1
|
Gajic I, Kekic D, Jankovic M, Tomic N, Skoric M, Petrovic M, Mitic Culafic D, Opavski N, Ristivojevic P, Krstic Ristivojevic M, Lukovic B. Nature's Arsenal: Uncovering Antibacterial Agents Against Antimicrobial Resistance. Antibiotics (Basel) 2025; 14:253. [PMID: 40149065 PMCID: PMC11939603 DOI: 10.3390/antibiotics14030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Antimicrobial resistance (AMR) poses a significant public health threat, leading to increased mortality. The World Health Organization has established a priority list highlighting critical multidrug-resistant (MDR) pathogens that demand urgent research on antimicrobial treatments. Considering this and the fact that new antibiotics are only sporadically approved, natural antibacterial agents have seen a resurgence in interest as potential alternatives to conventional antibiotics and chemotherapeutics. Natural antibacterials, derived from microorganisms, higher fungi, plants, animals, natural minerals, and food sources, offer diverse mechanisms of action against MDR pathogens. Here, we present a comprehensive summary of antibacterial agents from natural sources, including a brief history of their application and highlighting key strategies for using microorganisms (microbiopredators, such as bacteriophages), plant extracts and essential oils, minerals (e.g., silver and copper), as well as compounds of animal origin, such as milk or even venoms. The review also addresses the role of prebiotics, probiotics, and antimicrobial peptides, as well as novel formulations such as nanoparticles. The mechanisms of action of these compounds, such as terpenoids, alkaloids, and phenolic compounds, are explored alongside the challenges for their application, e.g., extraction, formulation, and pharmacokinetics. Conclusions: Future research should focus on developing eco-friendly, sustainable antimicrobial agents and validating their safety and efficacy through clinical trials. Clear regulatory frameworks are essential for integrating these agents into clinical practice. Despite challenges, natural sources offer transformative potential for combating AMR and promoting sustainable health solutions.
Collapse
Affiliation(s)
- Ina Gajic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (D.K.); (M.J.); (M.S.); (N.O.)
| | - Dusan Kekic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (D.K.); (M.J.); (M.S.); (N.O.)
| | - Marko Jankovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (D.K.); (M.J.); (M.S.); (N.O.)
| | - Nina Tomic
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia;
| | - Mila Skoric
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (D.K.); (M.J.); (M.S.); (N.O.)
| | - Milos Petrovic
- University Clinical Hospital Center “Dr. Dragisa Misovic-Dedinje”, Heroja Milana Tepića, 1, 11040 Belgrade, Serbia;
| | | | - Natasa Opavski
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (D.K.); (M.J.); (M.S.); (N.O.)
| | - Petar Ristivojevic
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Maja Krstic Ristivojevic
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Bojana Lukovic
- College of Health Sciences, Academy of Applied Studies Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Samat R, Sen S, Jash M, Ghosh S, Garg S, Sarkar J, Ghosh S. Venom: A Promising Avenue for Antimicrobial Therapeutics. ACS Infect Dis 2024; 10:3098-3125. [PMID: 39137302 DOI: 10.1021/acsinfecdis.4c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Venom in medicine is well documented in the chronicles of ancient Greece and the Roman Empire and persisted into the Renaissance and even into the modern era. Venoms were not always associated with detrimental consequences. Since ancient times, the curative capacity of venom has been recognized, portraying venom as a metaphor for pharmacy and medicine. Venom proteins and peptides' antimicrobial potential has not undergone systematic exploration despite the huge literature on natural antimicrobials. In light of the escalating challenge of antimicrobial resistance and the diminishing effectiveness of antibiotics, there is a pressing need for innovative antimicrobials capable of effectively addressing illnesses caused by multidrug-resistant microorganisms. This review adds to our understanding of the effectiveness of different venom components against a host of pathogenic microorganisms. The aim is to illuminate the various antimicrobials present in venom and venom peptides, thereby emphasizing the unexplored medicinal potential for antimicrobial properties. We have presented a concise summary of the molecular examination of the venom peptides' functioning processes, as well as the current clinical and preclinical progress of venom antimicrobial peptides.
