1
|
Patel P, Wang JY, Mineroff J, Jagdeo J. The potential cutaneous benefits of Carthamus tinctorius oleosomes. Arch Dermatol Res 2023; 316:26. [PMID: 38060028 DOI: 10.1007/s00403-023-02750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 12/08/2023]
Abstract
Safflower (Carthamus tinctorius) oleosomes are unique organelles that house triglycerides and fatty acids and demonstrate a natural resilience to environmental stresses. There is recent growing interest in safflower oleosomes due to their potential applications in dermatology, especially as a carrier technology to improve drug penetration through the skin. This paper explores various aspects of safflower oleosomes, including their production, safety, absorption, and applications in photoprotection and epidermal remodeling. Oleosomes have shown encouraging results in targeted drug delivery in in vitro and in vivo animal models; however, human clinical research is required to determine their efficacy and safety in dermatology. Oleosomes are comprise a novel biotechnology that has the potential to transform sustainable and natural treatments in dermatology by utilizing their unique structure. Safflower oleosomes are stable lipid molecules that can deliver small and large molecules with high efficacy. This review will examine the current research findings and prospective future applications of oleosomes.
Collapse
Affiliation(s)
- Paras Patel
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, NY, USA
- Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084, USA
| | - Jennifer Y Wang
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, NY, USA
- Department of Dermatology, SUNY Downstate Medical Center, State University of New York, Downstate Health Sciences University, 450 Clarkson Avenue, 8th floor, Brooklyn, NY, 11203, USA
| | - Jessica Mineroff
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, NY, USA
- Department of Dermatology, SUNY Downstate Medical Center, State University of New York, Downstate Health Sciences University, 450 Clarkson Avenue, 8th floor, Brooklyn, NY, 11203, USA
| | - Jared Jagdeo
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, NY, USA.
- Department of Dermatology, SUNY Downstate Medical Center, State University of New York, Downstate Health Sciences University, 450 Clarkson Avenue, 8th floor, Brooklyn, NY, 11203, USA.
| |
Collapse
|
2
|
Xu K, Zou W, Peng B, Guo C, Zou X. Lipid Droplets from Plants and Microalgae: Characteristics, Extractions, and Applications. BIOLOGY 2023; 12:biology12040594. [PMID: 37106794 PMCID: PMC10135979 DOI: 10.3390/biology12040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
Plant and algal LDs are gaining popularity as a promising non-chemical technology for the production of lipids and oils. In general, these organelles are composed of a neutral lipid core surrounded by a phospholipid monolayer and various surface-associated proteins. Many studies have shown that LDs are involved in numerous biological processes such as lipid trafficking and signaling, membrane remodeling, and intercellular organelle communications. To fully exploit the potential of LDs for scientific research and commercial applications, it is important to develop suitable extraction processes that preserve their properties and functions. However, research on LD extraction strategies is limited. This review first describes recent progress in understanding the characteristics of LDs, and then systematically introduces LD extraction strategies. Finally, the potential functions and applications of LDs in various fields are discussed. Overall, this review provides valuable insights into the properties and functions of LDs, as well as potential approaches for their extraction and utilization. It is hoped that these findings will inspire further research and innovation in the field of LD-based technology.
Collapse
Affiliation(s)
- Kaiwei Xu
- Institute of Systems Security and Control, College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
- Shaanxi Provincial Key Laboratory of Land Consolidation, Chang'an University, Xi'an 710074, China
| | - Wen Zou
- State Owned SIDA Machinery Manufacturing, Xianyang 712201, China
| | - Biao Peng
- Shaanxi Provincial Key Laboratory of Land Consolidation, Chang'an University, Xi'an 710074, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an 710021, China
| | - Chao Guo
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an 710021, China
| | - Xiaotong Zou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
3
|
Lan X, Guo J, Li J, Qiang W, Du L, Zhou T, Li X, Wu Z, Yang J. Xanthan gum/oil body-microgel emulsions with enhanced transdermal absorption for accelerating wound healing. Int J Biol Macromol 2022; 222:1376-1387. [PMID: 36126813 DOI: 10.1016/j.ijbiomac.2022.09.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022]
Abstract
The oil body comprises lipid droplets surrounded by a surface embedded with oil body-related proteins. To form a drug delivery system, an oleosin can be fused with foreign proteins and bound to the oil body surface. Here, safflower oil bodies carrying oleosin-human epidermal growth factor (hEGF) were mixed with xanthan gum to form self-assembled polymers, referred as an oil body microgel emulsion (OBEME) without any chemical crosslinking agent. The physicochemical properties of OBEME were evaluated and compared with those of natural lipid droplets. The electrostatic interaction between xanthan gum and oil bodies prevents excessive cross-linking and forms a uniform network structure. The basic properties of OBEME were characterized by scanning electron microscopy, cryo-scanning electron microscopy, rheology, and thermogravimetric analysis. The OBEME is an interconnected network and presents a smooth surface without any pores; it remains stable at room temperature for 90 days, and is not affected by low-speed centrifugation and repeated freeze-thaw cycles as indicated by particle size, potential, and fluorescence microscopy analyses. The OBEME enlarges the skin tissue gap, enhances skin permeability, and shows a good slow-release effect in the transdermal absorption test in vivo. It demonstrates a wound healing effect; further, it regulates the inflammatory response of full-layer skin wounds in rats, as well as accelerate angiogenesis, and promote re-epithelialization and remodeling. The OBEME as a bioactive molecule-carbohydrate complex can effectively accelerate skin regeneration and has great translational potential to provide low-cost alternative wound care treatments.
