1
|
Li Y, Yang SY, Zhang YR, Wang Y. Decoding the neuroimmune axis in colorectal cancer: From neural circuitry to therapeutic innovation. Cytokine Growth Factor Rev 2025; 83:3-17. [PMID: 40274426 DOI: 10.1016/j.cytogfr.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
The nervous and immune systems are two major components that maintain body homeostasis, with their functional roles often overlapping significantly. Both systems are capable of identifying, integrating, and organizing responsive reactions to various external stimuli. The gut, referred to as the "second brain" and the largest immune organ in the body, serves as the most frequent focal site for neuroimmune interactions. Colorectal cancer (CRC), as the predominant solid tumor arising in this neuroimmune-rich microenvironment, remains understudied through the lens of neuroimmune regulatory mechanisms. This review systematically synthesizes current evidence to elucidate the neuroimmune axis in CRC pathogenesis, with particular emphasis on neuroimmune crosstalk-mediated remodeling of tumor immunity. We comprehensively catalog the immunomodulatory effects exerted by principal neuroregulatory mediators, categorized as: (1) neurotransmitters (glutamate, glutamine, γ-aminobutyric acid, epinephrine, norepinephrine, dopamine, serotonin, acetylcholine, and gaseous signaling molecules); (2) neuropeptides (substance P, calcitonin gene-related peptide, vasoactive intestinal peptide); and (3) neurotrophic factors. Furthermore, we critically evaluate the translational prospects and therapeutic challenges of targeting neuroimmune pathways and propose strategic priorities and research focuses for advancing the development of neuroimmune interaction-related therapeutic approaches in CRC.
Collapse
Affiliation(s)
- Ying Li
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sheng-Ya Yang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying-Ru Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The Second Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guizhou 550003, China.
| | - Yan Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The Second Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guizhou 550003, China.
| |
Collapse
|
2
|
Filippone RT, Sahakian L, Apostolopoulos V, Nurgali K. Eosinophils in Inflammatory Bowel Disease. Inflamm Bowel Dis 2019; 25:1140-1151. [PMID: 30856253 DOI: 10.1093/ibd/izz024] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Clinical investigations in inflammatory bowel disease (IBD) patients have provided increasing evidence that eosinophils contribute to chronic intestinal inflammation. Accumulation of eosinophils in the gastrointestinal tract correlates with the variations of eosinophil regulatory molecules; however, their role in gastrointestinal dysfunction in IBD has not been fully elucidated. This review will describe the development and characterization of gastrointestinal eosinophils, mechanisms of eosinophil recruitment to the gastrointestinal tract. Moreover, the eosinophil-induced changes to the enteric nervous system associated with disease severity and gastrointestinal dysfunction will be analyzed with suggestive molecular pathways for enteric neuronal injury. Current and potential therapeutic interventions targeting eosinophils will be discussed.
Collapse
Affiliation(s)
- Rhiannon T Filippone
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Lauren Sahakian
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia.,Department of Medicine Western Health, Melbourne University, Melbourne, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Australia
| |
Collapse
|
3
|
Filippone RT, Robinson AM, Jovanovska V, Stavely R, Apostolopoulos V, Bornstein JC, Nurgali K. Targeting eotaxin-1 and CCR3 receptor alleviates enteric neuropathy and colonic dysfunction in TNBS-induced colitis in guinea pigs. Neurogastroenterol Motil 2018; 30:e13391. [PMID: 29968270 DOI: 10.1111/nmo.13391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/14/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND The accumulation of eosinophils is mediated by the chemokine receptor-3 (CCR3)-eotaxin axis. Increased expression of eotaxin and its receptor is associated with inflammatory bowel disease (IBD). Activation of eosinophils causes the release of cationic proteins that are neurotoxic such as eosinophil-derived neurotoxin (EDN). Damage to enteric neurons alters neurally controlled functions of the