1
|
Merlino F, Secondo A, Mitidieri E, Sorrentino R, Bellavita R, Grasso N, Chatenet D, Pannaccione A, Grieco P, d'Emmanuele di Villa Bianca R, Carotenuto A. Expanding Structure-Activity Relationships of Human Urotensin II Peptide Analogues: A Proposed Key Role of the N-Terminal Region for Novel Urotensin II Receptor Modulators. J Med Chem 2024; 67:13879-13890. [PMID: 39096311 DOI: 10.1021/acs.jmedchem.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
While the urotensinergic system plays a role in influencing various pathologies, its potential remains untapped because of the absence of therapeutically effective urotensin II receptor (UTR) modulators. Herein, we developed analogues of human urotensin II (hU-II) peptide in which, along with well-known antagonist-oriented modifications, the Glu1 residue was subjected to single-point mutations. The generated library was tested by a calcium mobilization assay and ex vivo experiments, also in competition with selected ligands. Interestingly, many derivatives showed noncompetitive modulation that was rationalized by the lateral allostery concept applied to a G protein-coupled receptor (GPCR) multimeric model. UPG-108 showed an unprecedented ability to double the efficacy of hU-II, while UPG-109 and UPG-111 turned out to be negative allosteric modulators of UTR. Overall, our investigation will serve to explore and highlight the expanding possibilities of modulating the UTR system through N-terminally modified hU-II analogues and, furthermore, will aim to elucidate the intricate nature of such a GPCR system.
Collapse
Affiliation(s)
- Francesco Merlino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi "Carlo Pedone" (CIRPeB), University of Naples Federico II, via Mezzocannone 16, 80134 Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Raffaella Sorrentino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Rosa Bellavita
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Nicola Grasso
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - David Chatenet
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, H7 V 1B7 Québec, Canada
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Paolo Grieco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi "Carlo Pedone" (CIRPeB), University of Naples Federico II, via Mezzocannone 16, 80134 Naples, Italy
| | | | - Alfonso Carotenuto
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi "Carlo Pedone" (CIRPeB), University of Naples Federico II, via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
2
|
Nassour H, Pétrin D, Devost D, Billard E, Sleno R, Hébert TE, Chatenet D. Evidence for heterodimerization and functional interaction of the urotensin II and the angiotensin II type 1 receptors. Cell Signal 2024; 116:111056. [PMID: 38262555 DOI: 10.1016/j.cellsig.2024.111056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
Despite the observation of synergistic interactions between the urotensinergic and angiotensinergic systems, the interplay between the urotensin II receptor (hUT) and the angiotensin II type 1 receptor (hAT1R) in regulating cellular signaling remains incompletely understood. Notably, the putative interaction between hUT and hAT1R could engender reciprocal allosteric modulation of their signaling signatures, defining a unique role for these complexes in cardiovascular physiology and pathophysiology. Using a combination of co-immunoprecipitation, bioluminescence resonance energy transfer (BRET) and FlAsH BRET-based conformational biosensors, we first demonstrated the physical interaction between hUT and hAT1R. Next, to analyze how this functional interaction regulated proximal and distal hUT- and hAT1R-associated signaling pathways, we used BRET-based signaling biosensors and western blots to profile pathway-specific signaling in HEK 293 cells expressing hUT, hAT1R or both. We observed that hUT-hAT1R heterodimers triggered distinct signaling outcomes compared to their respective parent receptors alone. Notably, co-transfection of hUT and hAT1R has no impact on hUII-induced Gq activation but significantly reduced the potency and efficacy of Ang II to mediate Gq activation. Interestingly, URP, the second hUT endogenous ligand, produce a distinct signaling signature compared to hUII at hUT-hAT1R. Our results therefore suggest that assembly of hUT with hAT1R might be important for allosteric modulation of outcomes associated with specific hardwired signaling complexes in healthy and disease states. Altogether, our work, which potentially explains the interplay observed in native cells and tissues, validates such complexes as potential targets to promote the design of compounds that can modulate heterodimer function selectively.
Collapse
Affiliation(s)
- Hassan Nassour
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Ville de Laval, QC, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Dominic Devost
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Etienne Billard
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Rory Sleno
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada.
| | - David Chatenet
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Ville de Laval, QC, Canada.
| |
Collapse
|
3
|
Hayward D, Beekman AM. Strategies for converting turn-motif and cyclic peptides to small molecules for targeting protein-protein interactions. RSC Chem Biol 2024; 5:198-208. [PMID: 38456035 PMCID: PMC10915966 DOI: 10.1039/d3cb00222e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
The development of small molecules that interact with protein-protein interactions is an ongoing challenge. Peptides offer a starting point in the drug discovery process for targeting protein-interactions due to their larger, more flexible structure and the structurally diverse properties that allow for a greater interaction with the protein. The techniques for rapidly identifying potent cyclic peptides and turn-motif peptides are highly effective, but this potential has not yet transferred to approved drug candidates. By applying the properties of the peptide-protein interaction the development of small molecules for drug discovery has the potential to be more efficient. In this review, we discuss the methods that allow for the unique binding properties of peptides to proteins, and the methods deployed to transfer these qualities to potent small molecules.
Collapse
Affiliation(s)
- Deanne Hayward
- School of Pharmacy, University of East Anglia, Norwich Research Park Norwich Norfolk NR47TJ UK
| | - Andrew M Beekman
- School of Pharmacy, University of East Anglia, Norwich Research Park Norwich Norfolk NR47TJ UK
| |
Collapse
|
4
|
Billard E, Hébert TE, Chatenet D. EXPLORATION OF THE UROCONTRIN A SCAFFOLD YIELDS NEW UROTENSINERGIC SYSTEM ALLOSTERIC MODULATOR AND COMPETITIVE ANTAGONISTS. Biochem Pharmacol 2023; 211:115485. [PMID: 36889446 DOI: 10.1016/j.bcp.2023.115485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
The urotensinergic system, involved in the development and/or progression of numerous pathological conditions, is composed of one G protein-coupled receptor (UT) and two endogenous ligands known as urotensin II (UII) and urotensin II-related peptide (URP). These two structurally related hormones, which exert common and divergent effects, are thought to play specific biological roles. In recent years, we have characterized an analog termed urocontrin A (UCA), i.e. [Pep4]URP, which is capable of discriminating the effects of UII from URP. Such an action could allow the delineation of the respective functions of these two endogenous ligands. In an effort to define the molecular determinants involved in this behavior and to improve the pharmacological profile of UCA, we introduced modifications from urantide, considered for some time as a lead compound for the development of UT antagonists, into UCA and assessed the binding, contractile activity and G protein signaling of these newly developed compounds. Our results show that UCA and its derivatives exert probe-dependent effects on UT antagonism, and we have further identified [Pen2, Pep4]URP as a Gq biased ligand with an insurmountable antagonism in our aortic ring contraction assay.
Collapse
Affiliation(s)
- Etienne Billard
- INRS - Centre Armand-Frappier Santé Biotechnologie, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7V 1B7, Canada; Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3A 1A3, Canada
| | - David Chatenet
- INRS - Centre Armand-Frappier Santé Biotechnologie, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7V 1B7, Canada.
| |
Collapse
|
5
|
Bearce EA, Irons ZH, O'Hara-Smith JR, Kuhns CJ, Fisher SI, Crow WE, Grimes DT. Urotensin II-related peptides, Urp1 and Urp2, control zebrafish spine morphology. eLife 2022; 11:e83883. [PMID: 36453722 PMCID: PMC9836392 DOI: 10.7554/elife.83883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
The spine provides structure and support to the body, yet how it develops its characteristic morphology as the organism grows is little understood. This is underscored by the commonality of conditions in which the spine curves abnormally such as scoliosis, kyphosis, and lordosis. Understanding the origin of these spinal curves has been challenging in part due to the lack of appropriate animal models. Recently, zebrafish have emerged as promising tools with which to understand the origin of spinal curves. Using zebrafish, we demonstrate that the urotensin II-related peptides (URPs), Urp1 and Urp2, are essential for maintaining spine morphology. Urp1 and Urp2 are 10-amino acid cyclic peptides expressed by neurons lining the central canal of the spinal cord. Upon combined genetic loss of Urp1 and Urp2, adolescent-onset planar curves manifested in the caudal region of the spine. Highly similar curves were caused by mutation of Uts2r3, an URP receptor. Quantitative comparisons revealed that urotensin-associated curves were distinct from other zebrafish spinal curve mutants in curve position and direction. Last, we found that the Reissner fiber, a proteinaceous thread that sits in the central canal and has been implicated in the control of spine morphology, breaks down prior to curve formation in mutants with perturbed cilia motility but was unaffected by loss of Uts2r3. This suggests a Reissner fiber-independent mechanism of curvature in urotensin-deficient mutants. Overall, our results show that Urp1 and Urp2 control zebrafish spine morphology and establish new animal models of spine deformity.
Collapse
Affiliation(s)
- Elizabeth A Bearce
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Zoe H Irons
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | | | - Colin J Kuhns
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Sophie I Fisher
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - William E Crow
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Daniel T Grimes
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| |
Collapse
|
6
|
Schuster R, Steffen P, Dreyer B, Rohn S, Schlüter H, Riedner M. Identifying Circulating Urotensin II and Urotensin II-Related Peptide-Generating Enzymes in the Human Plasma Fraction Cohn IV-4. J Proteome Res 2021; 20:5368-5378. [PMID: 34734734 DOI: 10.1021/acs.jproteome.1c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Urotensin II (UII) and UII-related peptide (URP) are vasoactive peptide hormones causing strong vasoconstriction or vasodilation, depending on the type of blood vessel. In humans, the active forms are resulting from proteolytic cleavage of their inactive precursor protein. In blood plasma, a defined protease converting the inactive UII and URP precursors into their active forms has not been identified yet. Using mass spectrometry-based enzyme screening for detecting UII- and URP-converting enzymes, the human plasma fraction Cohn IV-4 was chromatographed, and the resulting fractions were screened for UII- or URP-generating activity. Plasma kallikrein (PK) as a UII- and URP-generating protease was identified. URP generation was also found for the serine protease factor XIa, plasmin, thrombin, and, to a smaller extent, factor XIIa. It was demonstrated that in the Cohn IV-4 fraction, PK accounts for a significant amount of UII- and URP-generating activity.
Collapse
Affiliation(s)
- Raphael Schuster
- Institute of Organic Chemistry, Department of Chemistry, Universität Hamburg, 20146 Hamburg, Germany
| | - Pascal Steffen
- Bowel Cancer & Biomarker Lab, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, Sydney, New South Wales 2065, Australia
| | - Benjamin Dreyer
- Mass Spectrometric Proteomics, Institute of Clinical Chemistry, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sascha Rohn
- Hamburg School of Food Science, Institute of Food Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany.,Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Hartmut Schlüter
- Mass Spectrometric Proteomics, Institute of Clinical Chemistry, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Riedner
- Institute of Organic Chemistry, Department of Chemistry, Universität Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
7
|
Damjanovic J, Miao J, Huang H, Lin YS. Elucidating Solution Structures of Cyclic Peptides Using Molecular Dynamics Simulations. Chem Rev 2021; 121:2292-2324. [PMID: 33426882 DOI: 10.1021/acs.chemrev.0c01087] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein-protein interactions are vital to biological processes, but the shape and size of their interfaces make them hard to target using small molecules. Cyclic peptides have shown promise as protein-protein interaction modulators, as they can bind protein surfaces with high affinity and specificity. Dozens of cyclic peptides are already FDA approved, and many more are in various stages of development as immunosuppressants, antibiotics, antivirals, or anticancer drugs. However, most cyclic peptide drugs so far have been natural products or derivatives thereof, with de novo design having proven challenging. A key obstacle is structural characterization: cyclic peptides frequently adopt multiple conformations in solution, which are difficult to resolve using techniques like NMR spectroscopy. The lack of solution structural information prevents a thorough understanding of cyclic peptides' sequence-structure-function relationship. Here we review recent development and application of molecular dynamics simulations with enhanced sampling to studying the solution structures of cyclic peptides. We describe novel computational methods capable of sampling cyclic peptides' conformational space and provide examples of computational studies that relate peptides' sequence and structure to biological activity. We demonstrate that molecular dynamics simulations have grown from an explanatory technique to a full-fledged tool for systematic studies at the forefront of cyclic peptide therapeutic design.