Collapse
Affiliation(s)
- Xinxin Lan
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jinnan Guo
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jing Li
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Weidong Qiang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Linna Du
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Tingting Zhou
- Jilin Kingmed for Clinical Laboratory Co., Ltd., Changchun 130000, China
| | - Xiaokun Li
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Zhuofu Wu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China.
| | - Jing Yang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
4
|
Poloxam Thermosensitive Hydrogels Loaded with hFGF2-Linked Camelina Lipid Droplets Accelerate Skin Regeneration in Deep Second-Degree Burns. Int J Mol Sci 2022; 23:ijms232112716. [PMID: 36361508 PMCID: PMC9657430 DOI: 10.3390/ijms232112716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023] Open
Abstract
Burn injuries are difficult to manage due to the defect of large skin tissues, leading to major disability or even death. Human fibroblast growth factor 2 (hFGF2) is known to promote burn wound healing. However, direct administration of hFGF2 to the wound area would affect the bioactivity. To provide a supportive environment for hFGF2 and control its release in a steady fashion, in this research, we developed novel thermosensitive poloxam hydrogels delivered with hFGF2-linked Camelina lipid droplets (CLD-hFGF2 hydrogels). Cryopreserved scanning electron microscopy (SEM) results indicated that the incorporation of CLD-hFGF2 does not significantly affect the inner structure of hydrogels. The rheological properties showed that CLD-hFGF2 hydrogels gelated in response to temperature, thus optimizing the delivery method. In vitro, CLD-hFGF2 could be released from hydrogels for 3 days after drug delivery (the release rate was 72%), and the release solution could still promote the proliferation and migration of NIH3T3 cells. In vivo, compared with hydrogels alone or with direct CLD-hFGF2 administration, CLD-hFGF2 hydrogels had the most obvious effect on deep second-degree burn wound healing. This work indicates that CLD-hFGF2 hydrogels have potential application value in burn wound healing.
Collapse
|
5
|
Kong J, Qiang W, Jiang J, Hu X, Chen Y, Guo Y, Liu H, Sun S, Gao H, Zhang Y, Gao Y, Liu X, Liu X, Li H. Safflower oil body nanoparticles deliver hFGF10 to hair follicles and reduce microinflammation to accelerate hair regeneration in androgenetic alopecia. Int J Pharm 2022; 616:121537. [PMID: 35150848 DOI: 10.1016/j.ijpharm.2022.121537] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/19/2022] [Accepted: 01/29/2022] [Indexed: 12/19/2022]
Abstract
Androgenetic alopecia (AGA) affects physical and mental health with limited therapeutic options. Novel materials and delivery methods have considerable potential to improve the current paradigm of treatment. In this study, we used a novel plant nanoparticle of safflower oil body (SOB) loaded with human fibroblast growth factor 10 (hFGF10) to target hair follicles and accelerate hair regeneration in AGA mice with few adverse effects. Our data revealed that the average particle size of SOB-hFGF10 was 226.73 ± 9.98 nm, with a spherical and uniform structure, and that SOB-hFGF10 was quicker to preferentially penetrate into hair follicles than hFGF2 alone. Using a mouse model of AGA, SOB-hFGF10 was found to significantly improve hair regeneration without any significant toxicity. Furthermore, SOB-hFGF10 inhibited dihydrotestosterone (DHT)-induced TNF-α, IL-1β, and IL-6 overproduction in macrophages in relation to hair follicle microinflammation, thereby enhancing the proliferation of dermal papilla cells. Overall, this study provides an applicable therapeutic method through targeting hair follicles and reducing microinflammation to accelerate hair regeneration in AGA.
