1
|
Hao Y, Yang Y, Zhang S, Li Y, Zhai C, Long Y, Jia H, Zhang S. Expression, purification, and in vitro characterization of kinase domain of NtGCN2 from tobacco. Protein Expr Purif 2019; 163:105452. [PMID: 31301428 DOI: 10.1016/j.pep.2019.105452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/18/2019] [Accepted: 07/08/2019] [Indexed: 12/30/2022]
Abstract
General control nonderepressible 2 (GCN2) can phosphorylate the α subunit of eukaryotic initiation factor eIF2 (eukaryotic translation initiation factor 2) to down-regulateprotein synthesis in response to various biotic and abiotic stresses. However, the kinase activity of plant GCN2 has not been well-characterized in vitro. In this study, the kinase domain of Nicotiana tabacum GCN2 (NtGCN2) was inserted into the pET15b vector for prokaryotic expressionin Escherichia coli BL21-CodonPlus-(DE3)-RIPL after induction by 0.5 mmol L-1 IPTG for 13 h at 16 °C. The soluble protein was collected and purified by Ni2+-NTA agarose column, anion exchange, and molecular sieve, and the purified proteinwas used for kinase assays and the preparation of a polyclonal antibody. Enzyme-linked immunosorbent assay results showed that the titer of the antiserum was 1:520K. Western blot analysis showed that the prepared antibody reacted with GCN2 in tobacco. Additionally, the kinase activity of NtGCN2 was characterized by using recombinant NteIF2α protein as a substrate in vitro. The results showed that NtGCN2 phosphorylated NteIF2α in vitro, with the level of phosphorylation positively correlated with the NtGCN2 concentration and reaction time. Our study has prepared a specific antibody, and proves NtGCN2 can phosphorylate NteIF2α in vitro, which lays a foundation for further study of the function and interaction network of NtGCN2.
Collapse
Affiliation(s)
- Yingchen Hao
- Henan Agricultural University, College of Tobacco Science, Tobacco Cultivation Key Laboratory of China, Zhengzhou, 450002, China
| | - Yongxia Yang
- Henan Agricultural University, College of Tobacco Science, Tobacco Cultivation Key Laboratory of China, Zhengzhou, 450002, China
| | - Songjie Zhang
- Henan Agricultural University, College of Tobacco Science, Tobacco Cultivation Key Laboratory of China, Zhengzhou, 450002, China
| | - Yibo Li
- Henan Agricultural University, College of Tobacco Science, Tobacco Cultivation Key Laboratory of China, Zhengzhou, 450002, China
| | - Chunhe Zhai
- Henan Agricultural University, College of Tobacco Science, Tobacco Cultivation Key Laboratory of China, Zhengzhou, 450002, China
| | - Yue Long
- Henan Agricultural University, College of Tobacco Science, Tobacco Cultivation Key Laboratory of China, Zhengzhou, 450002, China
| | - Hongfang Jia
- Henan Agricultural University, College of Tobacco Science, Tobacco Cultivation Key Laboratory of China, Zhengzhou, 450002, China
| | - Songtao Zhang
- Henan Agricultural University, College of Tobacco Science, Tobacco Cultivation Key Laboratory of China, Zhengzhou, 450002, China.
| |
Collapse
|
2
|
Qiu Z, Wang M, She M, Chen Q, Li Q, Zhu J, Yang X, Cai X. Efficient production of human zona pellucida-3 in a prokaryotic expression system. World J Microbiol Biotechnol 2018; 34:159. [PMID: 30341457 DOI: 10.1007/s11274-018-2521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/20/2018] [Indexed: 11/11/2022]
Abstract
The zona pellucida-3 (ZP3) protein plays a pivotal role in oocyte and gamete development. We aimed to produce a recombinant ZP3 peptide using the Escherichia coli secretory system and apply it to a protein chip for detecting anti-ZP3 antibodies. The ZP3 gene was cloned into the pHOA downstream of the phoA promoter and transformed into E. coli YK537. Recombinant ZP3 was secretory expressed by decreasing the inorganic phosphate concentration. Then, rZP3 was purified and coated onto a protein chip, which was used to detect AZP3A in serum samples from 63 infertile patients. The area under the receiver operating characteristic curve was 0.934. The results, in terms of AZP3A detection, of the rZP3-coated protein chip were consistent with those of the ELISA kit. Therefore, our protein chip assay has potential for diagnosis of infertility due to AZP3A, and represents a less costly and simpler assay for clinical and research applications.