Collapse
Affiliation(s)
- Jovan Damjanovic
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jiayuan Miao
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - He Huang
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
8
|
Konno N, Takano M, Miura K, Miyazato M, Nakamachi T, Matsuda K, Kaiya H. Identification and signaling characterization of four urotensin II receptor subtypes in the western clawed frog, Xenopus tropicalis. Gen Comp Endocrinol 2020; 299:113586. [PMID: 32828811 DOI: 10.1016/j.ygcen.2020.113586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
Urotensin II (UII) is involved, via the UII receptor (UTR), in many physiological and pathological processes, including vasoconstriction, locomotion, osmoregulation, immune response, and metabolic syndrome. In silico studies have revealed the presence of four or five distinct UTR (UTR1-UTR5) gene sequences in nonmammalian vertebrates. However, the functionality of these receptor subtypes and their associations to signaling pathways are unclear. In this study, full-length cDNAs encoding four distinct UTR subtypes (UTR1, UTR3, UTR4, and UTR5) were isolated from the western clawed frog (Xenopus tropicalis). In functional analyses, homologous Xenopus UII stimulation of cells expressing UTR1 or UTR5 induced intracellular calcoum mobilization and phosphorylation of extracellular signal-regulated kinase 1/2. Cells expressing UTR3 or UTR4 did not show this response. Furthermore, UII induced the phosphorylation of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) through the UII-UTR1/5 system. However, intracellular cAMP accumulation was not observed, suggesting that UII-induced CREB phosphorylation is caused by a signaling pathway different from that involving Gs protein. In contrast, the administration of UII to cells increased the phosphorylation of guanine nucleotide exchange factor-H1 (GEF-H1) and myosin light chain 2 (MLC2) in all UTR subtypes. These results define four distinct UTR functional subtypes and are consistent with the molecular evolution of UTR subtypes in vertebrates. Further understanding of signaling properties associated with UTR subtypes may help in clarifying the functional roles associated with UII-UTR interactions in nonmammalian vertebrates.
Collapse
Affiliation(s)
- Norifumi Konno
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.
| | - Moe Takano
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Koichi Miura
- Department of Biochemistry, National Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan; Department of Clinical Pharmacology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Tomoya Nakamachi
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Kouhei Matsuda
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| |
Collapse
|
9
|
Billard E, Chatenet D. Insights into the Molecular Determinants Involved in Urocontrin and Urocontrin A Action. ACS Med Chem Lett 2020; 11:1717-1722. [PMID: 32944139 DOI: 10.1021/acsmedchemlett.0c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/20/2020] [Indexed: 11/28/2022] Open
Abstract
In the past few years, we have identified two allosteric modulators of the urotensinergic system with probe-dependent action, termed Urocontrin (UC) and Urocontrin A (UCA). Such action is atypical and important since it will allow us to understand the specific function of the functionally selective cognate ligands of this system, namely urotensin II and urotensin II-related peptide. Delineating the molecular determinants involved in this particular behavior would represent an important step toward designing small molecules suitable for pharmacologic and/or therapeutic intervention. Hence, we undertook an exploratory research by replacing the Trp4 residue of URP with several para-substituted phenylalanine amino acids in order to get a grasp on the required nature, distance, and orientation of the side chain of this residue for allosteric modulatory action. We found that the position of the second aromatic group is crucial, and we identified two new allosteric modulators: [Trip4]URP and [Phe(pPy-4)4]URP with probe-dependent action.
Collapse
Affiliation(s)
- Etienne Billard
- INRS - Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7 V 1B7, Canada
| | - David Chatenet
- INRS - Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7 V 1B7, Canada
| |
Collapse
|
10
|
Tonon MC, Vaudry H, Chuquet J, Guillebaud F, Fan J, Masmoudi-Kouki O, Vaudry D, Lanfray D, Morin F, Prevot V, Papadopoulos V, Troadec JD, Leprince J. Endozepines and their receptors: Structure, functions and pathophysiological significance. Pharmacol Ther 2020; 208:107386. [DOI: 10.1016/j.pharmthera.2019.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
|
11
|
Ettaro R, Markovic T, Daniels D, MacLaren DA, Clark SD. Microinjection of urotensin II into the pedunculopontine tegmentum leads to an increase in the consumption of sweet tastants. Physiol Behav 2020; 215:112775. [PMID: 31843472 DOI: 10.1016/j.physbeh.2019.112775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 11/29/2022]
Abstract
The pedunculopontine tegmentum (PPTg) plays a role in processing multiple sensory inputs and innervates brain regions associated with reward-related behaviors. The urotensin II receptor, activated by the urotensin II peptide (UII), is selectively expressed by the cholinergic neurons of the PPTg. Although the exact function of cholinergic neurons of the PPTg is unknown, they are thought to contribute to the perception of reward magnitude or salience detection. We hypothesized that the activation of PPTg cholinergic neurons would alter sensory processing across multiple modalities (ex. taste and hearing). Here we had three aims: first, determine if cholinergic activation is involved in consumption behavior of palatable solutions (sucrose). Second, if so, distinguish the impact of the caloric value by using saccharin, a zero calorie sweetener. Lastly, we tested the UII-mediated effects on perception of acoustic stimuli by measuring acoustic startle reflex (ASR). Male Sprague-Dawley rats were bilaterally cannulated into the PPTg, then placed under food restriction lasting the entire consumption experiment (water ad lib.). Treatment consisted of a microinjection of either 1 μL of aCSF or 1 μL of 10 μM UII into the PPTg, and the rats were immediately given access to either sucrose or saccharin. For the remaining five days, rats were allowed one hour access per day to the same sweet solution without any further treatments. During the saccharin experiment rats were tested in a contact lickometer which recorded each individual lick to give insight into the microstructure of the consumption behavior. ASR testing consisted of a baseline (no treatment), treatment day, and two additional days (no treatment). Immediately following the microinjection of UII, consumption of both saccharin and sucrose increased compared to controls. This significant increase persisted for days after the single administration of UII, but there was no generalized arousal or increase in water consumption between testing sessions. The effects on ASR were not significant. Activating cholinergic PPTg neurons may lead to a miscalculation of the salience of external stimuli, implicating the importance of cholinergic input in modulating a variety of behaviors. The long-lasting effects seen after UII treatment support further research into the role of sensory processing on reward related-behaviors at the level of the PPTg cholinergic neurons.
Collapse
Affiliation(s)
- Robert Ettaro
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, United States
| | - Tamara Markovic
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, United States
| | - Derek Daniels
- Department of Psychology and the Center for Ingestive Behavior Research, University at Buffalo, Buffalo, NY 14214, United States
| | - Duncan Aa MacLaren
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, United States
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, United States
| |
Collapse
|
12
|
Nassour H, Iddir M, Chatenet D. Towards Targeting the Urotensinergic System: Overview and Challenges. Trends Pharmacol Sci 2019; 40:725-734. [DOI: 10.1016/j.tips.2019.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022]
|
13
|
Merlino F, Billard É, Yousif AM, Di Maro S, Brancaccio D, Abate L, Carotenuto A, Bellavita R, d'Emmanuele di Villa Bianca R, Santicioli P, Marinelli L, Novellino E, Hébert TE, Lubell WD, Chatenet D, Grieco P. Functional Selectivity Revealed by N-Methylation Scanning of Human Urotensin II and Related Peptides. J Med Chem 2019; 62:1455-1467. [PMID: 30615452 DOI: 10.1021/acs.jmedchem.8b01601] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In accordance with their common but also divergent physiological actions, human urotensin II (1) and urotensin II-related peptide (2) could stabilize specific urotensin II receptor (UTR) conformations, thereby activating different signaling pathways, a feature referred to as biased agonism or functional selectivity. Sequential N-methylation of the amides in the conserved core sequence of 1, 2, and fragment U-II4-11 (3) shed light on structural requirements involved in their functional selectivity. Thus, 18 N-methylated UTR ligands were synthesized and their biological profiles evaluated using in vitro competition binding assays, ex vivo rat aortic ring bioassays and BRET-based biosensor experiments. Biological activity diverged from that of the parent structures contingent on the location of amide methylation, indicating relevant hydrogen-bond interactions for the function of the endogenous peptides. Conformational analysis of selected N-methyl analogs indicated the importance of specific amide residues of 2 for the distinct pharmacology relative to 1 and 3.
Collapse
Affiliation(s)
- Francesco Merlino
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Étienne Billard
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP) , Université du Québec , 531 Boulevard des Prairies , Ville de Laval , Québec H7V 1B7 , Canada
| | - Ali M Yousif
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Salvatore Di Maro
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Diego Brancaccio
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Luigi Abate
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Alfonso Carotenuto
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Rosa Bellavita
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | | | - Paolo Santicioli
- Department of Pharmacology , Menarini Ricerche , via Rismondo 12/A , Florence 50131 , Italy
| | - Luciana Marinelli
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Ettore Novellino
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics , McGill University , Montréal , Québec H3A 1A3 , Canada
| | - William D Lubell
- Département de Chimie , Université de Montréal , C.P. 6128, Station Centre-ville , Montréal , Québec H3C 3J7 , Canada
| | - David Chatenet
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP) , Université du Québec , 531 Boulevard des Prairies , Ville de Laval , Québec H7V 1B7 , Canada
| | - Paolo Grieco
- Department of Pharmacy , University of Naples "Federico II" , via D. Montesano 49 , Naples 80131 , Italy
| |
Collapse
|
14
|
Billard E, Hébert TE, Chatenet D. Discovery of New Allosteric Modulators of the Urotensinergic System through Substitution of the Urotensin II-Related Peptide (URP) Phenylalanine Residue. J Med Chem 2018; 61:8707-8716. [PMID: 30183282 DOI: 10.1021/acs.jmedchem.8b00789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Urotensin II (UII) and urotensin II-related peptide (URP) are functionally selective, suggesting that these two hormones might play distinct physiological role through different interactions with their cognate receptor UT. Hypothesizing that the Phe3 residue of URP, which is also present in UII, is a key-element of its specific UT activation, we evaluated the impact of its replacement by non-natural amino acids in URP. Each compound was evaluated for its ability to bind UT, induce rat aortic ring contraction, and activate Gq, G12, and β-arrestin 1 signaling pathways. Such modifications impaired contractile efficacy, reflected by a reduced aptitude to activate G12 in URP but not in the truncated but equipotent UII4-11. Moreover, we have identified two structurally different UT modulators: [d-Phe(pI)3]URP and [Bip3]URP, which exert a probe-dependent action against UII and URP. These compounds should help us understand the specific roles of these hormones as well as guide further therapeutic development.