Collapse
Affiliation(s)
- Jie Kong
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Weidong Qiang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jingyi Jiang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Xingli Hu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Yining Chen
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - YongXin Guo
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Hongxiang Liu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Siming Sun
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Hongtao Gao
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yuan Zhang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Yanyan Gao
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Xiuming Liu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Xin Liu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China.
| | - Haiyan Li
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; College of Tropical Crops, Hainan University, Haikou, China.
| |
Collapse
|
6
|
Saadat F, Macheroux P, Alizadeh H, Razavi SH. Economic purification of recombinant uricase by artificial oil bodies. BIORESOUR BIOPROCESS 2022; 9:10. [PMID: 38647848 PMCID: PMC10991495 DOI: 10.1186/s40643-022-00501-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
Rasburicase is an expensive treatment used to control hyperuricemia caused by tumour lysis syndrome (TLS). In this study, a non-chromatographic method was designed based on nano-oil bodies for convenient and economical purification of the recombinant uricase. For this purpose, two chimaeras were synthesized with a different arrangement of the uricase, caleosin and intein fragments. After confirming the protein expression by measuring the uricase activity at 293 nm, purification was conducted through oil-body construction. The results were resolved on the 12% SDS-PAGE gel. Finally, the stability of the oil bodies was examined against different salts, surfactants, temperatures, and pH values. According to our results, the overexpression of uricase-caleosin chimaera under the T7 promoter in Escherichia coli led to the production of soluble protein, which was successfully purified by artificial oil bodies. The active uricase was subsequently released through the self-splicing of intein. Further investigations highlighted the importance of the free C-terminus of caleosin in constructing artificial oil bodies. Moreover, surfactants and low temperature, in contrast to salts, improved the stability of oil bodies. In conclusion, caleosins are an efficient purification tag reducing the cost of purification compared to conventional chromatography methods.
Collapse
Affiliation(s)
- Fatemeh Saadat
- Independent Department of Biotechnology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | - Houshang Alizadeh
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
| | - Seyed Hadi Razavi
- Department of Food Science & Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
7
|
Lan X, Zhou T, Dong Y, Li Y, Liu X, Qiang W, Liu Y, Guo Y, Noman M, Li J, Du L, Li X, Yang J. Dermal toxicity, dermal irritation, and delayed contact sensitization evaluation of oil body linked oleosin-hEGF microgel emulsion via transdermal drug delivery for wound healing. Cutan Ocul Toxicol 2021; 40:45-53. [PMID: 33438439 DOI: 10.1080/15569527.2021.1874008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objective: The expression of therapeutic proteins in plant oil body bioreactors has attracted much attention. But its safety is not yet clear. This article determines the risk of safety after using the drug. Methods: The oil body-linked oleosin-hEGF microgel emulsion (OBEME) was prepared by mixing the xanthan gum with suitable concentrations in an appropriate proportion. Skin irritation and sensitization reaction were investigated in rats and guinea pigs using OBEME as test article.Results: The OBEME did not produce dermal erythema/eschar or oedema responses. The dermal subacute and subchronic toxicity of OBEME were evaluated in accordance with OECD guidelines. Compared with the control group, the basic physical signs, such as weight, feed, drinking, excretion, and behaviour of experimental animals, were not abnormal. In addition, no abnormality was found in haematological parameters, biochemical indexes, relative organ weight, and histopathological observation of organs, and there was no significant difference compared with normal saline treatment group. Therefore, we conclude that OBEME has no toxic effects and is safe and reliable to be used for topical application.
