1
|
Mohamadi M, Goricanec D, Wagner G, Hagn F. NMR sample optimization and backbone assignment of a stabilized neurotensin receptor. J Struct Biol 2023; 215:107970. [PMID: 37142193 PMCID: PMC10242673 DOI: 10.1016/j.jsb.2023.107970] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023]
Abstract
G protein-coupled receptors (GPCRs) are involved in a multitude of cellular signaling cascades and consequently are a prominent target for pharmaceutical drugs. In the past decades, a growing number of high-resolution structures of GPCRs has been solved, providing unprecedented insights into their mode of action. However, knowledge on the dynamical nature of GPCRs is equally important for a better functional understanding, which can be obtained by NMR spectroscopy. Here, we employed a combination of size exclusion chromatography, thermal stability measurements and 2D-NMR experiments for the NMR sample optimization of the stabilized neurotensin receptor type 1 (NTR1) variant HTGH4 bound to the agonist neurotensin. We identified the short-chain lipid di-heptanoyl-glycero-phosphocholine (DH7PC) as a promising membrane mimetic for high resolution NMR experiments and obtained a partial NMR backbone resonance assignment. However, internal membrane-incorporated parts of the protein were not visible due to lacking amide proton back-exchange. Nevertheless, NMR and hydrogen deuterium exchange (HDX) mass spectrometry experiments could be used to probe structural changes at the orthosteric ligand binding site in the agonist and antagonist bound states. To enhance amide proton exchange we partially unfolded HTGH4 and observed additional NMR signals in the transmembrane region. However, this procedure led to a higher sample heterogeneity, suggesting that other strategies need to be applied to obtain high-quality NMR spectra of the entire protein. In summary, the herein reported NMR characterization is an essential step toward a more complete resonance assignment of NTR1 and for probing its structural and dynamical features in different functional states.
Collapse
Affiliation(s)
- Mariam Mohamadi
- Bavarian NMR Center (BNMRZ) and Structural Membrane Biochemistry, Dept. of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - David Goricanec
- Bavarian NMR Center (BNMRZ) and Structural Membrane Biochemistry, Dept. of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Franz Hagn
- Bavarian NMR Center (BNMRZ) and Structural Membrane Biochemistry, Dept. of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany; Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich 85764 Neuherberg, Germany.
| |
Collapse
|
2
|
Cho S, Park TH. Advances in the Production of Olfactory Receptors for Industrial Use. Adv Biol (Weinh) 2023; 7:e2200251. [PMID: 36593488 DOI: 10.1002/adbi.202200251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/11/2022] [Indexed: 01/04/2023]
Abstract
In biological olfactory systems, olfactory receptors (ORs) can recognize and discriminate between thousands of volatile organic compounds with very high sensitivity and specificity. The superior properties of ORs have led to the development of OR-based biosensors that have shown promising potential in many applications over the past two decades. In particular, newly designed technologies in gene synthesis, protein expression, solubilization, purification, and membrane mimetics for membrane proteins have greatly opened up the previously inaccessible industrial potential of ORs. In this review, gene design, expression and solubilization strategies, and purification and reconstitution methods available for modern industrial applications are examined, with a focus on ORs. The limitations of current OR production technology are also estimated, and future directions for further progress are suggested.
Collapse
Affiliation(s)
- Seongyeon Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
3
|
Probing the Y 2 Receptor on Transmembrane, Intra- and Extra-Cellular Sites for EPR Measurements. Molecules 2020; 25:molecules25184143. [PMID: 32927734 PMCID: PMC7571237 DOI: 10.3390/molecules25184143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
The function of G protein-coupled receptors is intrinsically linked to their conformational dynamics. In conjugation with site-directed spin labeling, electron paramagnetic resonance (EPR) spectroscopy provides powerful tools to study the highly dynamic conformational states of these proteins. Here, we explored positions for nitroxide spin labeling coupled to single cysteines, introduced at transmembrane, intra- and extra-cellular sites of the human neuropeptide Y2 receptor. Receptor mutants were functionally analyzed in cell culture system, expressed in Escherichia coli fermentation with yields of up to 10 mg of purified protein per liter expression medium and functionally reconstituted into a lipid bicelle environment. Successful spin labeling was confirmed by a fluorescence assay and continuous wave EPR measurements. EPR spectra revealed mobile and immobile populations, indicating multiple dynamic conformational states of the receptor. We found that the singly mutated positions by MTSL ((1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl) methyl methanesulfonothioate) have a water exposed immobilized conformation as their main conformation, while in case of the IDSL (bis(1-oxyl-2,2,5,5-tetramethyl-3-imidazolin-4-yl) disulfide) labeled positions, the main conformation are mainly of hydrophobic nature. Further, double cysteine mutants were generated and examined for potential applications of distance measurements by double electron–electron resonance (DEER) pulsed EPR technique on the receptor.