Collapse
Affiliation(s)
- Ramkamal Samat
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Samya Sen
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Moumita Jash
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Shubham Garg
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Jayita Sarkar
- Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
3
|
Jafari Z, Sadeghi S, Dehaghi MM, Bigham A, Honarmand S, Tavasoli A, Hoseini MHM, Varma RS. Immunomodulatory activities and biomedical applications of melittin and its recent advances. Arch Pharm (Weinheim) 2024; 357:e2300569. [PMID: 38251938 DOI: 10.1002/ardp.202300569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Melittin (MLT), a peptide containing 26 amino acids, is a key constituent of bee venom. It comprises ∼40%-60% of the venom's dry weight and is the main pricing index for bee venom, being the causative factor of pain. The unique properties of MLT extracted from bee venom have made it a very valuable active ingredient in the pharmaceutical industry as this cationic and amphipathic peptide has propitious effects on human health in diverse biological processes. It has the ability to strongly impact the membranes of cells and display hemolytic activity with anticancer characteristics. However, the clinical application of MLT has been limited by its severe hemolytic activity, which poses a challenge for therapeutic use. By employing more efficient mechanisms, such as modifying the MLT sequence, genetic engineering, and nano-delivery systems, it is anticipated that the limitations posed by MLT can be overcome, thereby enabling its wider application in therapeutic contexts. This review has outlined recent advancements in MLT's nano-delivery systems and genetically engineered cells expressing MLT and provided an overview of where the MLTMLT's platforms are and where they will go in the future with the challenges ahead. The focus is on exploring how these approaches can overcome the limitations associated with MLT's hemolytic activity and improve its selectivity and efficacy in targeting cancer cells. These advancements hold promise for the creation of innovative and enhanced therapeutic approaches based on MLT for the treatment of cancer.
Collapse
Affiliation(s)
- Zohreh Jafari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Mirzarazi Dehaghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | - Shokouh Honarmand
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Afsaneh Tavasoli
- Department of Biotechnology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mostafa Haji Molla Hoseini
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rajender S Varma
- Department of Chemistry, Centre of Excellence for Research in Sustainable Chemistry, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
4
|
de Santana CJC, Pires Júnior OR, Fontes W, Palma MS, Castro MS. Mastoparans: A Group of Multifunctional α-Helical Peptides With Promising Therapeutic Properties. Front Mol Biosci 2022; 9:824989. [PMID: 35813822 PMCID: PMC9263278 DOI: 10.3389/fmolb.2022.824989] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Biologically active peptides have been attracting increasing attention, whether to improve the understanding of their mechanisms of action or in the search for new therapeutic drugs. Wasp venoms have been explored as a remarkable source for these molecules. In this review, the main findings on the group of wasp linear cationic α-helical peptides called mastoparans were discussed. These compounds have a wide variety of biological effects, including mast cell degranulation, activation of protein G, phospholipase A2, C, and D activation, serotonin and insulin release, and antimicrobial, hemolytic, and anticancer activities, which could lead to the development of new therapeutic agents.
Collapse
Affiliation(s)
- Carlos José Correia de Santana
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Osmindo Rodrigues Pires Júnior
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Mário Sérgio Palma
- Department of Basic and Applied Biology, Institute of Biosciences of Rio Claro, São Paulo State University, UNESP, Rio Claro, Brazil
| | - Mariana S. Castro
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- *Correspondence: Mariana S. Castro,
| |
Collapse
|
5
|
Akbarzadeh-Khiavi M, Torabi M, Olfati AH, Rahbarnia L, Safary A. Bio-nano scale modifications of melittin for improving therapeutic efficacy. Expert Opin Biol Ther 2022; 22:895-909. [PMID: 35687355 DOI: 10.1080/14712598.2022.2088277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Melittin (MLT), a natural membrane-active component, is the most prominent cytolytic peptide from bee venom. Remarkable biological properties of MLT, including anti-inflammatory, antimicrobial, anticancer, anti-protozoan, and antiarthritic activities, make it an up-and-coming therapeutic candidate for a wide variety of human diseases. Therapeutic applications of MLT may be hindered due to low stability, high toxicity, and weak tissue penetration. Different bio-nano scale modifications hold promise for improving its functionality and therapeutic efficacy. AREAS COVERED In the current review, we aimed to provide a comprehensive insight into strategies used for MLT conjugations and modifications, cellular delivery of modified forms, and their clinical perspectives by reviewing the published literature on PubMed, Scopus, and Google Scholar databases. We also emphasized the MLT structure modifications, mechanism of action, and cellular toxicity. EXPERT OPINION Developing new analogs and conjugates of MLT as a natural drug with improved functions and fewer side effects is crucial for the clinical translation of this approach worldwide, especially where the chemicals and synthetic drugs are more expensive or unavailable in the healthcare system. MLT-nanoconjugation may be one of the best-optimized strategies for improving peptide delivery, increasing its therapeutic efficacy, and providing minimal nonspecific cellular lytic activity. [Figure: see text].