Collapse
Affiliation(s)
- Etienne Billard
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP) , Université du Québec , Ville de Laval , Québec H7V 1B7 , Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics , McGill University , Montréal , Québec H3A 1A3 , Canada
| | - David Chatenet
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP) , Université du Québec , Ville de Laval , Québec H7V 1B7 , Canada
| |
Collapse
|
15
|
Endress M, Zatylny-Gaudin C, Corre E, Le Corguillé G, Benoist L, Leprince J, Lefranc B, Bernay B, Leduc A, Rangama J, Lafont AG, Bondon A, Henry J. Crustacean cardioactive peptides: Expression, localization, structure, and a possible involvement in regulation of egg-laying in the cuttlefish Sepia officinalis. Gen Comp Endocrinol 2018; 260:67-79. [PMID: 29278693 DOI: 10.1016/j.ygcen.2017.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/26/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
The cuttlefish (Sepia officinalis) is a cephalopod mollusk distributed on the western European coast, in the West African Ocean and in the Mediterranean Sea. On the Normandy coast (France), cuttlefish is a target species of professional fishermen, so its reproduction strategy is of particular interest in the context of stock management. Egg-laying, which is coastal, is controlled by several types of regulators among which neuropeptides. The cuttlefish neuropeptidome was recently identified by Zatylny-Gaudin et al. (2016). Among the 38 neuropeptide families identified, some were significantly overexpressed in egg-laying females as compared to mature males. This study is focused on crustacean cardioactive peptides (CCAPs), a highly expressed neuropeptide family strongly suspected of being involved in the control of egg-laying. We investigated the functional and structural characterization and tissue mapping of CCAPs, as well as the expression patterns of their receptors. CCAPs appeared to be involved in oocyte transport through the oviduct and in mechanical secretion of capsular products. Immunocytochemistry revealed that the neuropeptides were localized throughout the central nervous system (CNS) and in the nerve endings of the glands involved in egg-capsule synthesis and secretion, i.e. the oviduct gland and the main nidamental glands. The CCAP receptor was expressed in these glands and in the subesophageal mass of the CNS. Multiple sequence alignments revealed a high level of conservation of CCAP protein precursors in Sepia officinalis and Loligo pealei, two cephalopod decapods. Primary sequences of CCAPs from the two species were fully conserved, and cryptic peptides detected in the nerve endings were also partially conserved, suggesting biological activity that remains unknown for the time being.
Collapse
Affiliation(s)
- Maxime Endress
- Normandy University, UNICAEN, Sorbonne Universités, MNHN, UPMC Univ Paris 06, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), F-14032 Caen, France
| | - Céline Zatylny-Gaudin
- Normandy University, UNICAEN, Sorbonne Universités, MNHN, UPMC Univ Paris 06, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), F-14032 Caen, France
| | - Erwan Corre
- UPMC, CNRS, FR2424, ABiMS, Station Biologique, F-29680 Roscoff, France
| | | | - Louis Benoist
- Normandy University, UNICAEN, Sorbonne Universités, MNHN, UPMC Univ Paris 06, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), F-14032 Caen, France
| | - Jérôme Leprince
- Normandy University, UNIROUEN, INSERM, U1239, Laboratoire Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, F-76000 Rouen, France
| | - Benjamin Lefranc
- Normandy University, UNIROUEN, INSERM, U1239, Laboratoire Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, F-76000 Rouen, France
| | - Benoît Bernay
- Normandy University, Post Genomic Platform PROTEOGEN, SF ICORE 4206, F-14032 Caen, France
| | - Alexandre Leduc
- Normandy University, UNICAEN, Sorbonne Universités, MNHN, UPMC Univ Paris 06, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), F-14032 Caen, France
| | - Jimmy Rangama
- Normandy University, CIMAP, UMP 6252 (CEA/CNRS/ENSICAEN/Normandy University), Caen, France
| | - Anne-Gaëlle Lafont
- Equipe CORINT, UMR CNRS 6226, PRISM, CS 34317, Campus de Villejean, Université de Rennes 1, F-35043 Rennes, France
| | - Arnaud Bondon
- Equipe CORINT, UMR CNRS 6226, PRISM, CS 34317, Campus de Villejean, Université de Rennes 1, F-35043 Rennes, France
| | - Joël Henry
- Normandy University, UNICAEN, Sorbonne Universités, MNHN, UPMC Univ Paris 06, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), F-14032 Caen, France; Normandy University, Post Genomic Platform PROTEOGEN, SF ICORE 4206, F-14032 Caen, France.
| |
Collapse
|
16
|
Billard É, Iddir M, Nassour H, Lee-Gosselin L, Poujol de Molliens M, Chatenet D. New directions for urotensin II receptor ligands. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Étienne Billard
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec; Ville de Laval Québec H7V 1B7 Canada
| | - Mustapha Iddir
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec; Ville de Laval Québec H7V 1B7 Canada
| | - Hassan Nassour
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec; Ville de Laval Québec H7V 1B7 Canada
| | - Laura Lee-Gosselin
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec; Ville de Laval Québec H7V 1B7 Canada
| | - Mathilde Poujol de Molliens
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec; Ville de Laval Québec H7V 1B7 Canada
| | - David Chatenet
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec; Ville de Laval Québec H7V 1B7 Canada
| |
Collapse
|
17
|
Urantide improves the structure and function of right ventricle as determined by echocardiography in monocrotaline-induced pulmonary hypertension rat model. Clin Rheumatol 2018; 38:29-35. [DOI: 10.1007/s10067-018-3978-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 12/24/2017] [Accepted: 01/03/2018] [Indexed: 12/27/2022]
|
18
|
Douchez A, Billard E, Hébert TE, Chatenet D, Lubell WD. Design, Synthesis, and Biological Assessment of Biased Allosteric Modulation of the Urotensin II Receptor Using Achiral 1,3,4-Benzotriazepin-2-one Turn Mimics. J Med Chem 2017; 60:9838-9859. [DOI: 10.1021/acs.jmedchem.7b01525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Antoine Douchez
- Département
de Chimie, Université de Montréal, CP 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada
- INRS—Institut
Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides
et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7V 1B7, Canada
| | - Etienne Billard
- INRS—Institut
Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides
et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7V 1B7, Canada
| | - Terence E. Hébert
- Department
of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - David Chatenet
- INRS—Institut
Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides
et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7V 1B7, Canada
| | - William D. Lubell
- Département
de Chimie, Université de Montréal, CP 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
19
|
Billard E, Létourneau M, Hébert TE, Chatenet D. Insight into the role of urotensin II-related peptide tyrosine residue in UT activation. Biochem Pharmacol 2017; 144:100-107. [DOI: 10.1016/j.bcp.2017.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/03/2017] [Indexed: 12/16/2022]
|
20
|
Lancien F, Vanegas G, Leprince J, Vaudry H, Le Mével JC. Central and Peripheral Effects of Urotensin II and Urotensin II-Related Peptides on Cardiac Baroreflex Sensitivity in Trout. Front Neurosci 2017; 11:51. [PMID: 28239335 PMCID: PMC5301025 DOI: 10.3389/fnins.2017.00051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/24/2017] [Indexed: 11/13/2022] Open
Abstract
The baroreflex response is an essential component of the cardiovascular regulation that buffers abrupt changes in blood pressure to maintain homeostasis. Urotensin II (UII) and its receptor UT are present in the brain and in peripheral cardiovascular tissues of fish and mammals. Intracerebroventricular (ICV) injection of UII in these vertebrates provokes hypertension and tachycardia, suggesting that the cardio-inhibitory baroreflex response is impaired. Since nothing is known about the effect of UII on the cardiac baroreflex sensitivity (BRS), we decided to clarify the changes in spontaneous BRS using a cross spectral analysis technique of systolic blood pressure (SBP) and R-R interval variabilities after ICV and intra-arterial (IA) injections of trout UII in the unanesthetized trout. We contrasted the effects of UII with those observed for the UII-related peptides (URP), URP1 and URP2. Compared with vehicle-injected trout, ICV injection of UII (5-500 pmol) produced a gradual increase in SBP, a decrease in the R-R interval (reflecting a tachycardia) associated with a dose-dependent reduction of the BRS. The threshold dose for a significant effect on these parameters was 50 pmol (BRS; -55%; 1450 ± 165 ms/kPa vs. 3240 ± 300 ms/kPa; P < 0.05). Only the 500-pmol dose of URP2 caused a significant increase in SBP without changing significantly the R-R interval but reduced the BRS. IA injection of UII (5-500 pmol) caused a dose-dependent elevation of SBP. Contrasting with the ICV effects of UII, the R-R interval increased (reflecting a bradycardia) up to the 50-pmol dose while the BRS remained unchanged (50 pmol; 2530 ± 270 ms/kPa vs. 2600 ± 180 ms/kPa; P < 0.05). Nonetheless, the highest dose of UII reduced the BRS as did the highest dose of URP1. In conclusion, the contrasting effect of low picomolar doses of UII after central and peripheral injection on the BRS suggests that only the central urotensinergic system is involved in the attenuation of the BRS. The limited and quite divergent effects of URP1 and URP2 on the BRS, indicate that the action of UII is specific for this peptide. Further studies are required to elucidate the site(s) and mechanisms of action of UII on the baroreflex pathways. Whether such effects of central UII on the BRS exist in mammals including humans warrants further investigations.
Collapse
Affiliation(s)
- Frédéric Lancien
- Institut National de la Santé et de la Recherche Médicale UMR1101, Laboratoire de Neurophysiologie, SFR ScInBioS, Université de Brest, Faculté de Médecine et des Sciences de la Santé Brest, France
| | - Gilmer Vanegas
- Institut National de la Santé et de la Recherche Médicale UMR1101, Laboratoire de Neurophysiologie, SFR ScInBioS, Université de Brest, Faculté de Médecine et des Sciences de la Santé Brest, France
| | - Jérôme Leprince
- Institut National de la Santé et de la Recherche Médicale U982, UA Centre National de la Recherche Scientifique, Différenciation et Communication Neuronale et Neuroendocrine, Normandie Université Rouen, France
| | - Hubert Vaudry
- Institut National de la Santé et de la Recherche Médicale U982, UA Centre National de la Recherche Scientifique, Différenciation et Communication Neuronale et Neuroendocrine, Normandie Université Rouen, France
| | - Jean-Claude Le Mével
- Institut National de la Santé et de la Recherche Médicale UMR1101, Laboratoire de Neurophysiologie, SFR ScInBioS, Université de Brest, Faculté de Médecine et des Sciences de la Santé Brest, France
| |
Collapse
|
21
|
Haensele E, Mele N, Miljak M, Read CM, Whitley DC, Banting L, Delépée C, Sopkova-de Oliveira Santos J, Lepailleur A, Bureau R, Essex JW, Clark T. Conformation and Dynamics of Human Urotensin II and Urotensin Related Peptide in Aqueous Solution. J Chem Inf Model 2017; 57:298-310. [DOI: 10.1021/acs.jcim.6b00706] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Nawel Mele
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Marija Miljak
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | | | | | | | - Carla Delépée
- Normandie
Université, CS 14032 Caen Cedex 5, France, Centre d’Etudes
et de Recherche sur le Médicament de Normandie (CERMN, EA 4258,
FR CNRS 3038 INC3M SF 4206 ICORE), UFR des Sciences Pharmaceutiques, Université de Caen Basse−Normandie (UNICAEN), F-14032 Caen, France
| | - Jana Sopkova-de Oliveira Santos
- Normandie
Université, CS 14032 Caen Cedex 5, France, Centre d’Etudes
et de Recherche sur le Médicament de Normandie (CERMN, EA 4258,
FR CNRS 3038 INC3M SF 4206 ICORE), UFR des Sciences Pharmaceutiques, Université de Caen Basse−Normandie (UNICAEN), F-14032 Caen, France
| | - Alban Lepailleur
- Normandie
Université, CS 14032 Caen Cedex 5, France, Centre d’Etudes
et de Recherche sur le Médicament de Normandie (CERMN, EA 4258,
FR CNRS 3038 INC3M SF 4206 ICORE), UFR des Sciences Pharmaceutiques, Université de Caen Basse−Normandie (UNICAEN), F-14032 Caen, France
| | - Ronan Bureau
- Normandie
Université, CS 14032 Caen Cedex 5, France, Centre d’Etudes
et de Recherche sur le Médicament de Normandie (CERMN, EA 4258,
FR CNRS 3038 INC3M SF 4206 ICORE), UFR des Sciences Pharmaceutiques, Université de Caen Basse−Normandie (UNICAEN), F-14032 Caen, France
| | - Jonathan W. Essex
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Timothy Clark
- Computer-Chemie-Centrum
and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany
| |
Collapse
|
22
|
Castel H, Desrues L, Joubert JE, Tonon MC, Prézeau L, Chabbert M, Morin F, Gandolfo P. The G Protein-Coupled Receptor UT of the Neuropeptide Urotensin II Displays Structural and Functional Chemokine Features. Front Endocrinol (Lausanne) 2017; 8:76. [PMID: 28487672 PMCID: PMC5403833 DOI: 10.3389/fendo.2017.00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/28/2017] [Indexed: 12/16/2022] Open
Abstract
The urotensinergic system was previously considered as being linked to numerous physiopathological states, including atherosclerosis, heart failure, hypertension, pre-eclampsia, diabetes, renal disease, as well as brain vascular lesions. Thus, it turns out that the actions of the urotensin II (UII)/G protein-coupled receptor UT system in animal models are currently not predictive enough in regard to their effects in human clinical trials and that UII analogs, established to target UT, were not as beneficial as expected in pathological situations. Thus, many questions remain regarding the overall signaling profiles of UT leading to complex involvement in cardiovascular and inflammatory responses as well as cancer. We address the potential UT chemotactic structural and functional definition under an evolutionary angle, by the existence of a common conserved structural feature among chemokine receptorsopioïdergic receptors and UT, i.e., a specific proline position in the transmembrane domain-2 TM2 (P2.58) likely responsible for a kink helical structure that would play a key role in chemokine functions. Even if the last decade was devoted to the elucidation of the cardiovascular control by the urotensinergic system, we also attempt here to discuss the role of UII on inflammation and migration, likely providing a peptide chemokine status for UII. Indeed, our recent work established that activation of UT by a gradient concentration of UII recruits Gαi/o and Gα13 couplings in a spatiotemporal way, controlling key signaling events leading to chemotaxis. We think that this new vision of the urotensinergic system should help considering UT as a chemotactic therapeutic target in pathological situations involving cell chemoattraction.