Collapse
|
4
|
Bosse M, Sibold J, Scheidt HA, Patalag LJ, Kettelhoit K, Ries A, Werz DB, Steinem C, Huster D. Shiga toxin binding alters lipid packing and the domain structure of Gb 3-containing membranes: a solid-state NMR study. Phys Chem Chem Phys 2019; 21:15630-15638. [PMID: 31268447 DOI: 10.1039/c9cp02501d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We studied the influence of globotriaosylceramide (Gb3) lipid molecules on the properties of phospholipid membranes composed of a liquid ordered (lo)/liquid disordered (ld) phase separated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/N-palmitoyl-d-erythro-sphingosylphosphorylcholine (PSM)/cholesterol mixture (40/35/20, mol/mol/mol) supplemented with 5 mol% of either short acyl chain palmitoyl-Gb3 or long acyl chain lignoceryl-Gb3 using 2H solid-state NMR spectroscopy. To this end, both globotriaosylceramides were chemically synthesized featuring a perdeuterated lipid acyl chain. The solid-state 2H NMR spectra support the phase separation into a POPC-rich ld phase and a PSM/cholesterol-rich lo phase. The long chain lignoceryl-Gb3 showed a rather unusual order parameter profile of the acyl chain, which flattens out for the last ∼6 methylene segments. Such an odd chain conformation can be explained by partial chain interdigitation and/or a very fluid midplane region of the membrane. Possibly, the Gb3 molecules may thus preferentially be localized at the lo/ld phase boundary. In contrast, the short chain palmitoyl-Gb3 was well associated with the PSM/cholesterol-rich lo phase. Gb3 molecules act as membrane receptors for the Shiga toxin (STx) produced by Shigella dysenteriae and by enterohemorrhagic strains of Escherichia coli (EHEC). The B-subunits of STx (STxB) forming a pentameric structure were produced recombinantly and incubated with the membrane mixtures leading to alterations in the lipid packing properties and lateral organization of the membranes. Typically, STxB binding led to a decrease in lipid chain order in agreement with partial immersion of protein segments into the lipid-water interface of the membrane. In the presence of STxB, Gb3 preferentially partitioned into the lo membrane phase. In particular the short acyl chain palmitoyl-Gb3 showed very similar chain order parameters to PSM. In the presence of STxB, all lipid species showed isotropic contributions to the 2H NMR powder spectra; this was most pronounced for the Gb3 molecules. Such isotropic contributions are caused by highly curved membrane structures, which have previously been detected as membrane invaginations in fluorescence microscopy. Our analysis estimated that STxB induced highly curved membrane structures with a curvature radius of less than ∼10 nm likely related to the insertion of STxB segments into the lipid-water interface of the membrane.
Collapse
Affiliation(s)
- Mathias Bosse
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Jeremias Sibold
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, D-37077 Göttingen, Germany
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Lukas J Patalag
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, D-38106 Braunschweig, Germany
| | - Katharina Kettelhoit
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, D-38106 Braunschweig, Germany
| | - Annika Ries
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, D-38106 Braunschweig, Germany
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, D-38106 Braunschweig, Germany
| | - Claudia Steinem
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, D-37077 Göttingen, Germany and Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 11, 37077 Göttingen, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| |
Collapse
|
5
|
Upscale production of a recombinant cyclodextrin glycosyltransferase from Paenibacillus macerans in Escherichia coli. 3 Biotech 2017; 7:207. [PMID: 28667643 DOI: 10.1007/s13205-017-0838-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/26/2017] [Indexed: 12/24/2022] Open
Abstract
Cyclodextrin glucanotransferase (CGTase) is an important enzyme with multiple functions in starch utilization. In the present study, a fermentation process for the production of CGTase from Escherichia coli harboring the recombinant plasmid pET28b(+)-CGTase was investigated and optimized. The optimal fermentation and expression conditions were 10.0 g/L glycerol, 20.0 g/L tryptone, and 10.0 g/L yeast extract with an initial pH of 7.0, an IPTG concentration of 0.1 mM and an induction temperature of 28 °C for 10 h. The resulting CGTase activity reached up to 36.4 U/L and was 2.1-fold higher than before optimization. Under these optimal fermentation conditions, the up-scaled fermentation was carried out in a 500-L fermentor, and a CGTase activity of 45.2 U/L was achieved. This study provides a foundation for the industrial production of CGTase.