Collapse
Affiliation(s)
- Mostafa Akbarzadeh-Khiavi
- Liver and Gastrointestinal Diseases Research Center Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Torabi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir-Hossein Olfati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Farajnia S, Rahbarnia L, Khajehnasiri N, Zarredar H. Design of a hybrid peptide derived from Melittin and CXCL14 –C17: A molecular dynamics simulation study. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Carpena M, Nuñez-Estevez B, Soria-Lopez A, Simal-Gandara J. Bee Venom: An Updating Review of Its Bioactive Molecules and Its Health Applications. Nutrients 2020; 12:nu12113360. [PMID: 33142794 PMCID: PMC7693387 DOI: 10.3390/nu12113360] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Bee venom (BV) is usually associated with pain since, when humans are stung by bees, local inflammation and even an allergic reaction can be produced. BV has been traditionally used in ancient medicine and in acupuncture. It consists of a mixture of substances, principally of proteins and peptides, including enzymes as well as other types of molecules in a very low concentration. Melittin and phospholipase A2 (PLA2) are the most abundant and studied compounds of BV. Literature of the main biological activities exerted by BV shows that most studies focuses on the comprehension and test of anti-inflammatory effects and its mechanisms of action. Other properties such as antioxidant, antimicrobial, neuroprotective or antitumor effects have also been assessed, both in vitro and in vivo. Moreover, human trials are necessary to confirm those clinical applications. However, notwithstanding the therapeutic potential of BV, there are certain problems regarding its safety and the possible appearance of adverse effects. On this perspective, new approaches have been developed to avoid these complications. This manuscript is aimed at reviewing the actual knowledge on BV components and its associated biological activities as well as the latest advances on this subject.
Collapse
|
8
|
El-Seedi H, Abd El-Wahed A, Yosri N, Musharraf SG, Chen L, Moustafa M, Zou X, Al-Mousawi S, Guo Z, Khatib A, Khalifa S. Antimicrobial Properties of Apis mellifera's Bee Venom. Toxins (Basel) 2020; 12:toxins12070451. [PMID: 32664544 PMCID: PMC7404974 DOI: 10.3390/toxins12070451] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Bee venom (BV) is a rich source of secondary metabolites from honeybees (Apis mellifera L.). It contains a variety of bioactive ingredients including peptides, proteins, enzymes, and volatile metabolites. The compounds contribute to the venom’s observed biological functions as per its anti-inflammatory and anticancer effects. The antimicrobial action of BV has been shown in vitro and in vivo experiments against bacteria, viruses, and fungi. The synergistic therapeutic interactions of BV with antibiotics has been reported. The synergistic effect contributes to a decrease in the loading and maintenance dosage, a decrease in the side effects of chemotherapy, and a decrease in drug resistance. To our knowledge, there have been no reviews on the impact of BV and its antimicrobial constituents thus far. The purpose of this review is to address the antimicrobial properties of BV and its compounds.
Collapse
Affiliation(s)
- Hesham El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
- Al-Rayan Research and Innovation Center, Al-Rayan Colleges, Medina 42541, Saudi Arabia
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (A.A.E.-W.); (N.Y.)
- Correspondence: (H.E.-S.); (S.K.); Tel.: +46-18-4714207 (H.E.-S.)
| | - Aida Abd El-Wahed
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (A.A.E.-W.); (N.Y.)
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt
| | - Nermeen Yosri
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (A.A.E.-W.); (N.Y.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Z.); (Z.G.)
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Lei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Moustafa Moustafa
- Department of Chemistry, Faculty of Science, University of Kuwait, Safat 13060, Kuwait; (M.M.); (S.A.-M.)
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Z.); (Z.G.)
| | - Saleh Al-Mousawi
- Department of Chemistry, Faculty of Science, University of Kuwait, Safat 13060, Kuwait; (M.M.); (S.A.-M.)
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Z.); (Z.G.)
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang 25200, Malaysia;
- Faculty of Pharmacy, Airlangga University, Surabaya 60155, Indonesia
| | - Shaden Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
- Correspondence: (H.E.-S.); (S.K.); Tel.: +46-18-4714207 (H.E.-S.)
