1
|
Hajihassan Z, Yaseri A, Yazdi M. Optimization of recombinant neurturin expression in Escherichia coli using response surface methodology. Biotechnol Lett 2025; 47:36. [PMID: 40100421 DOI: 10.1007/s10529-025-03575-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
Neurturin, a neurotrophic growth factor, has been identified as a potential treatment or reversal agent for neurodegenerative conditions. Although Escherichia coli is an appropriate host for recombinant protein expression, the production of proteins with disulfide bonds, such as neurturin, in this strain is frequently accompanied by the formation of inclusion bodies. In this study, the Rosetta-gami strain, which is well-suited for the accurate formation of disulfide bonds was employed for the soluble production of neurturin. Response surface methodology (RSM) was also used to investigate the effects of IPTG concentration, post-induction time and temperature on the soluble production of neurturin. The results showed that the highest yield of neurturin production occurred in the presence of 0.8 mM of IPTG after 5.5 h at 26 ºC. Fractional Factorial Design was used in the subsequent stage to screen the effects of culture medium components on the protein production. The best concentrations of yeast extract, tryptone and MgSO4 to have a significant effect on total protein concentration were determined by RSM design to be 15 g/l for both tryptone and yeast extract and 2.2 g/l for MgSO4. Finally, an experiment was carried out under optimized conditions to evaluate the yield of the process. The results demonstrated a notable enhancement in neurturin production following optimization, with an increase of 8.6-fold compared to the normal condition.
Collapse
Affiliation(s)
- Zahra Hajihassan
- School of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.
| | - Aysan Yaseri
- School of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Mina Yazdi
- School of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Fathi Z, Boojar MMA, Sajedi RH, Dehnavi E, Jahanafrooz Z. Expression of VEGFR2 Ligand Binding Domain in Pichia pink™ 4 Cells and Evaluation of Its Interactions with VEGF-A 165 Receptor Binding Domain. Mol Biotechnol 2025; 67:342-355. [PMID: 38349458 DOI: 10.1007/s12033-024-01057-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/26/2023] [Indexed: 01/04/2025]
Abstract
Vascular endothelial growth factor A165 (VEGF-A165) and VEGF receptor 2 (KDR) are important mediators of angiogenesis. We aimed to express the soluble KDR ligand-binding domain (sKDR1-3) and evaluate its interaction with the VEGF-A165 receptor-binding domain (VEGFA165-RBD). sKDR1-3 DNA was designed and subcloned into pPinkα-HC plasmid. The cassette was transfected into the Pichia pink™ 4 genome by homologous recombination. We optimized the expression of sKDR1-3 under the induction of different methanol concentrations. VEGFA165-RBD was expressed in E. coli BL21 harboring pET28a( +)─VEGFA165-RBD vector under induction with IPTG with/without lactose. Interaction and biological activity of sKDR1-3 and VEGFA165-RBD were investigated by ELISA and anti-proliferation tests. sKDR1-3 migrated on SDS-PAGE gel as a 35-180 kDa protein due to glycosylation. The relative expression level of sKDR1-3 under 1% methanol was higher than 0.5% and 4% methanol induction. IPTG and cysteine were suitable for induction and refolding of VEGFA165-RBD. 25 ng sKDR1-3 and 20 ng VEGFA165-RBD showed strong binding. sKDR1-3 bound to VEGFA165-RBD and VEGF-A165 with dissociation constants of 0.148 and 0.2 nM, respectively. 4-10 nM concentrations of sKDR1-3 inhibited the proliferation of HUVE cells induced by 5 nM VEGFA165-RBD. In consideration, sKDR1-3 in the nanomolar concentration range, is a promising anticancer drug to inhibit angiogenesis.