gut correlated with intestinal inflammation. We hypothesized that inhibition of the CCR3-eotaxin axis will prevent inflammation-induced functional changes to the gastrointestinal tract. METHODS Hartley guinea pigs were administered with trinitrobenzene sulfonate (TNBS; 30 mg/kg in 30% ethanol) intrarectally to induce colitis. A CCR3 receptor antagonist (SB 328437 [SB3]) was injected intraperitoneally 1 hour postinduction of colitis. Animals were euthanized 7 days post-treatment and colon tissues were collected for ex vivo studies. The EDN-positive eosinophils in the colon, indicating eosinophil activation, were quantified by immunohistochemistry. Effects of SB3 treatment on gross morphological damage, enteric neuropathy, and colonic dysmotility were determined by histology, immunohistochemistry, and organ bath experiments. KEY RESULTS The number of EDN-positive eosinophils was significantly increased in the lamina propria in close proximity to myenteric ganglia in inflamed colon. The TNBS-induced inflammation caused significant damage to colonic architecture and inhibition of colonic motility. Treatment with SB3 antagonist attenuated inflammation-associated morphological damage in the colon, reduced infiltration of EDN-positive eosinophils and restored colonic motility to levels comparable to control and sham-treated guinea pigs. CONCLUSION & INFERENCES This is the first study demonstrating that inhibition of CCR3-eotaxin axis alleviates enteric neuropathy and restores functional changes in the gut associated with TNBS-induced colitis.
Collapse
Affiliation(s)
- R T Filippone
- College of Health and Biomedicine, Victoria University, Melbourne, Vic., Australia.,Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia
| | - A M Robinson
- College of Health and Biomedicine, Victoria University, Melbourne, Vic., Australia.,Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia
| | - V Jovanovska
- College of Health and Biomedicine, Victoria University, Melbourne, Vic., Australia.,Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia
| | - R Stavely
- College of Health and Biomedicine, Victoria University, Melbourne, Vic., Australia.,Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia
| | - V Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia
| | - J C Bornstein
- Department of Physiology, Melbourne University, Melbourne, Vic., Australia
| | - K Nurgali
- College of Health and Biomedicine, Victoria University, Melbourne, Vic., Australia.,Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia.,Regenerative, Medicine and Stem Cells Program, Department of Medicine Western Health, Melbourne University, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Vic., Australia
| |
Collapse
|
4
|
Bernardazzi C, Pêgo B, de Souza HSP. Neuroimmunomodulation in the Gut: Focus on Inflammatory Bowel Disease. Mediators Inflamm 2016; 2016:1363818. [PMID: 27471349 PMCID: PMC4947661 DOI: 10.1155/2016/1363818] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/07/2016] [Indexed: 12/17/2022] Open
Abstract
Intestinal immunity is finely regulated by several concomitant and overlapping mechanisms, in order to efficiently sense external stimuli and mount an adequate response of either tolerance or defense. In this context, a complex interplay between immune and nonimmune cells is responsible for the maintenance of normal homeostasis. However, in certain conditions, the disruption of such an intricate network may result in intestinal inflammation, including inflammatory bowel disease (IBD). IBD is believed to result from a combination of genetic and environmental factors acting in concert with an inappropriate immune response, which in turn interacts with nonimmune cells, including nervous system components. Currently, evidence shows that the interaction between the immune and the nervous system is bidirectional and plays a critical role in the regulation of intestinal inflammation. Recently, the maintenance of intestinal homeostasis has been shown to be under the reciprocal control of the microbiota by immune mechanisms, whereas intestinal microorganisms can modulate mucosal immunity. Therefore, in addition to presenting the mechanisms underlying the interaction between immune and nervous systems in the gut, here we discuss the role of the microbiota also in the regulation of neuroimmune crosstalk involved in intestinal homeostasis and inflammation, with potential implications to IBD pathogenesis.