| |
Collapse
|
9
|
Pucca MB, Cerni FA, Oliveira IS, Jenkins TP, Argemí L, Sørensen CV, Ahmadi S, Barbosa JE, Laustsen AH. Bee Updated: Current Knowledge on Bee Venom and Bee Envenoming Therapy. Front Immunol 2019; 10:2090. [PMID: 31552038 PMCID: PMC6743376 DOI: 10.3389/fimmu.2019.02090] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Honey bees can be found all around the world and fulfill key pollination roles within their natural ecosystems, as well as in agriculture. Most species are typically docile, and most interactions between humans and bees are unproblematic, despite their ability to inject a complex venom into their victims as a defensive mechanism. Nevertheless, incidences of bee stings have been on the rise since the accidental release of Africanized bees to Brazil in 1956 and their subsequent spread across the Americas. These bee hybrids are more aggressive and are prone to attack, presenting a significant healthcare burden to the countries they have colonized. To date, treatment of such stings typically focuses on controlling potential allergic reactions, as no specific antivenoms against bee venom currently exist. Researchers have investigated the possibility of developing bee antivenoms, but this has been complicated by the very low immunogenicity of the key bee toxins, which fail to induce a strong antibody response in the immunized animals. However, with current cutting-edge technologies, such as phage display, alongside the rise of monoclonal antibody therapeutics, the development of a recombinant bee antivenom is achievable, and promising results towards this goal have been reported in recent years. Here, current knowledge on the venom biology of Africanized bees and current treatment options against bee envenoming are reviewed. Additionally, recent developments within next-generation bee antivenoms are presented and discussed.
Collapse
Affiliation(s)
- Manuela B. Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Felipe A. Cerni
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isadora S. Oliveira
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Lídia Argemí
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Christoffer V. Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- Department of Biotechnology and Biosafety, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - José E. Barbosa
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
10
|
Lyu C, Fang F, Li B. Anti-Tumor Effects of Melittin and Its Potential Applications in Clinic. Curr Protein Pept Sci 2019; 20:240-250. [PMID: 29895240 DOI: 10.2174/1389203719666180612084615] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Accepted: 05/21/2018] [Indexed: 02/08/2023]
Abstract
Melittin, a major component of bee venom, is a water-soluble toxic peptide of which a various biological effects have been identified to be useful in anti-tumor therapy. In addition, Melittin also has anti-parasitic, anti-bacterial, anti-viral, and anti-inflammatory activities. Therefore, it is a very attractive therapeutic candidate for human diseases. However, melittin induces extensive hemolysis, a severe side effect that dampens its future development and clinical application. Thus, studies of melittin derivatives and new drug delivery systems have been conducted to explore approaches for optimizing the efficacy of this compound, while reducing its toxicity. A number of reviews have focused on each side, respectively. In this review, we summarize the research progress on the anti-tumor effects of melittin and its derivatives, and discuss its future potential clinical applications.
Collapse
Affiliation(s)
- Can Lyu
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, China
| | - Fanfu Fang
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, China
| | - Bai Li
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
11
|
Jiang X, Qian K, Liu G, Sun L, Zhou G, Li J, Fang X, Ge H, Lv Z. Design and activity study of a melittin-thanatin hybrid peptide. AMB Express 2019; 9:14. [PMID: 30701481 PMCID: PMC6353975 DOI: 10.1186/s13568-019-0739-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/23/2019] [Indexed: 12/22/2022] Open
Abstract
The unique antimicrobial mechanism of antimicrobials make them a promising substitute for antibiotics for fighting drug-resistant bacteria. Both melittin and thanatin have antimicrobial bioactivity. However, thanatin does not inhibit the growth of Staphylococcus aureus. Melittin can inhibit S. aureus and has strong hemolytic activity. In the present study, the mutant fragments of melittin and thanatin were combined by flexible peptides to form a novel hybrid peptide, which was synthesized based on the secondary and tertiary structure prediction. The hybrid peptide inhibited S. aureus with a hemolytic concentration of above 45 μmol/L and inhibition rate in SMMC-7721 cells of 19.14%. The hybrid antimicrobial peptide, which was designed by the combination of α-helix and β-lamellar antimicrobial peptides, showed that both types of peptides did not interact with each either on spatial structure or biological activities, thereby providing a novel idea for the design of artificial antimicrobial peptides.
Collapse
|
12
|
Abd El-Wahed AA, Khalifa SA, Sheikh BY, Farag MA, Saeed A, Larik FA, Koca-Caliskan U, AlAjmi MF, Hassan M, Wahabi HA, Hegazy MEF, Algethami AF, Büttner S, El-Seedi HR. Bee Venom Composition: From Chemistry to Biological Activity. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019:459-484. [DOI: 10.1016/b978-0-444-64181-6.00013-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
13
|
Meneguetti BT, Machado LDS, Oshiro KGN, Nogueira ML, Carvalho CME, Franco OL. Antimicrobial Peptides from Fruits and Their Potential Use as Biotechnological Tools-A Review and Outlook. Front Microbiol 2017; 7:2136. [PMID: 28119671 PMCID: PMC5223440 DOI: 10.3389/fmicb.2016.02136] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
Bacterial resistance is a major threat to plant crops, animals and human health, and over the years this situation has increasingly spread worldwide. Due to their many bioactive compounds, plants are promising sources of antimicrobial compounds that can potentially be used in the treatment of infections caused by microorganisms. As well as stem, flowers and leaves, fruits have an efficient defense mechanism against pests and pathogens, besides presenting nutritional and functional properties due to their multifunctional molecules. Among such compounds, the antimicrobial peptides (AMPs) feature different antimicrobials that are capable of disrupting the microbial membrane and of acting in binding to intra-cytoplasmic targets of microorganisms. They are therefore capable of controlling or halting the growth of microorganisms. In summary, this review describes the major classes of AMPs found in fruits, their possible use as biotechnological tools and prospects for the pharmaceutical industry and agribusiness.