Collapse
Affiliation(s)
- Hélène Castel
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
- *Correspondence: Hélène Castel,
| | - Laurence Desrues
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Jane-Eileen Joubert
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Marie-Christine Tonon
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Laurent Prézeau
- CNRS UMR 5203, INSERM U661, Institute of Functional Genomic (IGF), University of Montpellier 1 and 2, Montpellier, France
| | - Marie Chabbert
- UMR CNRS 6214, INSERM 1083, Faculté de Médecine 3, Angers, France
| | - Fabrice Morin
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Pierrick Gandolfo
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| |
Collapse
|
23
|
Eustache S, Leprince J, Tufféry P. Progress with peptide scanning to study structure-activity relationships: the implications for drug discovery. Expert Opin Drug Discov 2016; 11:771-84. [PMID: 27310575 DOI: 10.1080/17460441.2016.1201058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Peptides have gained renewed interest as candidate therapeutics. However, to bring them to a broader clinical use, challenges such as the rational optimization of their pharmacological properties remain. Peptide scanning techniques offer a systematic framework to gain information on the functional role of individual amino acids of a peptide. Due to progress in mastering new chemical synthesis routes targeting amino acid backbone, they are currently diversified. Structure-activity relationship (SAR) analyses such as alanine- or enantioneric- scanning can now be supplemented by N-substitution, lactam cyclisation- or aza-amino scanning procedures addressing not only SAR considerations but also the peptide pharmacological properties. AREAS COVERED This review highlights the different scanning techniques currently available and illustrates how they can impact drug discovery. EXPERT OPINION Progress in peptide scanning techniques opens new perspectives for peptide drug development. It comes with the promise of a paradigm change in peptide drug design in which peptide drugs will be closer to the parent peptides. However, scanning still remains assimilable to a trial and error strategy that could benefit from being combined with specific in silico approaches that start reaching maturity.
Collapse
Affiliation(s)
- Stéphanie Eustache
- a INSERM UMR-S 973 , University Paris-Diderot, Sorbonne Paris Cité , Paris , France
| | - Jérôme Leprince
- b INSERM U982 , Regional Platform for Cell Imaging of Normandy (PRIMACEN), University Rouen-Normandy , Mont-Saint-Aignan, France
| | - Pierre Tufféry
- a INSERM UMR-S 973 , University Paris-Diderot, Sorbonne Paris Cité , Paris , France
| |
Collapse
|
24
|
Merlino F, Yousif AM, Billard É, Dufour-Gallant J, Turcotte S, Grieco P, Chatenet D, Lubell WD. Urotensin II((4-11)) Azasulfuryl Peptides: Synthesis and Biological Activity. J Med Chem 2016; 59:4740-52. [PMID: 27140209 DOI: 10.1021/acs.jmedchem.6b00108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cyclic azasulfuryl (As) peptide analogs of the urotensin II (UII, 1, H-Glu-Thr-Pro-Asp-c[Cys-Phe-Trp-Lys-Tyr-Cys]-Val-OH) fragment 4-11 were synthesized to explore the influences of backbone structure on biological activity. N-Aminosulfamides were inserted as surrogates of the Trp(7) and Lys(8) residues in the biologically relevant Trp-Lys-Tyr triad. A combination of solution- and solid-phase methods were used to prepare novel UII((4-11)) analogs 6-11 by routes featuring alkylation of azasulfuryl-glycine tripeptide precursors to install various side chains. The pharmacological profiles of derivatives 6-11 were tested in vitro using a competitive binding assay and ex vivo using a rat aortic ring bioassay. Although the analogs exhibited weak affinity for the urotensin II receptor (UT) without agonistic activity, azasulfuryl-UII((4-11)) derivatives 7-9 reduced up to 50% of the effects of UII and urotensin II-related peptide (URP) without affecting their potency.
Collapse
Affiliation(s)
- Francesco Merlino
- Département de Chimie, Université de Montréal , C.P. 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada.,Department of Pharmacy, University of Naples "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Ali M Yousif
- Département de Chimie, Université de Montréal , C.P. 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada.,Department of Pharmacy, University of Naples "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Étienne Billard
- INRS - Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Quebéc , Ville de Laval, Quebec H7V 1B7, Canada
| | - Julien Dufour-Gallant
- Département de Chimie, Université de Montréal , C.P. 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Stéphane Turcotte
- Département de Chimie, Université de Montréal , C.P. 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Paolo Grieco
- Department of Pharmacy, University of Naples "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - David Chatenet
- INRS - Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Quebéc , Ville de Laval, Quebec H7V 1B7, Canada
| | - William D Lubell
- Département de Chimie, Université de Montréal , C.P. 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
25
|
Vanegas G, Lancien F, Leprince J, Vaudry H, Le Mével JC. Effects of peripherally administered urotensin II and arginine vasotocin on the QT interval of the electrocardiogram in trout. Comp Biochem Physiol C Toxicol Pharmacol 2016; 183-184:53-60. [PMID: 26902806 DOI: 10.1016/j.cbpc.2016.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 11/20/2022]
Abstract
The QT interval of the electrocardiogram (ECG) is a measure of the duration of the ventricular depolarization and repolarization. In fish as in human, the QT interval is positively correlated with the RR interval of the ECG, a measure of the cardiac cycle length. Urotensin II (UII) is a neuropeptide that has been highly conserved from fish to human, and UII and its receptor (UT) are expressed in cardiovascular tissues including the heart. Although UII exerts potent cardiovascular actions, its possible effects on the QT interval have never been investigated. The goal of the present study was to provide insight into the potential effect of UII on the QT interval in an established in vivo trout model. To this end, the effects of UII on dorsal aortic blood pressure (PDA), RR, QT intervals and corrected QT (QTc) for RR interval, were investigated after intra-arterial (IA) injection of 5, 50 and 100 pmol UII. The effects of UII were compared to those of two structurally UII-related peptides (URPs), URP1 and URP2, and to those of arginine vasotocin (AVT), homolog of the mammalian arginine vasopressin. IA injection of vehicle or 5 pmol UII had no effect on the various parameters. At the 50-pmol dose, UII evoked its usual increase in PDA with a peak value observed 15 min after the injection (+22% from baseline, P<0.001). This hypertensive effect of UII was accompanied by a significant increase in the RR interval (+18%, P<0.001), i.e. a bradycardia, and these effects remained constant until the end of the recording. The highest dose of UII evoked similar hypertensive and bradycardic effects. Of interest, the QT interval did not change during the bradycardic action of UII (50 and 100 pmol) but the QTc interval significantly decreased. In trout pre-treated with urantide, a peptidic antagonist of UT, the hypertensive and bradycardic actions of 50 pmol UII were reduced 3-fold and no change occurred in the QT and QTc intervals. In trout pre-treated with blockers of the autonomic nervous system, the hypertensive effect of UII was maintained but no change appeared in RR, QT and QTc intervals. IA injections of 50 pmol URPs were without action on the preceding parameters. IA administration of 50 pmol AVT provoked quite similar increase in PDA, and elevation of the RR interval to those evoked by IA injection of UII but, in contrast to UII, AVT injection induced a highly significant and sustained prolongation of the QT interval compared to baseline (+7%, P<0.001) without change in QTc. Our results are indicative of a lack of QT interval change during UII-evoked bradycardia but not after AVT-induced bradycardia and suggest for the first time that some compensatory mechanism specific for the UII peptide is working to stabilize the QT interval. Further research is needed to elucidate the mechanism involved in this action of UII. The potential for UII to prevent detrimental prolongation of cardiac ventricular repolarization might be questioned.
Collapse
Affiliation(s)
- Gilmer Vanegas
- INSERM UMR1101, Laboratoire de Neurophysiologie, SFR ScInBioS, Université de Brest, France
| | - Frédéric Lancien
- INSERM UMR1101, Laboratoire de Neurophysiologie, SFR ScInBioS, Université de Brest, France
| | - Jérôme Leprince
- INSERM U982, UA CNRS, Différenciation et Communication Neuronale et Neuroendocrine, Université de Rouen, Mont-Saint-Aignan, France
| | - Hubert Vaudry
- INSERM U982, UA CNRS, Différenciation et Communication Neuronale et Neuroendocrine, Université de Rouen, Mont-Saint-Aignan, France
| | - Jean-Claude Le Mével
- INSERM UMR1101, Laboratoire de Neurophysiologie, SFR ScInBioS, Université de Brest, France.
