/j.pep.2015.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
|
12
|
Zhang T, Pan Y, Li B, Ou J, Zhang J, Chen Y, Peng X, Chen L. Molecular cloning and antimicrobial activity of enterolysin A and helveticin J of bacteriolysins from metagenome of Chinese traditional fermented foods. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Chen H, Tian F, Li S, Xie Y, Zhang H, Chen W. Cloning and heterologous expression of a bacteriocin sakacin P from Lactobacillus sakei in Escherichia coli. Appl Microbiol Biotechnol 2012; 94:1061-8. [DOI: 10.1007/s00253-012-3872-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 12/14/2011] [Accepted: 12/26/2011] [Indexed: 10/14/2022]
|