Collapse
Affiliation(s)
- Zahra Fathi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | | | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Dehnavi
- Gene Transfer Pioneers (GTP) Research Group, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Jahanafrooz
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran.
| |
Collapse
|
3
|
Shah P, Chandra S. Review on emergence of nanomaterial coatings in bio-engineered cardiovascular stents. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
He Q, Cao Z, Wang P, Lu Q, Zheng H, Sun J. Efficient application of a baculovirus-silkworm larvae expression system for obtaining porcine circovirus type 2 virus-like particles for a vaccine. Arch Virol 2020; 165:2301-2309. [PMID: 32757056 DOI: 10.1007/s00705-020-04754-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
Porcine circovirus type 2 (PCV2) is a major pathogen associated with swine diseases. It is the smallest single-stranded DNA virus, and its genome contains four major open reading frames (ORFs). ORF2 encodes the major structural protein Cap, which can self-assemble into virus-like particles (VLPs) in vitro and contains the primary antigenic determinants. In this study, we developed a high-efficiency method for obtaining VLPs and optimized the purification conditions. In this method, we expressed the protein Cap with a 6× His tag using baculovirus-infected silkworm larvae as well as the E. coli BL21(DE3) prokaryotic expression system. The PCV2 Cap proteins produced by the silkworm larvae and E. coli BL21(DE3) were purified. Cap proteins purified from silkworm larvae self-assembled into VLPs in vitro, while the Cap proteins purified from bacteria were unable to self-assemble. Transmission electron microscopy confirmed the self-assembly of VLPs. The immunogenicity of the VLPs produced using the baculovirus system was demonstrated using an enzyme-linked immunosorbent assay (ELISA). Furthermore, the purification process was optimized. The results demonstrated that the expression system using baculovirus-infected silkworm larvae is a good choice for obtaining VLPs of PCV2 and has potential for the development of a low-cost and efficient vaccine.
Collapse
Affiliation(s)
- Qianhua He
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding and Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zhenming Cao
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding and Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Pengwei Wang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding and Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qiuyuan Lu
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding and Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Hao Zheng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding and Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding and Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
5
|
Optimization of Anti-CXCL10 Nanobody Expression Using Response Surface Methodology and Evaluation of its Anti-metastatic Effect on Breast Cancer cells. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09941-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Uhoraningoga A, Kinsella GK, Henehan GT, Ryan BJ. The Goldilocks Approach: A Review of Employing Design of Experiments in Prokaryotic Recombinant Protein Production. Bioengineering (Basel) 2018; 5:E89. [PMID: 30347746 PMCID: PMC6316313 DOI: 10.3390/bioengineering5040089] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 02/06/2023] Open
Abstract
The production of high yields of soluble recombinant protein is one of the main objectives of protein biotechnology. Several factors, such as expression system, vector, host, media composition and induction conditions can influence recombinant protein yield. Identifying the most important factors for optimum protein expression may involve significant investment of time and considerable cost. To address this problem, statistical models such as Design of Experiments (DoE) have been used to optimise recombinant protein production. This review examines the application of DoE in the production of recombinant proteins in prokaryotic expression systems with specific emphasis on media composition and culture conditions. The review examines the most commonly used DoE screening and optimisation designs. It provides examples of DoE applied to optimisation of media and culture conditions.
Collapse
Affiliation(s)
| | | | - Gary T Henehan
- Dublin Institute of Technology, Dublin D01 HV58, Ireland.
| | - Barry J Ryan
- Dublin Institute of Technology, Dublin D01 HV58, Ireland.