| |
Collapse
|
26
|
Dufour-Gallant J, Chatenet D, Lubell WD. De Novo Conception of Small Molecule Modulators Based on Endogenous Peptide Ligands: Pyrrolodiazepin-2-one γ-Turn Mimics That Differentially Modulate Urotensin II Receptor-Mediated Vasoconstriction ex Vivo. J Med Chem 2015; 58:4624-37. [DOI: 10.1021/acs.jmedchem.5b00162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Julien Dufour-Gallant
- Département
de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
- INRS—Institut
Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides
et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7V 1B7, Canada
| | - David Chatenet
- INRS—Institut
Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides
et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7V 1B7, Canada
| | - William D. Lubell
- Département
de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
27
|
Vanegas G, Leprince J, Lancien F, Mimassi N, Vaudry H, Le Mével JC. Divergent cardio-ventilatory and locomotor effects of centrally and peripherally administered urotensin II and urotensin II-related peptides in trout. Front Neurosci 2015; 9:142. [PMID: 25954149 PMCID: PMC4406059 DOI: 10.3389/fnins.2015.00142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/06/2015] [Indexed: 12/13/2022] Open
Abstract
The urotensin II (UII) gene family consists of four paralogous genes called UII, UII-related peptide (URP), URP1 and URP2. UII and URP peptides exhibit the same cyclic hexapeptide core sequence (CFWKYC) while the N- and C-terminal regions are variable. UII, URP1, and URP2 mRNAs are differentially expressed within the central nervous system of teleost fishes, suggesting that they may exert distinct functions. Although the cardiovascular, ventilatory and locomotor effects of UII have been described in teleosts, much less is known regarding the physiological actions of URPs. The goal of the present study was to compare the central and peripheral actions of picomolar doses (5-500 pmol) of trout UII, URP1, and URP2 on cardio-ventilatory variables and locomotor activity in the unanesthetized trout. Compared to vehicle, intracerebroventricular injection of UII, URP1 and URP2 evoked a gradual increase in total ventilation (V TOT) reaching statistical significance for doses of 50 and 500 pmol of UII and URP1 but for only 500 pmol of URP2. In addition, UII, URP1 and URP2 provoked an elevation of dorsal aortic blood pressure (P DA) accompanied with tachycardia. All peptides caused an increase in locomotor activity (A CT), at a threshold dose of 5 pmol for UII and URP1, and 50 pmol for URP2. After intra-arterial (IA) injection, and in contrast to their central effects, only the highest dose of UII and URP1 significantly elevated V TOT and A CT. UII produced a dose-dependent hypertensive effect with concomitant bradycardia while URP1 increased P DA and heart rate after injection of only the highest dose of peptide. URP2 did not evoke any cardio-ventilatory or locomotor effect after IA injection. Collectively, these findings support the hypothesis that endogenous UII, URP1 and URP2 in the trout brain may act as neurotransmitters and/or neuromodulators acting synergistically or differentially to control the cardio-respiratory and locomotor systems. In the periphery, the only physiological actions of these peptides might be those related to the well-known cardiovascular regulatory actions of UII. It remains to determine whether the observed divergent physiological effects of UII and URPs are due to differential interaction with the UT receptor or binding to distinct UT subtypes.
Collapse
Affiliation(s)
- Gilmer Vanegas
- Institut National de la Santé et de la Recherche Médicale UMR1101, Laboratoire de Neurophysiologie, SFR ScInBioS, Université de Brest Brest, France
| | - Jérôme Leprince
- Institut National de la Santé et de la Recherche Médicale U982, UA Centre National de la Recherche Scientifique, Différenciation et Communication Neuronale et Neuroendocrine, Université de Rouen Mont-Saint-Aignan, France
| | - Frédéric Lancien
- Institut National de la Santé et de la Recherche Médicale UMR1101, Laboratoire de Neurophysiologie, SFR ScInBioS, Université de Brest Brest, France
| | - Nagi Mimassi
- Institut National de la Santé et de la Recherche Médicale UMR1101, Laboratoire de Neurophysiologie, SFR ScInBioS, Université de Brest Brest, France
| | - Hubert Vaudry
- Institut National de la Santé et de la Recherche Médicale U982, UA Centre National de la Recherche Scientifique, Différenciation et Communication Neuronale et Neuroendocrine, Université de Rouen Mont-Saint-Aignan, France
| | - Jean-Claude Le Mével
- Institut National de la Santé et de la Recherche Médicale UMR1101, Laboratoire de Neurophysiologie, SFR ScInBioS, Université de Brest Brest, France
| |
Collapse
|
28
|
Quan FB, Dubessy C, Galant S, Kenigfest NB, Djenoune L, Leprince J, Wyart C, Lihrmann I, Tostivint H. Comparative distribution and in vitro activities of the urotensin II-related peptides URP1 and URP2 in zebrafish: evidence for their colocalization in spinal cerebrospinal fluid-contacting neurons. PLoS One 2015; 10:e0119290. [PMID: 25781313 PMCID: PMC4364556 DOI: 10.1371/journal.pone.0119290] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/12/2015] [Indexed: 12/28/2022] Open
Abstract
Urotensin II (UII) is an evolutionarily conserved neuropeptide initially isolated from teleost fish on the basis of its smooth muscle-contracting activity. Subsequent studies have demonstrated the occurrence of several UII-related peptides (URPs), such that the UII family is now known to include four paralogue genes called UII, URP, URP1 and URP2. These genes probably arose through the two rounds of whole genome duplication that occurred during early vertebrate evolution. URP has been identified both in tetrapods and teleosts. In contrast, URP1 and URP2 have only been observed in ray-finned and cartilaginous fishes, suggesting that both genes were lost in the tetrapod lineage. In the present study, the distribution of urp1 mRNA compared to urp2 mRNA is reported in the central nervous system of zebrafish. In the spinal cord, urp1 and urp2 mRNAs were mainly colocalized in the same cells. These cells were also shown to be GABAergic and express the gene encoding the polycystic kidney disease 2-like 1 (pkd2l1) channel, indicating that they likely correspond to cerebrospinal fluid-contacting neurons. In the hindbrain, urp1-expressing cells were found in the intermediate reticular formation and the glossopharyngeal-vagal motor nerve nuclei. We also showed that synthetic URP1 and URP2 were able to induce intracellular calcium mobilization in human UII receptor (hUT)-transfected CHO cells with similar potencies (pEC50=7.99 and 7.52, respectively) albeit at slightly lower potencies than human UII and mammalian URP (pEC50=9.44 and 8.61, respectively). The functional redundancy of URP1 and URP2 as well as the colocalization of their mRNAs in the spinal cord suggest the robustness of this peptidic system and its physiological importance in zebrafish.
Collapse
Affiliation(s)
- Feng B. Quan
- Evolution des Régulations Endocriniennes, UMR 7221 CNRS, and Muséum National d’Histoire Naturelle, Paris, France
| | - Christophe Dubessy
- Inserm, U982, University of Rouen, Mont-Saint-Aignan, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Mont-Saint-Aignan, France
- Normandy University, University of Rouen, Mont-Saint-Aignan, France
| | - Sonya Galant
- Laboratoire de Neurobiologie et Développement, CNRS UPR 3294, Institut Alfred Fessard, Gif-sur-Yvette, France
| | - Natalia B. Kenigfest
- Evolution des Régulations Endocriniennes, UMR 7221 CNRS, and Muséum National d’Histoire Naturelle, Paris, France
- Laboratory of Evolution of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Lydia Djenoune
- Evolution des Régulations Endocriniennes, UMR 7221 CNRS, and Muséum National d’Histoire Naturelle, Paris, France
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS, UMR 7225, Sorbonne Universités, UPMC University Paris 06 UMR S 1127, Paris, France
| | - Jérôme Leprince
- Inserm, U982, University of Rouen, Mont-Saint-Aignan, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Mont-Saint-Aignan, France
- Normandy University, University of Rouen, Mont-Saint-Aignan, France
| | - Claire Wyart
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS, UMR 7225, Sorbonne Universités, UPMC University Paris 06 UMR S 1127, Paris, France
| | - Isabelle Lihrmann
- Inserm, U982, University of Rouen, Mont-Saint-Aignan, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Mont-Saint-Aignan, France
- Normandy University, University of Rouen, Mont-Saint-Aignan, France
| | - Hervé Tostivint
- Evolution des Régulations Endocriniennes, UMR 7221 CNRS, and Muséum National d’Histoire Naturelle, Paris, France
- * E-mail:
| |
Collapse
|
29
|
Brancaccio D, Merlino F, Limatola A, Yousif AM, Gomez-Monterrey I, Campiglia P, Novellino E, Grieco P, Carotenuto A. An investigation into the origin of the biased agonism associated with the urotensin II receptor activation. J Pept Sci 2015; 21:392-9. [DOI: 10.1002/psc.2740] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Diego Brancaccio
- Department of Pharmacy; University of Naples ‘Federico II’; I-80131 Naples Italy
| | - Francesco Merlino
- Department of Pharmacy; University of Naples ‘Federico II’; I-80131 Naples Italy
| | - Antonio Limatola
- Department of Pharmacy; University of Naples ‘Federico II’; I-80131 Naples Italy
| | - Ali Munaim Yousif
- Department of Pharmacy; University of Naples ‘Federico II’; I-80131 Naples Italy
| | | | - Pietro Campiglia
- Department of Pharmacy; University of Salerno; I-84084 Fisciano Salerno Italy
| | - Ettore Novellino
- Department of Pharmacy; University of Naples ‘Federico II’; I-80131 Naples Italy
| | - Paolo Grieco
- Department of Pharmacy; University of Naples ‘Federico II’; I-80131 Naples Italy
- CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi University of Naples ‘Federico II’, DFM-Scarl; Institute of Biostructures and Bioimaging - CNR; 80134 Naples Italy
| | - Alfonso Carotenuto
- Department of Pharmacy; University of Naples ‘Federico II’; I-80131 Naples Italy
| |
Collapse
|
30
|
Mueller LE, Kausch MA, Markovic T, MacLaren DAA, Dietz DM, Park J, Clark SD. Intra-ventral tegmental area microinjections of urotensin II modulate the effects of cocaine. Behav Brain Res 2015; 278:271-9. [PMID: 25264578 DOI: 10.1016/j.bbr.2014.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/13/2014] [Accepted: 09/19/2014] [Indexed: 12/26/2022]
Abstract
Although the peptide urotensin II (UII) has well studied direct actions on the cardiovascular system, the UII receptor (UIIR) is expressed by neurons of the hindbrain. Specifically, the UIIR is expressed by the cholinergic neurons of the laterodorsal tegmentum (LDTg) and the pedunculopontine tegmentum (PPTg). These neurons send axons to the ventral tegmental area (VTA), for which the PPTg and LDTg are the sole source of acetylcholine. Therefore, it was hypothesized that UIIR activation within the VTA would modulate reward-related behaviors, such as cocaine-induced drug seeking. Intra-VTA microinjections of UII at high concentrations (1 nmole) established conditioned place preference (CPP), but also blocked cocaine-mediated CPP (10 mg/kg). When rats received systemic sub-effectual doses of cocaine (7.5 mg/kg) with intra-VTA injections of 1 or 10 pmole of UII CPP was formed. Furthermore, the second endogenous ligand for the UIIR, urotensin II-related peptide, had the same effect at the 10 pmole dose. The effects of low doses of UII were blocked by pretreatment with the UIIR antagonist SB657510. Furthermore, it was found that intra-VTA UII (10 pmole) further increased cocaine-mediated (7.5 mg/kg) rises in electrically evoked dopamine in the nucleus accumbens. Our study has found that activation of VTA-resident UIIR produces observable behavioral changes in rats, and that UIIR is able to modulate the effects of cocaine. In addition, it was found that UIIR activation within the VTA can potentiate cocaine-mediated neurochemical effects. Therefore, the coincident activation of the UII-system and cocaine administration may increase the liability for drug taking behavior.