Collapse
|
6
|
Expression, Functional Characterization, and Solid-State NMR Investigation of the G Protein-Coupled GHS Receptor in Bilayer Membranes. Sci Rep 2017; 7:46128. [PMID: 28387359 PMCID: PMC5384189 DOI: 10.1038/srep46128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 03/13/2017] [Indexed: 01/14/2023] Open
Abstract
The expression, functional reconstitution and first NMR characterization of the human growth hormone secretagogue (GHS) receptor reconstituted into either DMPC or POPC membranes is described. The receptor was expressed in E. coli. refolded, and reconstituted into bilayer membranes. The molecule was characterized by 15N and 13C solid-state NMR spectroscopy in the absence and in the presence of its natural agonist ghrelin or an inverse agonist. Static 15N NMR spectra of the uniformly labeled receptor are indicative of axially symmetric rotational diffusion of the G protein-coupled receptor in the membrane. In addition, about 25% of the 15N sites undergo large amplitude motions giving rise to very narrow spectral components. For an initial quantitative assessment of the receptor mobility, 1H-13C dipolar coupling values, which are scaled by molecular motions, were determined quantitatively. From these values, average order parameters, reporting the motional amplitudes of the individual receptor segments can be derived. Average backbone order parameters were determined with values between 0.56 and 0.69, corresponding to average motional amplitudes of 40–50° of these segments. Differences between the receptor dynamics in DMPC or POPC membranes were within experimental error. Furthermore, agonist or inverse agonist binding only insignificantly influenced the average molecular dynamics of the receptor.
Collapse
|
7
|
Thomas L, Kahr J, Schmidt P, Krug U, Scheidt HA, Huster D. The dynamics of the G protein-coupled neuropeptide Y2 receptor in monounsaturated membranes investigated by solid-state NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2015; 61:347-59. [PMID: 25556885 DOI: 10.1007/s10858-014-9892-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/20/2014] [Indexed: 05/14/2023]
Abstract
In contrast to the static snapshots provided by protein crystallography, G protein-coupled receptors constitute a group of proteins with highly dynamic properties, which are required in the receptors' function as signaling molecule. Here, the human neuropeptide Y2 receptor was reconstituted into a model membrane composed of monounsaturated phospholipids and solid-state NMR was used to characterize its dynamics. Qualitative static (15)N NMR spectra and quantitative determination of (1)H-(13)C order parameters through measurement of the (1)H-(13)C dipolar couplings of the CH, CH2 and CH3 groups revealed axially symmetric motions of the whole molecule in the membrane and molecular fluctuations of varying amplitude from all molecular segments. The molecular order parameters (S(backbone) = 0.59-0.67, S(CH2) = 0.41-0.51 and S(CH3) = 0.22) obtained in directly polarized (13)C NMR experiments demonstrate that the Y2 receptor is highly mobile in the native-like membrane. Interestingly, according to these results the receptor was found to be slightly more rigid in the membranes formed by the monounsaturated phospholipids than by saturated phospholipids as investigated previously. This could be caused by an increased chain length of the monounsaturated lipids, which may result in a higher helical content of the receptor. Furthermore, the incorporation of cholesterol, phosphatidylethanolamine, or negatively charged phosphatidylserine into the membrane did not have a significant influence on the molecular mobility of the Y2 receptor.