| |
Collapse
|
7
|
Development of a PCL/gelatin/chitosan/β-TCP electrospun composite for guided bone regeneration. Prog Biomater 2018; 7:225-237. [PMID: 30242739 PMCID: PMC6173671 DOI: 10.1007/s40204-018-0098-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/07/2018] [Indexed: 01/01/2023] Open
Abstract
Many approaches have been developed to regenerate biological substitutes for repairing damaged tissues. Guided bone/tissue regeneration (GBR/GTR) that employs a barrier membrane has received much attention in recent years. Regardless of substantial efforts for treatment of damaged tissue in recent years, an effective therapeutic strategy is still a challenge for tissue engineering researchers. The aim of the current study is to fabricate a GBR membrane consisting of polycaprolactone (PCL)/gelatin/chitosan which is modified with different percentages of β-tricalcium phosphate (β-TCP) for improved biocompatibility, mechanical properties, and antibacterial activity. The membranes are examined for their mechanical properties, surface roughness, hydrophilicity, biodegradability and biological response. The mechanical properties, wettability and roughness of the membranes are improved with increases in β-TCP content. An increase in the elastic modulus of the substrates is obtained as the amount of β-TCP increases to 5% (145–200 MPa). After 5 h, the number of attached cells is enhanced by 30%, 40% and 50% on membranes having 1%, 3% and 5% β-TCP, respectively. The cell growth on a membrane with 3% of β-TCP is also 50% and 20% higher than those without β-TCP and 5% β-TCP, respectively. Expression of type I collagen is increased with addition of β-TCP by 3%, while there is no difference in ALP activity. The results indicated that a composite having (3%) β-TCP has a potential application for guided bone tissue regeneration.
Collapse
|
8
|
Gholami Tilko P, Hajihassan Z, Moghimi H. Optimization of recombinant β-NGF expression in Escherichia coli using response surface methodology. Prep Biochem Biotechnol 2017; 47:406-413. [PMID: 27813712 DOI: 10.1080/10826068.2016.1252927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Human nerve growth factor a member of the neurotrophin family can be used to treat neurodegenerative diseases. As it has disulfide bonds in its structure, periplasmic expression of it using appropriate signal sequence is beneficial. Therefore, in this work β-nerve growth factor (β-NGF) was expressed in Escherichia coli using pET39b expression vector containing DsbA signal sequence. In an initial step, the effect of isopropyl β-D-1-thiogalactopyranoside (IPTG) and lactose concentration as inducer on protein production was investigated using response surface methodology. Then the effect of different postinduction time and temperature on protein production was studied. Our results indicated that the highest β-NGF production was achieved with 1 mM IPTG and low concentrations of lactose (0-2% w/v), low cultivation temperature of 25°C and postinduction time of 2 hr. Also following β-NGF purification, bioassay test using PC12 cell line was done. The biological activity of the purified β-NGF showed a similar cell proliferation activity with the standard recombinant human β-NGF. In conclusion, the results indicated an optimized upstream process to obtain high yields of biologically active β-NGF.
Collapse
Affiliation(s)
- Pouria Gholami Tilko
- a Department of Life Science Engineering, Faculty of New Sciences and Technologies , University of Tehran , Tehran , Iran.,b Department of Microbial Biotechnology, School of Biology, College of Science , University of Tehran , Tehran , Iran
| | - Zahra Hajihassan
- a Department of Life Science Engineering, Faculty of New Sciences and Technologies , University of Tehran , Tehran , Iran
| | - Hamid Moghimi
- b Department of Microbial Biotechnology, School of Biology, College of Science , University of Tehran , Tehran , Iran
| |
Collapse
|
9
|
Expression and Secretion of Endostar Protein by Escherichia Coli: Optimization of Culture Conditions Using the Response Surface Methodology. Mol Biotechnol 2016; 58:634-647. [DOI: 10.1007/s12033-016-9963-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Mohajeri A, Pilehvar-Soltanahmadi Y, Pourhassan-Moghaddam M, Abdolalizadeh J, Karimi P, Zarghami N. Cloning and Expression of Recombinant Human Endostatin in Periplasm of Escherichia coli Expression System. Adv Pharm Bull 2016; 6:187-94. [PMID: 27478780 DOI: 10.15171/apb.2016.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/17/2016] [Accepted: 04/02/2016] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Recombinant human endostatin (rhEs) is an angiogenesis inhibitor which is used as a specific drug in the treatment of non-small-cell lung cancer. In the current research, we developed an efficient method for expressing soluble form of the rhEs protein in the periplasmic space of Escherichia coli via fusing with pelB signal peptide. METHODS The human endostatin (hEs) gene was amplified using synthetic (hEs) gene as a template; then, cloned and expressed under T7 lac promoter. IPTG was used as an inducer for rhEs expression. Next, the osmotic shock was used to extraction of protein from the periplasmic space. The presence of rhEs in the periplasmic space was approved by SDS-PAGE and Western blotting. RESULTS The results show the applicability of pelB fusion protein system usage for secreting rhEs in the periplasm of E. coli in the laboratory scale. The rhEs represents approximately 35 % (0.83mg/l) of the total cell protein. CONCLUSION The present study apparently is the first report of codon-optimized rhEs expression as a fusion with pelB signal peptide. The results presented the successful secretion of soluble rhEs to the periplasmic space.