Collapse
Affiliation(s)
- Beatriz T Meneguetti
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande, Brazil
| | - Leandro Dos Santos Machado
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande, Brazil
| | - Karen G N Oshiro
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande, Brazil
| | - Micaella L Nogueira
- Graduação em Ciências Biológicas, Universidade Católica Dom Bosco Campo Grande, Brazil
| | - Cristiano M E Carvalho
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom BoscoCampo Grande, Brazil; Graduação em Ciências Biológicas, Universidade Católica Dom BoscoCampo Grande, Brazil
| | - Octávio L Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom BoscoCampo Grande, Brazil; Graduação em Ciências Biológicas, Universidade Católica Dom BoscoCampo Grande, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de BrasíliaBrasília, Brazil
| |
Collapse
|
14
|
The Potential Use of Natural and Structural Analogues of Antimicrobial Peptides in the Fight against Neglected Tropical Diseases. Molecules 2015; 20:15392-433. [PMID: 26305243 PMCID: PMC6332049 DOI: 10.3390/molecules200815392] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/02/2015] [Accepted: 08/10/2015] [Indexed: 12/13/2022] Open
Abstract
Recently, research into the development of new antimicrobial agents has been driven by the increase in resistance to traditional antibiotics and Emerging Infectious Diseases. Antimicrobial peptides (AMPs) are promising candidates as alternatives to current antibiotics in the treatment and prevention of microbial infections. AMPs are produced by all known living species, displaying direct antimicrobial killing activity and playing an important role in innate immunity. To date, more than 2000 AMPs have been discovered and many of these exhibit broad-spectrum antibacterial, antiviral and anti-parasitic activity. Neglected tropical diseases (NTDs) are caused by a variety of pathogens and are particularly wide-spread in low-income and developing regions of the world. Alternative, cost effective treatments are desperately needed to effectively battle these medically diverse diseases. AMPs have been shown to be effective against a variety of NTDs, including African trypanosomes, leishmaniosis and Chagas disease, trachoma and leprosy. In this review, the potential of selected AMPs to successfully treat a variety of NTD infections will be critically evaluated.
Collapse
|
15
|
|
16
|
Knowledge-based computational methods for identifying or designing novel, non-homologous antimicrobial peptides. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:371-85. [DOI: 10.1007/s00249-011-0674-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 12/16/2010] [Accepted: 01/04/2011] [Indexed: 02/07/2023]
|
17
|
Yamamoto N, Tamura A. Designed low amphipathic peptides with alpha-helical propensity exhibiting antimicrobial activity via a lipid domain formation mechanism. Peptides 2010; 31:794-805. [PMID: 20109510 DOI: 10.1016/j.peptides.2010.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 01/20/2010] [Accepted: 01/20/2010] [Indexed: 11/22/2022]
Abstract
Although several low amphipathic peptides have been known to exhibit antimicrobial activity, their mode of action has not been completely elucidated. In this study, using designed low amphipathic peptides that retain different alpha-helical content and hydrophobicity, we attempted to investigate the mechanism of these properties. Calorimetric and thermodynamic analyses demonstrated that the peptides induce formation of two lipid domains in an anionic liposome at a high peptide-to-lipid ratio. On the other hand, even at a low peptide-to-lipid ratio, they caused minimal membrane damage, such as flip-flop of membrane lipids or leakage of calcein molecules from liposomes, and never translocated across membranes. Interaction energies between the peptides and anionic liposomes showed good correlation with antimicrobial activity for both Escherichia coli and Bacillus subtilis. We thus propose that the domain formation mechanism in which antimicrobial peptides exhibit activity solely by forming lipid domains without membrane damage is a major determinant of the antimicrobial