Collapse
Affiliation(s)
- Zhuolin Qiu
- Reproductive Center of Obstetrics and Gynecology, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Mingzhu Wang
- Center of Reproduction Medicine in Fourth Hospital of Xi'an City, Xi'an, 710004, People's Republic of China
| | - Miaoqin She
- Reproductive Center of Obstetrics and Gynecology, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Qianmei Chen
- Reproductive Center of Obstetrics and Gynecology, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Qingqing Li
- Reproductive Center of Obstetrics and Gynecology, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jianbin Zhu
- Technology Center, Guangdong Vitalife Bio-Tech Co., LTD, Foshan, 528200, People's Republic of China
| | - Xiaorong Yang
- Clinical Laboratory and Medical Laboratory Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China.
| | - Xiangsheng Cai
- Reproductive Center of Obstetrics and Gynecology, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Clinical Laboratory and Medical Laboratory Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
3
|
Zhang D, Liu W, Wen Z, Li B, Liu S, Li J, Chen W. Establishment of a New Zealand White Rabbit Model for Lethal Toxin (LT) Challenge and Efficacy of Monoclonal Antibody 5E11 in the LT-Challenged Rabbit Model. Toxins (Basel) 2018; 10:E289. [PMID: 30002351 PMCID: PMC6071005 DOI: 10.3390/toxins10070289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/09/2018] [Indexed: 12/23/2022] Open
Abstract
Anthrax caused by Bacillus anthracis is a lethal infectious disease, especially when inhaled, and the mortality rate approaches 100% without treatment. The anthrax antitoxin monoclonal antibody (MAb) 5E11 is a humanized antibody that targets the anthrax protective antigen (PA). The efficacy of 5E11 needs proper animal models. However, anthrax spores are extremely dangerous, so experiments must be conducted under Biosafety Level 3 conditions. Considering the critical effects of lethal toxin (LT) on hosts during infection, we report the establishment of a LT-challenged rabbit model, which caused 100% mortality with a dose of 2 mg PA + 1 mg LF, while a 4 mg PA + 2 mg LF challenge could limit death to within three days. Then, we evaluated 5E11 efficacy against LT. A prophylactic study showed that the i.v. administration of 40 mg/kg 5E11 four days before lethal dose LT challenge could lead to 100% survival. In therapeutic studies, the i.v. administration of 40 mg/kg 5E11 10 min after lethal dose LT challenge could provide complete protection. Overall, we developed a new LT-challenged rabbit model, and our results indicate that 5E11 shows potential for the clinical application in anthrax treatment.
Collapse
Affiliation(s)
- Duanyang Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China.
| | - Weicen Liu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China.
| | - Zhonghua Wen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China.
| | - Bing Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China.
| | - Shuling Liu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China.
| | - Jianmin Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China.