Collapse
Affiliation(s)
- Xinxin Lan
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| | - Tingting Zhou
- Jilin Kingmed for Clinical Laboratory Co., Ltd, Changchun, PR China
| | - Yue Dong
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| | - Yuyan Li
- Jilin Kingmed for Clinical Laboratory Co., Ltd, Changchun, PR China
| | - Xinyu Liu
- Jilin Kingmed for Clinical Laboratory Co., Ltd, Changchun, PR China
| | - Weidong Qiang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| | - Yan Liu
- Jilin Kingmed for Clinical Laboratory Co., Ltd, Changchun, PR China
| | - Yongxin Guo
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| | - Muhammad Noman
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| | - Jing Li
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| | - Linna Du
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, PR China
| | - Jing Yang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
8
|
Cho EC, Kim K. A comprehensive review of biochemical factors in herbs and their constituent compounds in experimental studies on alopecia. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112907. [PMID: 32360043 DOI: 10.1016/j.jep.2020.112907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alopecia is a chronic condition that may cause emotional and psychological distress to patients, which may significantly impact a patient's quality of life. As conventional treatments have only a transient therapeutic effect and result in unwanted side effects, many patients have attempted to find therapeutic herbs or compounds that function as safer and more potent treatments for alopecia. Many such herbs have been used in complementary and alternative medicine (CAM) for centuries; however, there is a lack of information on the therapeutic mechanisms of herbs used for the treatment of alopecia. AIM OF THE STUDY The aim of this review was to perform a critical assessment of the methods and results of experimental studies related to alopecia and to provide the potential mechanisms of action of herbs and their constituent compounds used in the identified studies, in particular, in relation to the stages of the cell cycle. We hope to better guide the clinical application and scientific research of herbs for the treatment of alopecia. MATERIALS AND METHODS We reviewed experimental studies to determine the methods used and the mechanism of action of the herbs and constituent compounds. Databases, including Medline (via PubMed), EMBASE, OASIS, and RISS, were searched for the following keywords: "medicinal plants," "alopecia," "alopecia areata," "androgenetic alopecia," "animal experiment," and "in vitro study." We also assessed the risks of bias, toxicity, and taxonomy to determine the quality of information. RESULTS C57BL/6 mice and human dermal papilla cells were the most commonly used models for in vivo and in vitro studies, respectively. Many herbs and their constituent compounds were used to treat alopecia by managing the hair cycle, keratinocyte proliferation, apoptosis, angiogenesis, hormones, and inflammation. These compounds prolong the anagen phase, shorten the transition from the telogen to phase anagen, and inhibit premature catagen phase. CONCLUSIONS This review has further elucidated the therapeutic mechanisms of herbs and their constituent compounds that are relevant to alopecia and discussed the effectiveness of using herbal treatments. There is a need to develop evidence regarding the quality control, taxonomy, and toxicology of these compounds. Such improvements will provide a better quality of evidence to ensure the efficacy and safety of herbs and compounds used for the treatment of alopecia.
Collapse
Affiliation(s)
- Eun Chai Cho
- College of Korean Medicine, Kyung Hee University, South Korea.
| | - Kyuseok Kim
- Department of Ophthalmology, Otolaryngology and Dermatology of Korean Medicine, College of Korean Medicine, Kyung Hee University, South Korea.
| |
Collapse
|
9
|
Qiang W, Feng X, Li Y, Lan X, Ji K, Sun X, Chen X, Li H, Du L, Yang J. Expression of a functional recombinant vascular endothelial growth factor 165 (VEGF165) in Arabidopsis thaliana. TURKISH JOURNAL OF BIOCHEMISTRY 2019. [DOI: 10.1515/tjb-2017-0368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Objective
Targeting the protein of interest to a particular tissue to achieve high-level expression is an important strategy to increase expression efficiency. The use of the plant seed oil body as a bioreactor can not only increase the amount of target protein, but also reduce the cost of downstream processing.
Methods
VEGF165 was expressed in Arabidopsis thaliana seeds via oilbody fusion technology. The pKO-VEGF165 vector was construted and transformed into A. thaliana seeds. T3 transgenic seeds was detected by SDS-PAGE and western blot methods. The cell activity was tested by MTT methods.
Result
The phaseolin promoter was used to drive seed-specific expression of the VEGF165 gene in transgenic A. thaliana. The coding region of VEGF165 was fused to the Arabidopsis oleosin sequence to target the protein to the oil bodies in the seeds of transgenic plants. The T-DNA region of recombinant plasmid pKO-VEGF165 was shifted to A. thaliana seeds via the floral-dip method. Protein was analyzed by electrophoresis and protein hybridization analyses. Finally, MTT assays showed that the oleosin-VEGF165 fusion protein played a part in the proliferation of HUVEC cells in vitro.
Conclusion
Oleosin-VEGF165 was successfully expressed and it had stimulated HUVEC cell proliferation activity.