activity of low amphipathic peptides. These peptides appear to stiffen the membrane such that it is deprived of the fluidity necessary for biological functions. We also showed that to construct the lipid domains, peptides need not form stable and cooperative structures. Rather, it is essential for peptides to only interact tightly with the membrane interface via strong electrostatic interactions, and slight differences in binding strength are invoked by differences in hydrophobicity. The peptides thus designed might pave the way for "clean" antimicrobial reagents that never cause release of membrane elements and efflux of their inner components.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | | |
Collapse
|
18
|
Peng HT, Huang Huang, Shek PN, Charbonneau S, Blostein MD. PEGylation of Melittin: Structural Characterization and Hemostatic Effects. J BIOACT COMPAT POL 2010. [DOI: 10.1177/0883911509354230] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To promote and understand the structure—property relationship for hemostasis, we modified melittin (MLT) using a four-arm poly(ethylene glycol) (PEG) with N-hydroxysuccinimide ester. The PEGylation was characterized by FTIR, MALDI-MS, NMR, a bicinchoninic acid assay, circular dichroism, hemolysis assay, and thromboelastography. Changes in the reaction conditions affected the extent of the modification, the numbers of MLT conjugated to PEG arms, and possible PEGylation sites. The reaction at pH 9.2 with a high MLT/PEG ratio, resulted in the highest modification. Reactions in dimethylsulfoxide (DMSO) resulted in more multi-arm coupled MLT, reaching a maximum of four MLT per PEG. The helicity of the modified peptide, relative to the native peptide, was essentially maintained in DMSO, but substantially lost at pH 9.2. PEGylation reduced the hemolytic effects of MLT and subsequently changed its coagulation profiles. The overall hemostatic effects of MLT modified in DMSO indicate that this may be a convenient approach to the PEGylation of biomolecules for biomedical applications.
Collapse
Affiliation(s)
- Henry T. Peng
- Defence Research and Development Canada - Toronto, 1133 Sheppard Avenue West, P.O. Box 2000, Toronto, Ontario, Canada,
| | - Huang Huang
- Defence Research and Development Canada - Toronto, 1133 Sheppard Avenue West, P.O. Box 2000, Toronto, Ontario, Canada
| | - Pang N. Shek
- Defence Research and Development Canada - Toronto, 1133 Sheppard Avenue West, P.O. Box 2000, Toronto, Ontario, Canada
| | - Sophie Charbonneau
- Lady Davis Institute of Medical Research, Jewish General Hospital McGill University, Montreal, Quebec, Canada
| | - Mark D. Blostein
- Lady Davis Institute of Medical Research, Jewish General Hospital McGill University, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Zhang G, Lin X, Long Y, Wang Y, Zhang Y, Mi H, Yan H. A peptide fragment derived from the T-cell antigen receptor protein alpha-chain adopts beta-sheet structure and shows potent antimicrobial activity. Peptides 2009; 30:647-53. [PMID: 19111845 DOI: 10.1016/j.peptides.2008.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 11/27/2008] [Accepted: 12/01/2008] [Indexed: 11/23/2022]
Abstract
A 9-residue peptide, CP-1 (GLRILLLKV-NH(2)), is synthesized by solid-phase synthesis method. CP-1 is a C-terminal amidated derivative of a hydrophobic transmembrane segment (CP) of the T-cell antigen receptor (TCR) alpha-chain. CP-1 shows broad-spectrum antimicrobial activities against Gram-positive and Gram-negative bacteria with the minimal inhibitory concentration (MIC) values between 3 and 77microM. Circular dichroism (CD) spectral data shows that CP-1 adopts a well-defined beta-sheet structure in membrane-mimicking environments. CP-1 kills E. coli without lysing the cell membrane or forming transmembrane pores. However, CP-1 can penetrate the bacterial cell membranes and accumulate in the cytoplasm in both Gram-positive S. aureus and Gram-negative E. coli. Moreover CP-1 shows binding affinity for plasmid DNA. These results indicate that the killing mechanism of CP-1 likely involves the penetration into the cytoplasm and binding to intracellular components such as DNA.