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China.
| |
Collapse
|
4
|
Quantitative Determination of Lethal Toxin Proteins in Culture Supernatant of Human Live Anthrax Vaccine Bacillus anthracis A16R. Toxins (Basel) 2016; 8:toxins8030056. [PMID: 26927174 PMCID: PMC4810201 DOI: 10.3390/toxins8030056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/26/2022] Open
Abstract
Bacillus anthracis (B. anthracis) is the etiological agent of anthrax affecting both humans and animals. Anthrax toxin (AT) plays a major role in pathogenesis. It includes lethal toxin (LT) and edema toxin (ET), which are formed by the combination of protective antigen (PA) and lethal factor (LF) or edema factor (EF), respectively. The currently used human anthrax vaccine in China utilizes live-attenuated B. anthracis spores (A16R; pXO1+, pXO2−) that produce anthrax toxin but cannot produce the capsule. Anthrax toxins, especially LT, have key effects on both the immunogenicity and toxicity of human anthrax vaccines. Thus, determining quantities and biological activities of LT proteins expressed by the A16R strain is meaningful. Here, we explored LT expression patterns of the A16R strain in culture conditions using another vaccine strain Sterne as a control. We developed a sandwich ELISA and cytotoxicity-based method for quantitative detection of PA and LF. Expression and degradation of LT proteins were observed in culture supernatants over time. Additionally, LT proteins expressed by the A16R and Sterne strains were found to be monomeric and showed cytotoxic activity, which may be the main reason for side effects of live anthrax vaccines. Our work facilitates the characterization of anthrax vaccines components and establishment of a quality control standard for vaccine production which may ultimately help to ensure the efficacy and safety of the human anthrax vaccine A16R.
Collapse
|
5
|
Li L, Guo Q, Liu J, Zhang J, Yin Y, Dong D, Fu L, Xu J, Chen W. Recombinant HSA-CMG2 Is a Promising Anthrax Toxin Inhibitor. Toxins (Basel) 2016; 8:toxins8010028. [PMID: 26805881 PMCID: PMC4728550 DOI: 10.3390/toxins8010028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/25/2015] [Accepted: 01/13/2016] [Indexed: 12/20/2022] Open
Abstract
Anthrax toxin is the major virulence factor produced by Bacillus anthracis. Protective antigen (PA) is the key component of the toxin and has been confirmed as the main target for the development of toxin inhibitors. The inhibition of the binding of PA to its receptor, capillary morphogenesis protein-2 (CMG2), can effectively block anthrax intoxication. The recombinant, soluble von Willebrand factor type A (vWA) domain of CMG2 (sCMG2) has demonstrated potency against anthrax toxin. However, the short half-life of sCMG2 in vivo is a disadvantage for its development as a new anthrax drug. In the present study, we report that HSA-CMG2, a protein combining human serum albumin (HSA) and sCMG2, produced in the Pichia pastoris expression system prolonged the half-life of sCMG2 while maintaining PA binding ability. The IC50 of HSA-CMG2 is similar to those of sCMG2 and CMG2-Fc in in vitro toxin neutralization assays, and HSA-CMG2 completely protects rats from lethal doses of anthrax toxin challenge; these same challenge doses exceed sCMG2 at a sub-equivalent dose ratio and overwhelm CMG2-Fc. Our results suggest that HSA-CMG2 is a promising inhibitor of anthrax toxin and may contribute to the development of novel anthrax drugs.
Collapse
Affiliation(s)
- Liangliang Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
- Center for Disease Control and Prevention of Navy, Beijing 101113, China.
| | - Qiang Guo
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Ju Liu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Jun Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Ying Yin
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Dayong Dong
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Ling Fu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| |
Collapse
|
6
|
Generation and Characterization of Human Monoclonal Antibodies Targeting Anthrax Protective Antigen following Vaccination with a Recombinant Protective Antigen Vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:553-60. [PMID: 25787135 DOI: 10.1128/cvi.00792-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/03/2015] [Indexed: 12/20/2022]
Abstract
The anthrax protective antigen (PA) is the central component of the three-part anthrax toxin, and it is the primary immunogenic component in the approved AVA anthrax vaccine and the "next-generation" recombinant PA (rPA) anthrax vaccines. Animal models have indicated that PA-specific antibodies (AB) are sufficient to protect against infection with Bacillus anthracis. In this study, we investigated the PA domain specificity, affinity, mechanisms of neutralization, and synergistic effects of PA-specific antibodies from a single donor following vaccination with the rPA vaccine. Antibody-secreting cells were isolated 7 days after the donor received a boost vaccination, and 34 fully human monoclonal antibodies (hMAb) were identified. Clones 8H6, 4A3, and 22F1 were able to neutralize lethal toxin (LeTx) both in vitro and in vivo. Clone 8H6 neutralized LeTx by preventing furin cleavage of PA in a dose-dependent manner. Clone 4A3 enhanced degradation of nicked PA, thereby interfering with PA oligomerization. The mechanism of 22F1 is still unclear. A fourth clone, 2A6, that was protective only in vitro was found to be neutralizing in vivo in combination with a toxin-enhancing antibody, 8A7, which binds to domain 3 of PA and PA oligomers. These results provide novel insights into the antibody response elicited by the rPA vaccine and may be useful for PA-based vaccine and immunotherapeutic cocktail design.