Collapse
Affiliation(s)
- Abbas Mohajeri
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yones Pilehvar-Soltanahmadi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Pourhassan-Moghaddam
- Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Mohajeri A, Pilehvar-Soltanahmadi Y, Abdolalizadeh J, Karimi P, Zarghami N. Effect of Culture Condition Variables on Human Endostatin Gene Expression in Escherichia coli Using Response Surface Methodology. Jundishapur J Microbiol 2016; 9:e34091. [PMID: 27800134 PMCID: PMC5080621 DOI: 10.5812/jjm.34091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/15/2016] [Accepted: 02/20/2016] [Indexed: 01/22/2023] Open
Abstract
Background Recombinant human endostatin (rhES) is an angiogenesis inhibitor used as a specific drug for the treatment of non-small-cell lung cancer. As mRNA concentration affects the recombinant protein expression level, any factor affecting mRNA concentration can alter the protein expression level. Response surface methodology (RSM) based on the Box-Behnken design (BBD) is a statistical tool for experimental design and for optimizing biotechnological processes. Objectives This investigation aimed to predict and develop the optimal culture conditions for mRNA expression of the synthetic human endostatin (hES) gene in Escherichia coli BL21 (DE3). Materials and Methods The hES gene was amplified, cloned, and expressed in the E. coli expression system. Three factors, including isopropyl β-D-1-thiogalactopyranoside (IPTG) concentration, post-induction time, and cell density before induction, were selected as important factors. The mRNA expression level was determined using real-time PCR. The expression levels of hES mRNA under the different growth conditions were analyzed. SDS-PAGE and western blot analyses were carried out for further confirmation of interest-gene expression. Results A maximum rhES mRNA level of 376.16% was obtained under the following conditions: 0.6 mM IPTG, 7 hours post-induction time, and 0.9 cell density before induction. The level of rhES mRNA was significantly correlated with post-induction time, IPTG concentration, and cell density before induction (P < 0.05). The expression of the hES gene was confirmed by western blot. Conclusions The obtained results indicate that RSM is an effective method for the optimization of culture conditions for hES gene expression in E. coli.
Collapse
Affiliation(s)
- Abbas Mohajeri
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, IR Iran
| | - Yones Pilehvar-Soltanahmadi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, IR Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, IR Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, IR Iran
| | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, IR Iran
| | - Nosratollah Zarghami
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, IR Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, IR Iran
- Corresponding author: Nosratollah Zarghami, Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, IR Iran. Tel: +98-4113378093, E-mail:
| |
Collapse
|
12
|
Xu M, Jin H, Chen Z, Xie W, Wang Y, Wang Y, Wang M, Zhang J, Acheampong DO. A novel bispecific diabody targeting both vascular endothelial growth factor receptor 2 and epidermal growth factor receptor for enhanced antitumor activity. Biotechnol Prog 2016; 32:294-302. [PMID: 26785424 DOI: 10.1002/btpr.2231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/05/2016] [Indexed: 12/30/2022]
Abstract
Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor 2 (VEGFR2) are receptor tyrosine kinases known to play critical roles in the development and progression of tumors. Based on the cross-talk between EGFR and VEGFR2 signal pathways, we designed and produced a bispecific diabody (bDAb) targeting both EGFR and VEGFR2 simultaneously. The bispecific molecule (EK-02) demonstrated that it could bind to HUVEC (VEGFR2 high-expressing) and A431 (EGFR overexpressing) cells. Additionally, similar to the parental antibodies, it was able to inhibit proliferation and migration, and induced apoptosis in these cells (HUVECs and A431), demonstrating that it had retained the functional properties of its parental antibodies. Furthermore, the efficacy of EK-02 was evaluated using the human colon adenocarcinoma cell line HT29 (VEGFR2 and EGFR coexpressing). In vitro assay showed that EK-02 could bind to HT29 cells, restrain cell growth and migration, and induce apoptosis with enhanced efficacy compared to both parental antibodies. Further, it inhibited the neovascularization and tumor formation on an HT29 cell bearing chicken chorioallantoic membrane (CAM) tumor model in vivo. In conclusion, these data suggest that the novel bDAb (EK-02) has antiangiogenesis and antitumor capacity both in vitro and in vivo, and can possibly be used as cotargeted therapy for the treatment of EGFR and VEGFR2 overexpressing tumors. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:294-302, 2016.