Collapse
Affiliation(s)
- L E Mueller
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, NY 14214, USA
| | - M A Kausch
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, NY 14214, USA
| | - T Markovic
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, NY 14214, USA
| | - D A A MacLaren
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, NY 14214, USA
| | - D M Dietz
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, NY 14214, USA; Research Institute on Addictions, State University of New York at Buffalo, NY 14214, USA
| | - J Park
- Department of Biotechnology and Clinical Laboratory Sciences, State University of New York at Buffalo, NY 14214, USA
| | - S D Clark
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, NY 14214, USA; Department of Psychology, State University of New York at Buffalo, NY 14214, USA; Research Institute on Addictions, State University of New York at Buffalo, NY 14214, USA.
| |
Collapse
|
31
|
Vaudry H, Leprince J, Chatenet D, Fournier A, Lambert DG, Le Mével JC, Ohlstein EH, Schwertani A, Tostivint H, Vaudry D. International Union of Basic and Clinical Pharmacology. XCII. Urotensin II, urotensin II-related peptide, and their receptor: from structure to function. Pharmacol Rev 2015; 67:214-58. [PMID: 25535277 DOI: 10.1124/pr.114.009480] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Urotensin II (UII) is a cyclic neuropeptide that was first isolated from the urophysis of teleost fish on the basis of its ability to contract the hindgut. Subsequently, UII was characterized in tetrapods including humans. Phylogenetic studies and synteny analysis indicate that UII and its paralogous peptide urotensin II-related peptide (URP) belong to the somatostatin/cortistatin superfamily. In mammals, the UII and URP genes are primarily expressed in cholinergic neurons of the brainstem and spinal cord. UII and URP mRNAs are also present in various organs notably in the cardiovascular, renal, and endocrine systems. UII and URP activate a common G protein-coupled receptor, called UT, that exhibits relatively high sequence identity with somatostatin, opioid, and galanin receptors. The UT gene is widely expressed in the central nervous system (CNS) and in peripheral tissues including the retina, heart, vascular bed, lung, kidney, adrenal medulla, and skeletal muscle. Structure-activity relationship studies and NMR conformational analysis have led to the rational design of a number of peptidic and nonpeptidic UT agonists and antagonists. Consistent with the wide distribution of UT, UII has now been shown to exert a large array of biologic activities, in particular in the CNS, the cardiovascular system, and the kidney. Here, we review the current knowledge concerning the pleiotropic actions of UII and discusses the possible use of antagonists for future therapeutic applications.
Collapse
Affiliation(s)
- Hubert Vaudry
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Jérôme Leprince
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David Chatenet
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Alain Fournier
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David G Lambert
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Jean-Claude Le Mével
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Eliot H Ohlstein
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Adel Schwertani
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Hervé Tostivint
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David Vaudry
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| |
Collapse
|
32
|
Brulé C, Perzo N, Joubert JE, Sainsily X, Leduc R, Castel H, Prézeau L. Biased signaling regulates the pleiotropic effects of the urotensin II receptor to modulate its cellular behaviors. FASEB J 2014; 28:5148-62. [PMID: 25183668 DOI: 10.1096/fj.14-249771] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Biased agonism by G-protein-coupled receptor ligands has opened up strategies for targeted physiological or therapeutic actions. We hypothesized that urotensin II (UII)-derived peptides displayed unexpected physiological effects because of such biased signaling on the UII human urotensin (hUT) receptor. We determined the coupling to G proteins and β-arrestins of the UII-activated hUT receptor expressed in HEK293 using bioluminescence resonance energy transfer (BRET) biosensors, as well as the production of IP1-3 and cAMP using homogenous time-resolved Forster resonance energy transfer (FRET) (HTRF)-based assays. The activated receptor coupled to Gi1, GoA, Gq, and G13, excluding Gs, and recruited β-arrestins 1 and 2. Integration of these pathways led to a 2-phase kinetic phosphorylation of ERK1/2 kinases. The tested peptides induced three different profiles: UII, urotensin-related peptide (URP), and UII4-11 displayed the full profile; [Orn(8)]UII and [Orn(5)]URP activated G proteins, although with pEC50s 5-10× higher, and did not or barely recruited β-arrestin; urantide also failed to recruit β-arrestin but displayed a reversed rank order for Gi and Gq vs. Go pEC50s (-8.79±0.20, -8.43±0.21, and -7.86±0.36, respectively, for urantide, -7.87±0.10, -7.23±0.27, and -8.55±0.19, respectively, for [Orn(5)]URP) and was a partial agonist of all G-protein pathways. Interestingly, the peptides differently modulated cell survival but similarly induced cell migration and adhesion. Thus, we demonstrate biased signaling between β-arrestin and G proteins, and between G-protein subtypes, which dictates the receptor's cellular responses.
Collapse
Affiliation(s)
- Cédric Brulé
- Department of Pharmacology, Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U661, Montpellier, France; UMR 5203, Universités de Montpellier 1 and 2, Montpellier, France
| | - Nicolas Perzo
- Department of Pharmacology, Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; INSERM, U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation (DC2N), Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), Pôles de Recherche et d'Enseignement Supérieur (PRES) Normandy, Peptide Research Network of Excellence (PERENE), University of Rouen, Mont-Saint-Aignan, France
| | - Jane-Eileen Joubert
- INSERM, U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation (DC2N), Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), Pôles de Recherche et d'Enseignement Supérieur (PRES) Normandy, Peptide Research Network of Excellence (PERENE), University of Rouen, Mont-Saint-Aignan, France
| | - Xavier Sainsily
- Department of Pharmacology, Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Richard Leduc
- Department of Pharmacology, Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Hélène Castel
- INSERM, U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation (DC2N), Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), Pôles de Recherche et d'Enseignement Supérieur (PRES) Normandy, Peptide Research Network of Excellence (PERENE), University of Rouen, Mont-Saint-Aignan, France
| | - Laurent Prézeau
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U661, Montpellier, France; UMR 5203, Universités de Montpellier 1 and 2, Montpellier, France;
| |
Collapse
|
33
|
Carotenuto A, Auriemma L, Merlino F, Yousif AM, Marasco D, Limatola A, Campiglia P, Gomez-Monterrey I, Santicioli P, Meini S, Maggi CA, Novellino E, Grieco P. Lead Optimization of P5U and Urantide: Discovery of Novel Potent Ligands at the Urotensin-II Receptor. J Med Chem 2014; 57:5965-74. [DOI: 10.1021/jm500218x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alfonso Carotenuto
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Luigia Auriemma
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Francesco Merlino
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Ali Munaim Yousif
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Daniela Marasco
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
- CIRPEB:
Centro Interuniversitario di Ricerca sui Peptidi Bioattivi , University of Naples “Federico II”, DFM-Scarl, Institute of Biostructures and Bioimaging-CNR, 80134, Naples, Italy
| | - Antonio Limatola
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Pietro Campiglia
- Department
of Pharmacy, University of Salerno, I-84084 Fisciano, Salerno Italy
| | | | - Paolo Santicioli
- Department
of Pharmacology, Menarini Ricerche, Via Rismondo 12/A, I-50131, Florence, Italy
| | - Stefania Meini
- Department
of Pharmacology, Menarini Ricerche, Via Rismondo 12/A, I-50131, Florence, Italy
| | - Carlo A. Maggi
- Department
of Pharmacology, Menarini Ricerche, Via Rismondo 12/A, I-50131, Florence, Italy
| | - Ettore Novellino
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Paolo Grieco
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
- CIRPEB:
Centro Interuniversitario di Ricerca sui Peptidi Bioattivi , University of Naples “Federico II”, DFM-Scarl, Institute of Biostructures and Bioimaging-CNR, 80134, Naples, Italy
| |
Collapse
|
34
|
Bucharles C, Bizet P, Arthaud S, Arabo A, Leprince J, Lefranc B, Cartier D, Anouar Y, Lihrmann I. Concordant localization of functional urotensin II and urotensin II-related peptide binding sites in the rat brain: Atypical occurrence close to the fourth ventricle. J Comp Neurol 2014; 522:2634-49. [DOI: 10.1002/cne.23553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 01/23/2014] [Accepted: 01/23/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Christine Bucharles
- Inserm, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine; University of Rouen; Mont-Saint-Aignan France
- Normandy University, University of Rouen; Mont-Saint-Aignan France
| | - Patrice Bizet
- Inserm, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine; University of Rouen; Mont-Saint-Aignan France
- Normandy University, University of Rouen; Mont-Saint-Aignan France
| | - Sébastien Arthaud
- Inserm, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine; University of Rouen; Mont-Saint-Aignan France
- Normandy University, University of Rouen; Mont-Saint-Aignan France
| | - Arnaud Arabo
- Normandy University, University of Rouen; Mont-Saint-Aignan France
- Faculty of Sciences; University of Rouen; Mont-Saint-Aignan France
| | - Jérôme Leprince
- Inserm, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine; University of Rouen; Mont-Saint-Aignan France
- Normandy University, University of Rouen; Mont-Saint-Aignan France
| | - Benjamin Lefranc
- Inserm, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine; University of Rouen; Mont-Saint-Aignan France
- Normandy University, University of Rouen; Mont-Saint-Aignan France
| | - Dorthe Cartier
- Inserm, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine; University of Rouen; Mont-Saint-Aignan France
- Normandy University, University of Rouen; Mont-Saint-Aignan France
| | - Youssef Anouar
- Inserm, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine; University of Rouen; Mont-Saint-Aignan France
- Normandy University, University of Rouen; Mont-Saint-Aignan France
| | - Isabelle Lihrmann
- Inserm, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine; University of Rouen; Mont-Saint-Aignan France
- Normandy University, University of Rouen; Mont-Saint-Aignan France
| |
Collapse
|
35
|
Brancaccio D, Limatola A, Campiglia P, Gomez-Monterrey I, Novellino E, Grieco P, Carotenuto A. Urantide Conformation and Interaction with the Urotensin-II Receptor. Arch Pharm (Weinheim) 2013; 347:185-92. [DOI: 10.1002/ardp.201300269] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/17/2013] [Accepted: 09/23/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Diego Brancaccio
- Department of Pharmacy; University of Naples “Federico II”; Naples Italy
| | - Antonio Limatola
- Department of Pharmacy; University of Naples “Federico II”; Naples Italy
| | - Pietro Campiglia
- Department of Pharmacy; University of Salerno; Fisciano Salerno Italy
| | | | - Ettore Novellino
- Department of Pharmacy; University of Naples “Federico II”; Naples Italy
| | - Paolo Grieco
- Department of Pharmacy; University of Naples “Federico II”; Naples Italy
| | - Alfonso Carotenuto
- Department of Pharmacy; University of Naples “Federico II”; Naples Italy
| |
Collapse
|
36
|
Chatenet D, Folch B, Feytens D, Létourneau M, Tourwé D, Doucet N, Fournier A. Development and Pharmacological Characterization of Conformationally Constrained Urotensin II-Related Peptide Agonists. J Med Chem 2013; 56:9612-22. [DOI: 10.1021/jm401153j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David Chatenet
- INRS-Institut
Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, Ville de Laval, Québec, QC H7V 1B7, Canada
- Laboratoire International
Associé Samuel de Champlain, INSERM-INRS-Université
de Rouen
| | - Benjamin Folch
- INRS-Institut
Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, Ville de Laval, Québec, QC H7V 1B7, Canada
| | - Debby Feytens
- Department
of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Myriam Létourneau
- INRS-Institut
Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, Ville de Laval, Québec, QC H7V 1B7, Canada
- Laboratoire International
Associé Samuel de Champlain, INSERM-INRS-Université
de Rouen
| | - Dirk Tourwé
- Department
of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Nicolas Doucet
- INRS-Institut
Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, Ville de Laval, Québec, QC H7V 1B7, Canada
- Regroupement
Québécois de Recherche sur la Fonction, la Structure
et l’Ingénierie des Protéines, PROTEO, Québec, QC G1V 0A6, Canada
- GRASP,
Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Bellini Pavillion, Room 453, 3649 Promenade Sir William Osler, Montréal, QC H3G 0B1, Canada
| | - Alain Fournier
- INRS-Institut
Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, Ville de Laval, Québec, QC H7V 1B7, Canada
- Laboratoire International
Associé Samuel de Champlain, INSERM-INRS-Université
de Rouen
| |
Collapse
|
37
|
Chatenet D, Létourneau M, Nguyen QT, Doan ND, Dupuis J, Fournier A. Discovery of new antagonists aimed at discriminating UII and URP-mediated biological activities: insight into UII and URP receptor activation. Br J Pharmacol 2013; 168:807-21. [PMID: 22994258 DOI: 10.1111/j.1476-5381.2012.02217.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 08/15/2012] [Accepted: 08/27/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent evidence suggested that urotensin II (UII) and its paralog peptide UII-related peptide (URP) might exert common but also divergent physiological actions. Unfortunately, none of the existing antagonists were designed to discriminate specific UII- or URP-associated actions, and our understanding, on how these two endogenous peptides can trigger different, but also common responses, is limited. EXPERIMENTAL APPROACH Ex vivo rat and monkey aortic ring contraction as well as dissociation kinetics studies using transfected CHO cells expressing the human urotensin (UT) receptors were used in this study. KEY RESULTS Ex vivo rat and monkey aortic ring contraction studies revealed the propensity of [Pep(4)]URP to decrease the maximal response of human UII (hUII) without any significant change in potency, whereas no effect was noticeable on the URP-induced vasoconstriction. Dissociation experiments demonstrated the ability of [Pep(4)]URP to increase the dissociation rate of hUII, but not URP. Surprisingly, URP, an equipotent UII paralog, was also able to accelerate the dissociation rate of membrane-bound (125)I-hUII, whereas hUII had no noticeable effect on URP dissociation kinetics. Further experiments suggested that an interaction between the glutamic residue at position 1 of hUII and the UT receptor seems to be critical to induce conformational changes associated with agonistic activation. Finally, we demonstrated that the N-terminal domain of the rat UII isoform was able to act as a specific antagonist of the URP-associated actions. CONCLUSION Such compounds, that is [Pep(4)]URP and rUII(1-7), should prove to be useful as new pharmacological tools to decipher the specific role of UII and URP in vitro but also in vivo.