Collapse
Affiliation(s)
- Genghui Zhang
- Ministry of Education, and Institute of Polymer Chemistry, Nankai University, Tianjin, PR China
| | | | | | | | | | | | | |
Collapse
|
20
|
Castro MS, Ferreira TCG, Cilli EM, Crusca E, Mendes-Giannini MJS, Sebben A, Ricart CAO, Sousa MV, Fontes W. Hylin a1, the first cytolytic peptide isolated from the arboreal South American frog Hypsiboas albopunctatus ("spotted treefrog"). Peptides 2009; 30:291-6. [PMID: 19056441 DOI: 10.1016/j.peptides.2008.11.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/29/2008] [Accepted: 11/03/2008] [Indexed: 12/01/2022]
Abstract
RP-HPLC fractionation of the electrically stimulated skin secretion of the arboreal South American frog Hypsiboas albopunctatus ("spotted treefrog") led to the isolation of a cytolytic C-terminally amidated peptide. This novel peptide, named hylin a1 (Hy-a1), consists of 18 amino acid residues (IFGAILPLALGALKNLIK-NH(2)). The alpha-helical structure of the synthetic hylin a1 peptide was confirmed by CD spectroscopy in the presence of 60% (v/v) TFE. The synthetic peptide displayed broad-spectrum antimicrobial activity against Gram-negative and Gram-positive bacteria including Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis and Pseudomonas aeruginosa and also against fungi (Candida albicans, C. krusei, C. parapsilosis and Cryptococcus neoformans). Hylin a1 was also able to disrupt human erytrocytes (HC(50)=18 microM). Similarity analysis using PSI-BLAST revealed 50-44% of identity to maximins Hv, H16, H15 and H10 from Bombina maxima and also to hylins b1 and b2 (Hy-b1 and Hy-b2) from Hypsiboas lundii (synonym: Hyla biobeba).
Collapse
Affiliation(s)
- Mariana S Castro
- Brazilian Center for Protein Research, Department of Cell Biology, University of Brasilia, CEP 70.910-900, Brasilia/DF, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Silva TC, De Paula Moura S, Ramos HR, De Araujo PS, Bueno Da Costa MH. Design of a Modern Liposome and Bee Venom Formulation for the Traditional VIT-Venom Immunotherapy. J Liposome Res 2008; 18:353-68. [DOI: 10.1080/08982100802518046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Tatiana C. Silva
- Laboratório de Microesferas e Lipossomas
- Departamento de Medicina, Disciplina de Clínica Médica-UNIFESP, São Paulo, Brasil
| | | | - Henrique R. Ramos
- Laboratório de Biotecnologia Molecular, (Centro de Biotecnologia), Instituto Butantan, São Paulo, Brasil
- Departamento de Bioquímica-Instituto de Química-USP, São Paulo, Brasil
| | | | | |
Collapse
|
22
|
Leite JRSA, Brand GD, Silva LP, Kückelhaus SAS, Bento WRC, Araújo ALT, Martins GR, Lazzari AM, Bloch C. Dermaseptins from Phyllomedusa oreades and Phyllomedusa distincta: Secondary structure, antimicrobial activity, and mammalian cell toxicity. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:336-343. [PMID: 17442605 DOI: 10.1016/j.cbpa.2007.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 03/13/2007] [Accepted: 03/13/2007] [Indexed: 10/23/2022]
Abstract
The present study reports the structural characteristics, the biological activities, and preliminary clinical investigations of three synthetic members of the dermaseptin family of antimicrobial peptides. The three peptides showed similar tendencies to form alpha-helical structures in non-polar media. The antimicrobial activity towards bacteria and fungi was determined in the micromolar concentration and the peptides did not influenced peritoneal cells viability. One of the peptides was intravenously administered in mice at concentrations similar to those of antibiotics employed in bacterial/fungal infections and it did not cause any detectable changes in cells and tissues.
Collapse
Affiliation(s)
- José Roberto S A Leite
- Laboratório de Espectrometria de Massa, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) - Recursos Genéticos e Biotecnologia, Estação Parque Biológico, Final W5, Asa Norte, Brasília, DF, 70770-900, Brazil; Campus Ministro Reis Velloso, Universidade Federal do Piauí - UFPI, Parnaíba, Piauí, 64202-020, PI, Brazil.
| | - Guilherme D Brand
- Laboratório de Espectrometria de Massa, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) - Recursos Genéticos e Biotecnologia, Estação Parque Biológico, Final W5, Asa Norte, Brasília, DF, 70770-900, Brazil; Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Luciano P Silva
- Laboratório de Espectrometria de Massa, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) - Recursos Genéticos e Biotecnologia, Estação Parque Biológico, Final W5, Asa Norte, Brasília, DF, 70770-900, Brazil
| | | | | | | | | | | | - Carlos Bloch
- Laboratório de Espectrometria de Massa, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) - Recursos Genéticos e Biotecnologia, Estação Parque Biológico, Final W5, Asa Norte, Brasília, DF, 70770-900, Brazil.