Collapse
|
10
|
Cai J, Wen R, Li W, Wang X, Tian H, Yi S, Zhang L, Li X, Jiang C, Li H. Oil body bound oleosin-rhFGF9 fusion protein expressed in safflower (Carthamus tinctorius L.) stimulates hair growth and wound healing in mice. BMC Biotechnol 2018; 18:51. [PMID: 30157831 PMCID: PMC6114888 DOI: 10.1186/s12896-018-0433-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 04/11/2018] [Indexed: 01/07/2023] Open
Abstract
Background Fibroblast growth factor 9 (FGF9) is a heparin-binding growth factor, secreted by both mesothelial and epithelial cells, which participates in hair follicle regeneration, wound healing, and bone development. A suitable source of recombinant human FGF9 (rhFGF9) is needed for research into potential clinical applications. We present that expression of oleosin-rhFGF9 fusion protein in safflower (Carthamus tinctorius L.) seeds stimulates hair growth and wound healing. Results The oleosin-rhFGF9 expressed in safflower seeds, in which it localizes to the surface of oil bodies. The expression of oleosin-rhFGF9 was confirmed by polyacrylamide gel electrophoresis and western blotting. According to BCA and Enzyme-linked immunosorbent assay (ELISA) assay, the results show that the expression level of oleosin-rhFGF9 was 0.14% of oil body protein. The oil body bound oleosin-rhFGF9 showed mitogenic activity towards NIH3T3 cells in a methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. The efficacy of oil body bound oleosin-rhFGF9 in promoting hair growth and wound healing was investigated in C57BL/6 mice. In a hair regeneration experiment, 50 μg/μl oil body bound oleosin-rhFGF9 was applied to the dorsal skin of mice in the resting phase of the hair growth cycle. After 15 days, thicker hair and increased number of new hairs were seen compared with controls. Furthermore, the number of new hairs was greater compared with rhFGF9-treated mice. The hair follicles of mice treated with oil body bound oleosin-rhFGF9 expressed β-catenin more abundantly. In a wound healing experiment, dorsal skin wounds were topically treated with 50 μg/μl oil body bound oleosin-rhFGF9. Wound healing was quicker compared with mice treated with rhFGF9 and controls, especially in the earlier stages of healing. Conclusions The oil body bound oleosin-rhFGF9 promotes both hair growth and wound healing. It appears to promote hair growth, at least in part, by up-regulating β-catenin expression. The potential of oil body bound oleosin-rhFGF9 as an external drug can treat the alopecia and wounds or use in further clinical application. Electronic supplementary material The online version of this article (10.1186/s12896-018-0433-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingbo Cai
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Ruicheng Wen
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Wenqing Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Xiuran Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Haishan Tian
- Wenzhou Biomedical Innovation Center, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Shanyong Yi
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Linbo Zhang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Xiaokun Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Chao Jiang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China. .,Wenzhou Biomedical Innovation Center, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Haiyan Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| |
Collapse
|
11
|
Yang J, Qiang W, Ren S, Yi S, Li J, Guan L, Du L, Guo Y, Hu H, Li H, Li X. High-efficiency production of bioactive oleosin-basic fibroblast growth factor in A. thaliana and evaluation of wound healing. Gene 2018; 639:69-76. [DOI: 10.1016/j.gene.2017.09.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/11/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
|
12
|
Oil Body-Bound Oleosin-rhFGF-10: A Novel Drug Delivery System that Improves Skin Penetration to Accelerate Wound Healing and Hair Growth in Mice. Int J Mol Sci 2017; 18:ijms18102177. [PMID: 29057820 PMCID: PMC5666858 DOI: 10.3390/ijms18102177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 01/17/2023] Open
Abstract
Recombinant human fibroblast growth factor 10 (rhFGF-10) is frequently used to treat patients with skin injuries. It can also promote hair growth. However, the effective application of rhFGF-10 is limited because of its poor stability and transdermal absorption. In this study, polymerase chain reaction (PCR) and Southern blotting were used to identify transgenic safflowers carrying a gene encoding an oleosin-rhFGF-10 fusion protein. The size and structural integrity of oleosin-rhFGF-10 in oil bodies extracted from transgenic safflower seeds was characterized by polyacrylamide gel electrophoresis and western blotting. Oil body extracts containing oleosin-rhFGF-10 were topically applied to mouse skin. The absorption of oleosin-rhFGF-10 was studied by immunohistochemistry. Its efficiency in promoting wound healing and hair regeneration were evaluated in full thickness wounds and hair growth assays. We identified a safflower line that carried the transgene and expressed a 45 kDa oleosin-rhFGF-10 protein. Oil body-bound oleosin-rhFGF-10 was absorbed by the skin with higher efficiency and speed compared with prokaryotically-expressed rhFGF-10. Oleosin-rhFGF-10 also enhanced wound closure and promoted hair growth better than rhFGF-10. The application of oleosin-rhFGF-10 in oil bodies promoted its delivery through the skin, providing a basis for improved therapeutic effects in enhancing wound healing and hair growth.
Collapse
|