Collapse
Affiliation(s)
- Claudio Bernardazzi
- Serviço de Gastroenterologia & Laboratório Multidisciplinar de Pesquisa, Hospital Universitário, Universidade Federal do Rio de Janeiro, 21941-913 Rio de Janeiro, RJ, Brazil
| | - Beatriz Pêgo
- Serviço de Gastroenterologia & Laboratório Multidisciplinar de Pesquisa, Hospital Universitário, Universidade Federal do Rio de Janeiro, 21941-913 Rio de Janeiro, RJ, Brazil
| | - Heitor Siffert P. de Souza
- Serviço de Gastroenterologia & Laboratório Multidisciplinar de Pesquisa, Hospital Universitário, Universidade Federal do Rio de Janeiro, 21941-913 Rio de Janeiro, RJ, Brazil
- D'Or Institute for Research and Education (IDOR), 22281-100 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Lu P, Luo H, Quan X, Fan H, Tang Q, Yu G, Chen W, Xia H. The role of substance P in the maintenance of colonic hypermotility induced by repeated stress in rats. Neuropeptides 2016; 56:75-82. [PMID: 26851827 DOI: 10.1016/j.npep.2016.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 01/24/2016] [Accepted: 01/26/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND The mechanism underlying chronic stress-induced gastrointestinal (GI) dysmotility has not been fully elucidated and GI hormones have been indicated playing a role in mediating stress-induced changes in GI motor function. AIMS Our objective was to study the possible role of substance P (SP) in the colonic hypermotility induced by repeated water avoidance stress (WAS) which mimics irritable bowel syndrome. METHODS Male Wistar rats were submitted to WAS or sham WAS (SWAS) (1h/day) for up to 10 consecutive days. Enzyme Immunoassay Kit was used to detect the serum level of SP. The expression of neurokinin-1 receptor (NK1R) was investigated by Immunohistochemistry and Western blotting. The spontaneous contraction of muscle strip was studied in an organ bath system. L-type calcium channel currents (ICa,L) of smooth muscle cells (SMCs) were recorded by whole-cell patch-clamp technique. RESULTS Fecal pellet expulsion and spontaneous contraction of proximal colon in rats were increased after repeated WAS. The serum level of SP was elevated following WAS. Immunohistochemistry proved the expression of NK1R in mucosa, muscularis and myenteric plexus. Western blotting demonstrated stress-induced up-regulation of NK1R in colon devoid of mucosa and submucosa. Repeated WAS increased the contractile activities of longitudinal muscle and circular muscle strips induced by SP and this effect was reversed by a selective NK1R antagonist. The ICa,L of SMCs in the WAS rats were drastically increased compared to controls after addition of SP. CONCLUSIONS Increased serum SP level and up-regulated NK1R in colon may contribute to stress-induced colonic hypermotility. And L-type calcium channels play a potentially important role in the process of WAS-induced dysmotility.
Collapse
Affiliation(s)
- Ping Lu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| | - Xiaojing Quan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Han Fan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qincai Tang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Guang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Wei Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Hong Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| |
Collapse
|
6
|
Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 2014; 94:265-301. [PMID: 24382888 DOI: 10.1152/physrev.00031.2013] [Citation(s) in RCA: 457] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The tachykinins, exemplified by substance P, are one of the most intensively studied neuropeptide families. They comprise a series of structurally related peptides that derive from alternate processing of three Tac genes and are expressed throughout the nervous and immune systems. Tachykinins interact with three neurokinin G protein-coupled receptors. The signaling, trafficking, and regulation of neurokinin receptors have also been topics of intense study. Tachykinins participate in important physiological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems, including inflammation, nociception, smooth muscle contractility, epithelial secretion, and proliferation. They contribute to multiple diseases processes, including acute and chronic inflammation and pain, fibrosis, affective and addictive disorders, functional disorders of the intestine and urinary bladder, infection, and cancer. Neurokinin receptor antagonists are selective, potent, and show efficacy in models of disease. In clinical trials there is a singular success: neurokinin 1 receptor antagonists to treat nausea and vomiting. New information about the involvement of tachykinins in infection, fibrosis, and pruritus justifies further trials. A deeper understanding of disease mechanisms is required for the development of more predictive experimental models, and for the design and interpretation of clinical trials. Knowledge of neurokinin receptor structure, and the development of targeting strategies to disrupt disease-relevant subcellular signaling of neurokinin receptors, may refine the next generation of neurokinin receptor antagonists.