Collapse
Affiliation(s)
- D Chatenet
- Laboratoire d'études moléculaires et pharmacologiques des peptides, Université du Québec, INRS-Institut Armand-Frappier, Ville de Laval, QC, Canada.
| | | | | | | | | | | |
Collapse
|
38
|
Konno N, Fujii Y, Imae H, Kaiya H, Mukuda T, Miyazato M, Matsuda K, Uchiyama M. Urotensin II receptor (UTR) exists in hyaline chondrocytes: a study of peripheral distribution of UTR in the African clawed frog, Xenopus laevis. Gen Comp Endocrinol 2013; 185:44-56. [PMID: 23399967 DOI: 10.1016/j.ygcen.2013.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/15/2013] [Accepted: 01/20/2013] [Indexed: 02/07/2023]
Abstract
Urotensin II (UII) and UII-related peptide (URP) exhibit diverse physiological actions including vasoconstriction, locomotor activity, osmoregulation, and immune response through UII receptor (UTR), which is expressed in the central nervous system and peripheral tissues of fish and mammals. In amphibians, only UII has been identified. As the first step toward elucidating the actions of UII and URP in amphibians, we cloned and characterized URP and UTR from the African clawed frog Xenopus laevis. Functional analysis showed that treatment of UII or URP with Chinese hamster ovary cells transfected with the cloned receptor increased the intracellular calcium concentration in a concentration-dependent manner, whereas the administration of the UTR antagonist urantide inhibited UII- or URP-induced Ca(2+) mobilization. An immunohistochemical study showed that UTR was expressed in the splenocytes and leukocytes isolated from peripheral blood, suggesting that UII and URP are involved in the regulation of the immune system. UTR was also localized in the apical membrane of the distal tubule of the kidney and in the transitional epithelial cells of the urinary bladder. This result supports the view that the UII/URP-UTR system plays an important role in osmoregulation of amphibians. Interestingly, immunopositive labeling for UTR was first detected in the chondrocytes of various hyaline cartilages (the lung septa, interphalangeal joint and sternum). The expression of UTR was also observed in the costal cartilage, tracheal cartilages, and xiphoid process of the rat. These novel findings probably suggest that UII and URP mediate the formation of the cartilaginous matrix.
Collapse
Affiliation(s)
- Norifumi Konno
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
New insight into the binding mode of peptides at urotensin-II receptor by Trp-constrained analogues of P5U and urantide. J Pept Sci 2013; 19:293-300. [DOI: 10.1002/psc.2498] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/25/2013] [Accepted: 01/27/2013] [Indexed: 11/07/2022]
|
40
|
Urotensin-II Ligands: An Overview from Peptide to Nonpeptide Structures. JOURNAL OF AMINO ACIDS 2013; 2013:979016. [PMID: 23533711 PMCID: PMC3596952 DOI: 10.1155/2013/979016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/14/2013] [Indexed: 02/07/2023]
Abstract
Urotensin-II was originally isolated from the goby urophysis in the 1960s as a vasoactive peptide with a prominent role in cardiovascular homeostasis. The identification of human isoform of urotensin-II and its specific UT receptor by Ames et al. in 1999 led to investigating the putative role of the interaction U-II/UT receptor in multiple pathophysiological effects in humans. Since urotensin-II is widely expressed in several peripheral tissues including cardiovascular system, the design and development of novel urotensin-II analogues can improve knowledge about structure-activity relationships (SAR). In particular, since the modulation of the U-II system offers a great potential for therapeutic strategies related to the treatment of several diseases, like cardiovascular diseases, the research of selective and potent ligands at UT receptor is more fascinating. In this paper, we review the developments of peptide and nonpeptide U-II structures so far developed in order to contribute also to a more rational and detectable design and synthesis of new molecules with high affinity at the UT receptor.
Collapse
|
41
|
Góngora-Benítez M, Basso A, Bruckdorfer T, Royo M, Tulla-Puche J, Albericio F. Eco-Friendly Combination of the Immobilized PGA Enzyme and theS-Phacm Protecting Group for the Synthesis of Cys-Containing Peptides. Chemistry 2012; 18:16166-76. [DOI: 10.1002/chem.201201370] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Indexed: 01/20/2023]
|
42
|
Neveu C, Lefranc B, Tasseau O, Do-Rego JC, Bourmaud A, Chan P, Bauchat P, Le Marec O, Chuquet J, Guilhaudis L, Boutin JA, Ségalas-Milazzo I, Costentin J, Vaudry H, Baudy-Floc'h M, Vaudry D, Leprince J. Rational design of a low molecular weight, stable, potent, and long-lasting GPR103 aza-β3-pseudopeptide agonist. J Med Chem 2012; 55:7516-24. [PMID: 22800498 DOI: 10.1021/jm300507d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
26RFa, a novel RFamide neuropeptide, is the endogenous ligand of the former orphan receptor GPR103. Intracerebroventricular injection of 26RFa and its C-terminal heptapeptide, 26RFa((20-26)), stimulates food intake in rodents. To develop potent, stable ligands of GPR103 with low molecular weight, we have designed a series of aza-β(3)-containing 26RFa((20-26)) analogues for their propensity to establish intramolecular hydrogen bonds, and we have evaluated their ability to increase [Ca(2+)](i) in GPR103-transfected cells. We have identified a compound, [Cmpi(21),aza-β(3)-Hht(23)]26RFa((21-26)), which was 8-fold more potent than 26RFa((20-26)) in mobilizing [Ca(2+)](i). This pseudopeptide was more stable in serum than 26RFa((20-26)) and exerted a longer lasting orexigenic effect in mice. This study constitutes an important step toward the development of 26RFa analogues that could prove useful for the treatment of feeding disorders.
Collapse
Affiliation(s)
- Cindy Neveu
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), INSERM U982, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Doan ND, Nguyen TTM, Létourneau M, Turcotte K, Fournier A, Chatenet D. Biochemical and pharmacological characterization of nuclear urotensin-II binding sites in rat heart. Br J Pharmacol 2012; 166:243-57. [PMID: 22044114 DOI: 10.1111/j.1476-5381.2011.01710.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND PURPOSE During the past decade, a few GPCRs have been characterized at the nuclear membrane where they exert complementary physiological functions. In this study, we investigated (1) the presence of a functional urotensin-II (U-II) receptor (UT) in rat heart nuclear extracts and (2) the propensity of U-II and U-II-related peptide (URP) to cross the plasma membrane in a receptor-independent manner. EXPERIMENTAL APPROACH Biochemical and pharmacological methods including competitive binding assays, photoaffinity labelling, immunoblotting as well as de novo RNA synthesis were used to characterize the presence of functional UT receptors in rat heart nuclei. In addition, confocal microscopy and flow cytometry analysis were used to investigate the cellular uptake of fluorescent U-II and URP derivatives. KEY RESULTS The presence of specific U-II binding sites was demonstrated in rat heart nuclear extracts. Moreover, such subcellular localization was also observed in monkey heart extracts. In vitro transcription initiation assays on rat, freshly isolated, heart nuclei suggested that nuclear UT receptors are functional, and that U-II, but not URP, participates in nuclear UT-associated gene expression. Surprisingly, hU-II and URP efficiently crossed the plasma membrane in a receptor-independent mechanism involving endocytosis through caveolin-coated pits; this uptake of hU-II, but not that of URP, was dependent on extracellular pH. CONCLUSION Our results suggest that (1) U-II and URP can differentially modulate nuclear UT functions such as gene expression, and (2) both ligands can reach the internal cellular space through a receptor-independent mechanism.
Collapse
Affiliation(s)
- N D Doan
- Université du Québec, INRS - Institut Armand-Frappier, Ville de Laval, QC, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Desrues L, Lefebvre T, Lecointre C, Schouft MT, Leprince J, Compère V, Morin F, Proust F, Gandolfo P, Tonon MC, Castel H. Down-regulation of GABA(A) receptor via promiscuity with the vasoactive peptide urotensin II receptor. Potential involvement in astrocyte plasticity. PLoS One 2012; 7:e36319. [PMID: 22563490 PMCID: PMC3341351 DOI: 10.1371/journal.pone.0036319] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 04/02/2012] [Indexed: 02/07/2023] Open
Abstract
GABAA receptor (GABAAR) expression level is inversely correlated with the proliferation rate of astrocytes after stroke or during malignancy of astrocytoma, leading to the hypothesis that GABAAR expression/activation may work as a cell proliferation repressor. A number of vasoactive peptides exhibit the potential to modulate astrocyte proliferation, and the question whether these mechanisms may imply alteration in GABAAR-mediated functions and/or plasma membrane densities is open. The peptide urotensin II (UII) activates a G protein-coupled receptor named UT, and mediates potent vasoconstriction or vasodilation in mammalian vasculature. We have previously demonstrated that UII activates a PLC/PIPs/Ca2+ transduction pathway, via both Gq and Gi/o proteins and stimulates astrocyte proliferation in culture. It was also shown that UT/Gq/IP3 coupling is regulated by the GABAAR in rat cultured astrocytes. Here we report that UT and GABAAR are co-expressed in cerebellar glial cells from rat brain slices, in human native astrocytes and in glioma cell line, and that UII inhibited the GABAergic activity in rat cultured astrocytes. In CHO cell line co-expressing human UT and combinations of GABAAR subunits, UII markedly depressed the GABA current (β3γ2>α2β3γ2>α2β1γ2). This effect, characterized by a fast short-term inhibition followed by drastic and irreversible run-down, is not relayed by G proteins. The run-down partially involves Ca2+ and phosphorylation processes, requires dynamin, and results from GABAAR internalization. Thus, activation of the vasoactive G protein-coupled receptor UT triggers functional inhibition and endocytosis of GABAAR in CHO and human astrocytes, via its receptor C-terminus. This UII-induced disappearance of the repressor activity of GABAAR, may play a key role in the initiation of astrocyte proliferation.