Collapse
Affiliation(s)
- Menghuai Xu
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Haizhen Jin
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Zhiguo Chen
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Wei Xie
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Youfu Wang
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yang Wang
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Min Wang
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Juan Zhang
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Desmond Omane Acheampong
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,Dept. of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
13
|
Akbarzadeh A, Dehnavi E, Aghaeepoor M, Amani J. Optimization of Recombinant Expression of Synthetic Bacterial Phytase in Pichia pastoris Using Response Surface Methodology. Jundishapur J Microbiol 2015; 8:e27553. [PMID: 26870311 PMCID: PMC4746705 DOI: 10.5812/jjm.27553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/19/2015] [Accepted: 07/13/2015] [Indexed: 11/28/2022] Open
Abstract
Background: Escherichia coli phytase is an acidic histidine phytase with great specific activity. Pichia pastoris is a powerful system for the heterologous expression of active and soluble proteins which can express recombinant proteins in high cell density fermenter without loss of product yield and efficiently secrete heterologous proteins into the media. Recombinant protein expression is influenced by expression conditions such as temperature, concentration of inducer, and pH. By optimization, the yield of expressed proteins can be increase. Response surface methodology (RSM) has been widely used for the optimization and studying of different parameters in biotechnological processes. Objectives: In this study, the expression of synthetic appA gene in P. pastoris was greatly improved by adjusting the expression condition. Materials and Methods: The appA gene with 410 amino acids was synthesized by P. pastoris codon preference and cloned in expression vector pPinkα-HC, under the control of AOX1 promoter, and it was transformed into P. pastoris GS115 by electroporation. Recombinant phytase was expressed in buffered methanol-complex medium (BMMY) and the expression was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and enzymatic assay. To achieve the highest level of expression, methanol concentration, pH and temperature were optimized via RSM. Finally, the optimum pH and temperature for recombinant phytase activity was determined. Results: Escherichia coli phytase was expressed in P. pastoris under different cultivation conditions (post-induction temperature, methanol concentration, and post-induction pH). The optimized conditions by RSM using face centered central composite design were 1% (v/v) methanol, pH = 5.8, and 24.5°C. Under the optimized conditions, appA was successfully expressed in P. pastoris and the maximum phytase activity was 237.2 U/mL after 72 hours of expression. Conclusions: By optimization of recombinant phytase expression in shake flask culture, we concluded that P. pastoris was a suitable host for high-level expression of phytase and it can possess high potential for industrial applications.
Collapse
Affiliation(s)
- Ali Akbarzadeh
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| | - Ehsan Dehnavi
- Gene Transfer Pioneers Research Group, Shahid Beheshti University, Tehran, IR Iran
| | - Mojtaba Aghaeepoor
- Gene Transfer Pioneers Research Group, Shahid Beheshti University, Tehran, IR Iran
- Semnan Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, IR Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Jafar Amani, Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Vanak Sq, Molasadra St, P. O. Box: 193955487, Tehran, IR Iran. Tel: +98-2182482568, Fax: +98-2188068924, E-mail:
| |
Collapse
|