Collapse
|
7
|
Diezmos EF, Sandow SL, Markus I, Shevy Perera D, Lubowski DZ, King DW, Bertrand PP, Liu L. Expression and localization of pannexin-1 hemichannels in human colon in health and disease. Neurogastroenterol Motil 2013; 25:e395-405. [PMID: 23594276 DOI: 10.1111/nmo.12130] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/16/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pannexin-1 (Panx1) proteins can function as channels for adenosine triphosphate (ATP) release, but there have been limited studies investigating their potential role in the human intestine. The aim of this study was to characterize Panx1 expression and distribution in the human colon and its potential involvement in inflammatory bowel diseases (IBD). METHODS Human colon segments were dissected into mucosa and muscularis layers, and evaluated for Panx1 expression by real-time PCR and Western blotting. Immunohistochemistry was conducted to localize the cellular distribution of Panx1 in intact tissues. KEY RESULTS In the colonic muscularis of ulcerative colitis (UC), Panx1 mRNA expression showed a 3.5-fold reduction compared with control (P = 0.0015), but no change was seen in UC mucosa. In contrast, down-regulation of Panx1 mRNA was observed in both muscularis and mucosa of Crohn's disease (CD), showing a 2.7- and 1.8-fold reduction, respectively (P < 0.05). There was reduced Panx1 protein expression in CD muscularis, but no change in CD mucosa, UC muscularis, or UC mucosa. Pannexin-1 immunoreactivity was mainly localized to enteric ganglia, blood vessel endothelium, erythrocytes, epithelial cells, and goblet cells. Inflammatory bowel disease samples showed a similar overall pattern of Panx1 staining, but in UC myenteric ganglia, there was a significant reduction in Panx1 immunoreactivity. Significant Panx1 positive leukocyte infiltrations were seen at the sites of inflammation. CONCLUSIONS & INFERENCES The presence of Panx1 in the colon and changes to its distribution in disease suggests that Panx1 channels may play an important role in mediating gut function and in IBD pathophysiology.
Collapse
Affiliation(s)
- E F Diezmos
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Humes DJ, Simpson J, Smith J, Sutton P, Zaitoun A, Bush D, Bennett A, Scholefield JH, Spiller RC. Visceral hypersensitivity in symptomatic diverticular disease and the role of neuropeptides and low grade inflammation. Neurogastroenterol Motil 2012; 24:318-e163. [PMID: 22276853 DOI: 10.1111/j.1365-2982.2011.01863.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Recurrent abdominal pain is reported by a third of patients with diverticulosis, particularly those with previous episodes of acute diverticulitis. The current understanding of the etiology of this pain is poor. Our aim was to assess visceral sensitivity in patients with diverticular disease and its association with markers of previous inflammation and neuropeptides. METHODS Patients with asymptomatic and symptomatic diverticular disease underwent a flexible sigmoidoscopy and biopsy followed 5-10 days later by visceral sensitivity testing with barostat-mediated rectal distension. Inflammation was assessed by staining of serotonin (5HT) and CD3 positive cells. mRNA levels of tumor necrosis factor alpha (TNF α) and interleukin-6 (IL-6) were quantitated using RT-PCR. Neuropeptide expression was assessed from percentage area staining with substance P (SP) and mRNA levels of the neurokinin 1 & 2 receptors (NK1 & NK2), and galanin 1 receptor (GALR1). KEY RESULTS Thirteen asymptomatic and 12 symptomatic patients were recruited. The symptomatic patients had a lower first reported threshold to pain (28.4 mmHg i.q.r 25.0-36.0) than the asymptomatic patients (47 mmHg i.q.r 36.0-52.5, P < 0.001). Symptomatic patients had a higher median overall pain rating for the stimuli than the asymptomatic patients (P < 0.02). Symptomatic patients had greater median relative expression of NK1 and TNF alpha mRNA compared with asymptomatic patients. There was a significant correlation between barostat VAS pain scores and NK 1 expression (Figure 4, r(2) 0.54, P < 0.02). CONCLUSIONS & INFERENCES Patients with symptomatic diverticular disease exhibit visceral hypersensitivity, and this may be mediated by ongoing low grade inflammation and upregulation of tachykinins.