Collapse
|
7
|
Yin Y, Zhang S, Cai C, Zhang J, Dong D, Guo Q, Fu L, Xu J, Chen W. Deletion modification enhances anthrax specific immunity and protective efficacy of a hepatitis B core particle-based anthrax epitope vaccine. Immunobiology 2013; 219:97-103. [PMID: 24054942 DOI: 10.1016/j.imbio.2013.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 06/17/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
Abstract
Protective antigen (PA) is one of the major virulence factors of anthrax and is also the major constituent of the current anthrax vaccine. Previously, we found that the 2β2-2β3 loop of PA contains a dominant neutralizing epitope, the SFFD. We successfully inserted the 2β2-2β3 loop of PA into the major immunodominant region (MIR) of hepatitis B virus core (HBc) protein. The resulting fusion protein, termed HBc-N144-PA-loop2 (HBcL2), can effectively produce anthrax specific protective antibodies in an animal model. However, the protective immunity caused by HBcL2 could still be improved. In this research, we removed amino acids 79-81 from the HBc MIR of the HBcL2. This region was previously reported to be the major B cell epitope of HBc, and in keeping with this finding, we observed that the short deletion in the MIR not only diminished the intrinsic immunogenicity of HBc but also stimulated a higher titer of anthrax specific immunity. Most importantly, this deletion led to the full protection of the immunized mice against a lethal dose anthrax toxin challenge. We supposed that the conformational changes which occurred after the short deletion and foreign insertion in the MIR of HBc were the most likely reasons for the improvement in the immunogenicity of the HBc-based anthrax epitope vaccine.
Collapse
Affiliation(s)
- Ying Yin
- Beijing Institute of Biotechnology, 20 Dongdajie, Fengtai, Beijing 100071, China
| | - Sheng Zhang
- Beijing Institute of Biotechnology, 20 Dongdajie, Fengtai, Beijing 100071, China; Department of Pediatrics, BaYi Children's Hospital of The General Military Hospital of Beijing PLA, 5 Nanmencang Road, Dongcheng District, Beijing 100700, China
| | - Chenguang Cai
- Beijing Institute of Biotechnology, 20 Dongdajie, Fengtai, Beijing 100071, China
| | - Jun Zhang
- Beijing Institute of Biotechnology, 20 Dongdajie, Fengtai, Beijing 100071, China
| | - Dayong Dong
- Beijing Institute of Biotechnology, 20 Dongdajie, Fengtai, Beijing 100071, China
| | - Qiang Guo
- Beijing Institute of Biotechnology, 20 Dongdajie, Fengtai, Beijing 100071, China
| | - Ling Fu
- Beijing Institute of Biotechnology, 20 Dongdajie, Fengtai, Beijing 100071, China
| | - Junjie Xu
- Beijing Institute of Biotechnology, 20 Dongdajie, Fengtai, Beijing 100071, China.
| | - Wei Chen
- Beijing Institute of Biotechnology, 20 Dongdajie, Fengtai, Beijing 100071, China.
| |
Collapse
|