Collapse
Affiliation(s)
- Lars Thomas
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Prediction of soluble heterologous protein expression levels inEscherichia colifrom sequence-based features and its potential in biopharmaceutical process development. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.14.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Schmidt P, Thomas L, Müller P, Scheidt HA, Huster D. The G-protein-coupled neuropeptide Y receptor type 2 is highly dynamic in lipid membranes as revealed by solid-state NMR spectroscopy. Chemistry 2014; 20:4986-92. [PMID: 24623336 DOI: 10.1002/chem.201304928] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/20/2014] [Indexed: 12/22/2022]
Abstract
In spite of the recent success in crystallizing several G-protein-coupled receptors (GPCRs), a comprehensive biophysical characterization of these molecules under physiological conditions also requires the study of the molecular dynamics of these proteins. The molecular mobility of the human neuropeptide Y receptor type 2 reconstituted into dimyristoylphosphatidylcholine (DMPC) membranes was investigated by means of solid-state NMR spectroscopy. Static (15) N NMR spectra show that the receptor performs axially symmetric motions in the membrane, and several residues undergo large amplitude fluctuations. This was confirmed by quantitative measurements of the motional (1) H,(13) C order parameter of the CH, CH2 , and CH3 groups. In directly polarized (13) C NMR experiments, these order parameters showed astonishingly low values of SCH =0.55, S CH 2=0.33, and S CH 3=0.17, which corresponds to segmental amplitudes of approximately 50° in the backbone and approximately 50-60° in the side chain. At physiological temperature, (2) H NMR spectra of the deuterated receptor showed a narrow component that is indicative of molecular order parameters of S≤0.3 superimposed with a very broad spectrum that could stem from the transmembrane α-helices. These results suggest that the crystal structures of GPCRs only represent a static snapshot of these highly mobile molecules, which undergo significant structural fluctuations with relatively large amplitudes in a liquid-crystalline membrane at physiological temperature.
Collapse
Affiliation(s)
- Peter Schmidt
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig (Germany)
| | | | | | | | | |
Collapse
|
10
|
Yang L, Zhu Z, Wang W, Lu X. Microbial recycling of glycerol to biodiesel. BIORESOURCE TECHNOLOGY 2013; 150:1-8. [PMID: 24140944 DOI: 10.1016/j.biortech.2013.09.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 05/18/2023]
Abstract
The sustainable supply of lipids is the bottleneck for current biodiesel production. Here microbial recycling of glycerol, byproduct of biodiesel production to biodiesel in engineered Escherichia coli strains was reported. The KC3 strain with capability of producing fatty acid ethyl esters (FAEEs) from glucose was used as a starting strain to optimize fermentation conditions when using glycerol as sole carbon source. The YL15 strain overexpressing double copies of atfA gene displayed 1.7-fold increase of FAEE productivity compared to the KC3 strain. The titer of FAEE in YL15 strain reached to 813 mg L(-1) in minimum medium using glycerol as sole carbon source under optimized fermentation conditions. The titer of glycerol-based FAEE production can be significantly increased by both genetic modifications and fermentation optimization. Microbial recycling of glycerol to biodiesel expands carbon sources for biodiesel production.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | | | | | | |
Collapse
|
11
|
Schneider H, Sedaghati B, Naumann A, Hacker MC, Schulz-Siegmund M. Gene silencing of chordin improves BMP-2 effects on osteogenic differentiation of human adipose tissue-derived stromal cells. Tissue Eng Part A 2013; 20:335-45. [PMID: 23931154 DOI: 10.1089/ten.tea.2012.0563] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although bone morphogenic protein (BMP)-2 is known to potently induce osteogenic differentiation of human mesenchymal stem cells, strong individual differences have been reported. In part, this is due to internal antagonists of BMP-2 for example, noggin and chordin, secreted by differentiating cells. This enabling study was performed to prove the hypothesis that osteogenic effects of BMP-2 can be improved by transient nonviral gene silencing of chordin. We investigated the effect of siRNA against chordin on osteogenic differentiation in human adipose tissue-derived stromal cells (hASC). Cells of two different donors were isolated after liposuction and proliferated for passage 4 or 5. On seeding, hASCs were transfected with siRNA using a commercial liposomal transfection reagent. Subsequently, cells were differentiated in the presence or absence of BMP-2 (100 ng/mL). Noncoding siRNA as well as siRNA against noggin served as a control. Osteogenic differentiation of hASC was determined by alkaline phosphase (ALP) activity and matrix mineralization. ALP activity of hASC treated with siRNA against chordin was increased for cells of both donors. In contrast, silencing of noggin had no effect in any of the donors. In combination with BMP-2, silencing of either chordin or noggin showed strongly improved ALP activity compared with the control group that was also supplemented with BMP-2. Mineralization was observed to start earlier in groups that received siRNA against chordin or noggin and showed increased amounts of incorporated calcium on day 15 compared with the control groups. Silencing chordin in hASCs was successful to increase BMP-2 effects on osteogenic differentiation in both donors, while effects of noggin silencing were reliably observed only in one of the two investigated donors. In contrast to noggin silencing, chordin silencing also increased osteogenic differentiation without supplemented BMP-2.