| |
Collapse
|
23
|
Zhang G, Han B, Lin X, Wu X, Yan H. Modification of antimicrobial peptide with low molar mass poly(ethylene glycol). J Biochem 2008; 144:781-8. [PMID: 18845567 DOI: 10.1093/jb/mvn134] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PEGylation of peptide drugs prolongs their circulating lifetimes in plasma. However, PEGylation can produce a decrease in the in vitro bioactivity. Longer poly(ethylene glycol) (PEG) chains are favourable for circulating lifetimes but unfavourable for in vitro bioactivities. In order to circumvent the conflicting effects of PEG length, a hydrophobic peptide, using an antimicrobial peptide as a model, was PEGylated with short PEG chains. The PEGylated peptides self-assembled in aqueous solution into micelles with PEG shell and peptide core. In these micelles, the core peptides were protected by the shell, thus reducing proteolytic degradation. Meanwhile, most of the in vitro antimicrobial activities still remained due to the short PEG chain attached. The stabilities of the PEGylated peptides were much higher than that of the unPEGylated peptides in the presence of chymotrypsin and serum. The antimicrobial activities of the PEGylated peptides in the presence of serum, an ex vivo assay, were much higher than that of the unPEGylated peptide.
Collapse
Affiliation(s)
- Genghui Zhang
- Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin 300071, People's Republic of China
| | | | | | | | | |
Collapse
|
24
|
Harvey RD, Lawrence MJ, Bui TT. Probing the steric barrier of nonionic surfactant vesicles with melittin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2081-90. [DOI: 10.1016/j.bbamem.2008.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 03/24/2008] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
|
25
|
Xie Q, Matsunaga S, Wen Z, Niimi S, Kumano M, Sakakibara Y, Machida S. In vitro system for high-throughput screening of random peptide libraries for antimicrobial peptides that recognize bacterial membranes. J Pept Sci 2006; 12:643-52. [PMID: 16878349 DOI: 10.1002/psc.774] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antibacterial peptides have been isolated from a wide range of species. Some of these peptides act on microbial membranes, disrupting their barrier function. With the increasing development of antibiotic resistance by bacteria, these antibacterial peptides, which have a new mode of action, have attracted interest as antibacterial agents. To date, however, few effective high-throughput approaches have been developed for designing and screening peptides that act selectively on microbial membranes. In vitro display techniques are powerful tools to select biologically functional peptides from peptide libraries. Here, we used the ribosome display system to form peptide-ribosome-mRNA complexes in vitro from nucleotides encoding a peptide library, as well as immobilized model membranes, to select specific sequences that recognize bacterial membranes. This combination of ribosome display and immobilized model membranes was effective as an in vitro high-throughput screening system and enabled us to identify motif sequences (ALR, KVL) that selectively recognized the bacterial membrane. Owing to host toxicity, it was not possible to enrich any sequence expected to show antimicrobial activity using another in vitro system, e.g. phage display. The synthetic peptides designed from these enriched motifs acted selectively on the bacterial model membrane and showed antibacterial activity. Moreover, the motif sequence conferred selectivity onto native peptides lacking selectivity, and decreased mammalian cell toxicity of native peptides without decreasing their antibacterial activity.
Collapse
Affiliation(s)
- Qiuhong Xie
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Verleyen P, Baggerman G, D'Hertog W, Vierstraete E, Husson SJ, Schoofs L. Identification of new immune induced molecules in the haemolymph of Drosophila melanogaster by 2D-nanoLC MS/MS. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:379-88. [PMID: 16510152 DOI: 10.1016/j.jinsphys.2005.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2005] [Revised: 12/20/2005] [Accepted: 12/21/2005] [Indexed: 05/06/2023]
Abstract
Antimicrobial peptides (AMPs) play an important role in the innate immunity of insects. In Drosophila 17 additional immune induced molecules (DIMs) were found in the haemolymph of adult flies upon septic injury. Previous studies using MALDI mass spectrometry combined with Edman degradation, detected AMPs and DIMs of a predominantly large size. By means of 2D-nanoLC ESI MS/MS, 43 DIMs were identified in this study from the haemolymph of Drosophila third instar larvae 12h after challenge with a mixture of Micrococcus luteus and Escherichia coli. Most peptides were derived from known AMP or DIM precursors, but only four peptides were purified and identified before. The majority of the peptides that we detected were smaller in size. Interestingly, two previously unknown peptide precursors were found and hereby related to immune defense. These include CG7738 and CG32185. Many of the identified peptides are post-translationally modified by an N-terminal pyroglutamic acid and/or a C-terminal amide. Haemolymph of control larvae was treated in the same way and revealed only one peptide.
Collapse
Affiliation(s)
- Peter Verleyen
- Laboratory of Developmental Physiology, Genomics and Proteomics, K.U.Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|