Collapse
Affiliation(s)
- Laurence Desrues
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, University of Rouen, Mont-Saint-Aignan, France
- Institute of Research and Biomedical Innovation (IRIB), Normandy University PRES, University of Rouen, Mont-Saint-Aignan, France
| | - Thomas Lefebvre
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, University of Rouen, Mont-Saint-Aignan, France
- Institute of Research and Biomedical Innovation (IRIB), Normandy University PRES, University of Rouen, Mont-Saint-Aignan, France
| | - Céline Lecointre
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, University of Rouen, Mont-Saint-Aignan, France
- Institute of Research and Biomedical Innovation (IRIB), Normandy University PRES, University of Rouen, Mont-Saint-Aignan, France
| | - Marie-Thérèse Schouft
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, University of Rouen, Mont-Saint-Aignan, France
- Institute of Research and Biomedical Innovation (IRIB), Normandy University PRES, University of Rouen, Mont-Saint-Aignan, France
| | - Jérôme Leprince
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, University of Rouen, Mont-Saint-Aignan, France
- Institute of Research and Biomedical Innovation (IRIB), Normandy University PRES, University of Rouen, Mont-Saint-Aignan, France
| | - Vincent Compère
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, University of Rouen, Mont-Saint-Aignan, France
- Institute of Research and Biomedical Innovation (IRIB), Normandy University PRES, University of Rouen, Mont-Saint-Aignan, France
- Department of Anesthesiology and Critical Care, Rouen University Hospital, Rouen, France
| | - Fabrice Morin
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, University of Rouen, Mont-Saint-Aignan, France
- Institute of Research and Biomedical Innovation (IRIB), Normandy University PRES, University of Rouen, Mont-Saint-Aignan, France
| | - François Proust
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, University of Rouen, Mont-Saint-Aignan, France
- Institute of Research and Biomedical Innovation (IRIB), Normandy University PRES, University of Rouen, Mont-Saint-Aignan, France
- Department of Neurosurgery, Rouen University Hospital, Rouen, France
| | - Pierrick Gandolfo
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, University of Rouen, Mont-Saint-Aignan, France
- Institute of Research and Biomedical Innovation (IRIB), Normandy University PRES, University of Rouen, Mont-Saint-Aignan, France
| | - Marie-Christine Tonon
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, University of Rouen, Mont-Saint-Aignan, France
- Institute of Research and Biomedical Innovation (IRIB), Normandy University PRES, University of Rouen, Mont-Saint-Aignan, France
| | - Hélène Castel
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Astrocyte and Vascular Niche, University of Rouen, Mont-Saint-Aignan, France
- Institute of Research and Biomedical Innovation (IRIB), Normandy University PRES, University of Rouen, Mont-Saint-Aignan, France
- * E-mail:
| |
Collapse
|
45
|
Chatenet D, Nguyen QT, Létourneau M, Dupuis J, Fournier A. Urocontrin, a novel UT receptor ligand with a unique pharmacological profile. Biochem Pharmacol 2012; 83:608-15. [DOI: 10.1016/j.bcp.2011.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 01/23/2023]
|
46
|
Chatenet D, Nguyen TTM, Létourneau M, Fournier A. Update on the urotensinergic system: new trends in receptor localization, activation, and drug design. Front Endocrinol (Lausanne) 2012; 3:174. [PMID: 23293631 PMCID: PMC3533682 DOI: 10.3389/fendo.2012.00174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/10/2012] [Indexed: 12/17/2022] Open
Abstract
The urotensinergic system plays central roles in the physiological regulation of major mammalian organ systems, including the cardiovascular system. As a matter of fact, this system has been linked to numerous pathophysiological states including atherosclerosis, heart failure, hypertension, diabetes as well as psychological, and neurological disorders. The delineation of the (patho)physiological roles of the urotensinergic system has been hampered by the absence of potent and selective antagonists for the urotensin II-receptor (UT). Thus, a more precise definition of the molecular functioning of the urotensinergic system, in normal conditions as well as in a pathological state is still critically needed. The recent discovery of nuclear UT within cardiomyocytes has highlighted the cellular complexity of this system and suggested that UT-associated biological responses are not only initiated at the cell surface but may result from the integration of extracellular and intracellular signaling pathways. Thus, such nuclear-localized receptors, regulating distinct signaling pathways, may represent new therapeutic targets. With the recent observation that urotensin II (UII) and urotensin II-related peptide (URP) exert different biological effects and the postulate that they could also have distinct pathophysiological roles in hypertension, it appears crucial to reassess the recognition process involving UII and URP with UT, and to push forward the development of new analogs of the UT system aimed at discriminating UII- and URP-mediated biological activities. The recent development of such compounds, i.e. urocontrin A and rUII(1-7), is certainly useful to decipher the specific roles of UII and URP in vitro and in vivo. Altogether, these studies, which provide important information regarding the pharmacology of the urotensinergic system and the conformational requirements for binding and activation, will ultimately lead to the development of potent and selective drugs.
Collapse
Affiliation(s)
- David Chatenet
- Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, Ville de LavalQC, Canada
- Laboratoire International Associé Samuel de Champlain (INSERM/INRS-Université de Rouen)France
- *Correspondence: David Chatenet and Alain Fournier, Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Ville de Laval, QC H7V 1B7, Canada. e-mail: ;
| | - Thi-Tuyet M. Nguyen
- Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, Ville de LavalQC, Canada
- Laboratoire International Associé Samuel de Champlain (INSERM/INRS-Université de Rouen)France
| | - Myriam Létourneau
- Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, Ville de LavalQC, Canada
- Laboratoire International Associé Samuel de Champlain (INSERM/INRS-Université de Rouen)France
| | - Alain Fournier
- Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, Ville de LavalQC, Canada
- Laboratoire International Associé Samuel de Champlain (INSERM/INRS-Université de Rouen)France
- *Correspondence: David Chatenet and Alain Fournier, Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Ville de Laval, QC H7V 1B7, Canada. e-mail: ;
| |
Collapse
|
47
|
Le Marec O, Neveu C, Lefranc B, Dubessy C, Boutin JA, Do-Régo JC, Costentin J, Tonon MC, Tena-Sempere M, Vaudry H, Leprince J. Structure-activity relationships of a series of analogues of the RFamide-related peptide 26RFa. J Med Chem 2011; 54:4806-14. [PMID: 21623631 DOI: 10.1021/jm200418c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
26RFa is a new member of the RFamide peptide family that has been identified as the endogenous ligand of the orphan GPCR GPR103. As the C-terminal heptapeptide (26RFa((20-26))) mimics the action of the native peptide on food intake and gonadotropin secretion in rodents, we have synthesized a series of analogues of 26RFa((20-26)) and measured their potency to induce [Ca(2+)](i) mobilization in Gα(16)-hGPR103-transfected CHO cells. Systematic replacement of each residue by an alanine (Ala scan) and its D-enantiomer (D scan) showed that the last three C-terminal residues were very sensitive to the substitutions while position 23 tolerated rather well both modifications. Most importantly, replacement of Ser(23) by a norvaline led to an analogue, [Nva(23)]26RFa((20-26)), that was 3-fold more potent than the native heptapeptide. These new pharmacological data, by providing the first information regarding the structure-activity relationships of 26RFa analogues, should prove useful for the rational design of potent GPR103 receptor ligands with potential therapeutic application.
Collapse
Affiliation(s)
- Olivier Le Marec
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, European Institute for Peptide Research (IFRMP 23), Cell Imaging Platform (PRIMACEN), University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nitescu N, Grimberg E, Guron G. Urotensin-II receptor antagonism does not improve renal haemodynamics or function in rats with endotoxin-induced acute kidney injury. Clin Exp Pharmacol Physiol 2011; 37:1170-5. [PMID: 20880186 DOI: 10.1111/j.1440-1681.2010.05449.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Urotensin-II (U-II) is a vasoactive peptide that influences renal haemodynamics and kidney function. The aim of the present study was to examine the effects of the selective U-II receptor antagonist, urantide, on renal haemodynamics, oxygenation and function in endotoxaemic rats. 2. Endotoxaemia was induced in Sprague-Dawley rats by an intraperitoneal dose of lipopolysaccharide (LPS; Escherichia coli O127:B8, 7.5 mg/kg). At 16 h after endotoxin was given, renal clearance experiments were carried out in thiobutabarbital anaesthetized rats. Group 1, sham-saline; group 2, sham-urantide; group 3 LPS-saline; and group 4, LPS-urantide received isotonic saline or urantide (0.2 mg/kg bolus intravenously, followed by an infusion of 1.2 mg/kg/h throughout) after baseline measurements. Kidney function, renal blood flow (RBF), and cortical and outer medullary perfusion (laser-Doppler flowmetry) and oxygen tension (Clark-type microelectrodes) were analysed during 2 h of drug administration. 3. At baseline, endotoxaemic rats showed approximately 50% reductions in glomerular filtration rate (GFR) and RBF (P < 0.05), a decline in cortical and outer medullary perfusion and pO(2) (P < 0.05), and a significant increase in mean arterial pressure (MAP; P < 0.05) compared with saline-injected controls. In sham animals, urantide in a dose that did not significantly influence MAP or RBF, increased GFR (P < 0.05 time × treatment interaction) and filtration fraction (P < 0.05 treatment effect). However, urantide had no statistically significant effects on any of the investigated variables in endotoxaemic rats. 4. These findings show that U-II, through the UT receptor, does not contribute to abnormalities in renal haemodynamics and function in endotoxaemic rats.
Collapse
Affiliation(s)
- Nicoletta Nitescu
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | | | | |
Collapse
|
49
|
Nobata S, Donald JA, Balment RJ, Takei Y. Potent cardiovascular effects of homologous urotensin II (UII)-related peptide and UII in unanesthetized eels after peripheral and central injections. Am J Physiol Regul Integr Comp Physiol 2011; 300:R437-46. [DOI: 10.1152/ajpregu.00629.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We cloned cDNAs encoding urotensin II (UII)-related peptide (URP) and UII in Japanese eel, Anguilla japonica , the former being the first such cloning in teleost fishes. Unlike the exclusive expression of UII in the urophysis, the URP gene was expressed most abundantly in the brain (medulla oblongata) followed by the urophysis. Peripheral injections of URP into eels increased blood pressure by 16.1 ± 0.8 mmHg at 0.1 nmol/kg in ventral aortic blood pressure (PVA) and with similar potency and efficacy to that of UII (relative potency of URP to UII = 0.83). URP/UII and ANG II preferentially acted on the branchial and systemic circulations, respectively, and the duration of effect was distinct among the three peptides in the order of UII (60 min) >URP (30 min) >ANG II (14 min) in PVA. Urantide, a mammalian UII receptor antagonist, inhibited the URP effect (−63.6 ± 5.2%) to a greater extent than for UII (−39.9 ± 5.0%). URP and UII constricted isolated eel branchial and systemic arteries, showing their direct actions on the vascular smooth muscle. Central injection of URP increased blood pressure by 12.3 ± 0.8 mmHg at 50 pmol/eel in PVA and with similar efficacy but less potency (relative potency = 0.47) and shorter duration compared with UII. The central actions of URP/UII were more potent on the branchial circulation than on the systemic circulation, again opposite the effects of ANG II. The similar responses to peripheral and central injections suggest that peripheral hormones may act on the brain. Taken together, in eels, URP and UII are potent cardiovascular hormones like ANG II, acting directly on the peripheral vasculature, as well as a central vasomotor site, and their actions are mediated to different degrees by the UII receptor.
Collapse
Affiliation(s)
- Shigenori Nobata
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, Japan
| | - John A. Donald
- School of Life and Environmental Sciences, Deakin University, Victoria, Australia; and
| | - Richard J. Balment
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Yoshio Takei
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, Japan
| |
Collapse
|
50
|
Bruzzone F, Cervetto C, Mazzotta M, Bianchini P, Ronzitti E, Leprince J, Diaspro A, Maura G, Vallarino M, Vaudry H, Marcoli M. Urotensin II receptor and acetylcholine release from mouse cervical spinal cord nerve terminals. Neuroscience 2010; 170:67-77. [DOI: 10.1016/j.neuroscience.2010.06.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 06/16/2010] [Accepted: 06/25/2010] [Indexed: 01/30/2023]
|