Collapse
Affiliation(s)
- Hellen Schneider
- 1 Pharmaceutical Technology, Institute of Pharmacy, University of Leipzig , Leipzig, Germany
| | | | | | | | | |
Collapse
|
12
|
Kaleta C, Schäuble S, Rinas U, Schuster S. Metabolic costs of amino acid and protein production in Escherichia coli. Biotechnol J 2013; 8:1105-14. [PMID: 23744758 DOI: 10.1002/biot.201200267] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/05/2013] [Accepted: 05/28/2013] [Indexed: 11/09/2022]
Abstract
Escherichia coli is the most popular microorganism for the production of recombinant proteins and is gaining increasing importance for the production of low-molecular weight compounds such as amino acids. The metabolic cost associated with the production of amino acids and (recombinant) proteins from glucose, glycerol and acetate was determined using three different computational techniques to identify those amino acids that put the highest burden on the biosynthetic machinery of E. coli. Comparing the costs of individual amino acids, we find that methionine is the most expensive amino acid in terms of consumed mol of ATP per molecule produced, while leucine is the most expensive amino acid when taking into account the cellular abundances of amino acids. Moreover, we show that the biosynthesis of a large number of amino acids from glucose and particularly from glycerol provides a surplus of energy, which can be used to balance the high energetic cost of amino acid polymerization.
Collapse
Affiliation(s)
- Christoph Kaleta
- Research Group Theoretical Systems Biology, Friedrich Schiller University Jena, Jena, Germany.
| | | | | | | |
Collapse
|
13
|
Büttner M, Möller S, Keller M, Huster D, Schiller J, Schnabelrauch M, Dieter P, Hempel U. Over-sulfated chondroitin sulfate derivatives induce osteogenic differentiation of hMSC independent of BMP-2 and TGF-β1 signalling. J Cell Physiol 2013; 228:330-40. [PMID: 22718137 DOI: 10.1002/jcp.24135] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural glycosaminoglycans (GAGs) and chemically modified GAG derivatives are known to support osteogenic differentiation of mesenchymal stromal cells (MSC). This effect has mainly been described to be mediated by increasing the effectiveness of bone anabolic growth factors such as bone morphogenetic proteins (BMPs) due to the binding and presentation of the growth factor or by modulating its signal transduction pathway. In the present study, the influence of chondroitin sulfate (CS) and two chemically over-sulfated CS derivatives on osteogenic differentiation of human mesenchymal stromal cells (hMSC) and on BMP-2 and transforming growth factor β1 (TGF-β1) signalling was investigated. Over-sulfated CS derivatives induced an increase of tissue non-specific alkaline phosphatase (TNAP) activity and calcium deposition, whereas collagen synthesis was slightly decreased. The BMP-2-induced Smad1/5 activation was inhibited in the presence of over-sulfated CS derivatives leading to a loss of BMP-2-induced TNAP activity and calcium deposition. In contrast, the TGF-β1-induced activation of Smad2/3 and collagen synthesis were not affected by the over-sulfated CS derivatives. BMP-2 and TGF-β1 did not activate the extracellular signal-regulated kinase 1/2 or mitogen-activated protein kinase p38 in hMSC. These data suggest that over-sulfated CS derivatives themselves are able to induce osteogenic differentiation, probably independent of BMP-2 and TGF-β1 signalling, and offer therefore an interesting approach for the improvement of bone healing.
Collapse
Affiliation(s)
- Marianne Büttner
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Berger C, Berndt S, Pichert A, Theisgen S, Huster D. Efficient isotopic tryptophan labeling of membrane proteins by an indole controlled process conduct. Biotechnol Bioeng 2013; 110:1681-90. [DOI: 10.1002/bit.24830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/11/2012] [Accepted: 12/17/2012] [Indexed: 12/18/2022]
|
15
|
Nordsieck K, Pichert A, Samsonov SA, Thomas L, Berger C, Pisabarro MT, Huster D, Beck-Sickinger AG. Residue 75 of Interleukin-8 is Crucial for its Interactions with Glycosaminoglycans. Chembiochem 2012; 13:2558-66. [DOI: 10.1002/cbic.201200467] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Indexed: 12/22/2022]
|