Collapse
Affiliation(s)
- D J Humes
- Nottingham Digestive Disease Centre and Biomedical Research Unit, Nottingham University Hospital NHS Trust, Nottingham, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Li M, Shang YX, Wei B, Yang YG. The effect of substance P on asthmatic rat airway smooth muscle cell proliferation, migration, and cytoplasmic calcium concentration in vitro. JOURNAL OF INFLAMMATION-LONDON 2011; 8:18. [PMID: 21777465 PMCID: PMC3148551 DOI: 10.1186/1476-9255-8-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 07/21/2011] [Indexed: 01/13/2023]
Abstract
Airway remodeling and airway hyper-responsiveness are prominent features of asthma. Neurogenic inflammation participates in the development of asthma. Neurokinin substance P acts by binding to neurokinin-1 receptor (NK-1R). Airway smooth muscle cells (ASMC) are important effector cells in asthma. Increases in ASMC proliferation, migration, and cytoplasmic Ca2+ concentration are critical to airway remodeling and hyper-responsiveness. The effects of substance P on ASMC were investigated in Wistar rats challenged with a previously described asthmatic rat model. To exclude possible influences from other factors, the role of substance P was also investigated in primary cultured rat ASMC. Substance P and WIN62577-induced changes in cytoplasmic Ca2+ concentration were observed by fluorescence microscopy, and expression of Ca2+ homeostasis-regulating genes was assessed with real-time PCR. We found that cytoplasmic Ca2+ concentration increased in normal rat ASMC treated with substance P, but decreased in asthmatic rat ASMC treated with WIN62577, an antagonist of NK-1R. Real-time PCR analysis revealed increased Serca2 mRNA expression but decreased Ip3r mRNA expression after WIN62577 treatment in asthmatic rat ASMC. Flow cytometric analysis (FCM) revealed that most asthmatic rat ASMC stayed at G1 phase after combined treatment with WIN62577 and IL-13 in vitro. Transwell analysis suggested that ASMC migration was reduced after WIN62577 treatment. Therefore, we conclude that NK-1R is related to asthma mechanisms and a NK-1R antagonist downregulates calcium concentration in asthmatic ASMC by increasing Serca2 mRNA and decreasing Ip3r mRNA expression. The NK-1R antagonist WIN62577 inhibited ASMC IL-13-induced proliferation and ASMC migration in vitro and therefore may be a new therapeutic option in asthma.
Collapse
Affiliation(s)
- Miao Li
- Department of Pediatrics, No. 2, Hospital of China Medical University, Shenyang 110004, China
| | | | | | | |
Collapse
|
10
|
Liu L, Markus I, Saghire HE, Perera DS, King DW, Burcher E. Distinct differences in tachykinin gene expression in ulcerative colitis, Crohn's disease and diverticular disease: a role for hemokinin-1? Neurogastroenterol Motil 2011; 23:475-83, e179-80. [PMID: 21342363 DOI: 10.1111/j.1365-2982.2011.01685.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND In the intestine, the tachykinins substance P (SP) and neurokinin A (NKA) are found in neurons and have key roles in motility, secretion, and immune functions. A new tachykinin, hemokinin (HK-1), has been identified in non-neuronal cells in recent years and its role in intestinal inflammation is unclear. We aimed to examine the expression of genes encoding tachykinin peptides and receptors in colon from patients with ulcerative colitis (UC), Crohn's disease (CD), and acute diverticular disease (DD). METHODS Human colon segments were dissected into mucosa and muscle, and evaluated for tachykinin and tachykinin receptor gene expression by real-time PCR. KEY RESULTS In UC mucosa, the TAC4 gene (encoding HK-1) was 10-fold more abundant than in control mucosa (P < 0.01). Similarly, TAC1 (encoding SP and NKA) and TACR1 (encoding NK1 receptor) displayed 6-fold and 12-fold upregulation, respectively, in UC mucosa, but no change occurred in UC muscle. In contrast to UC, no difference was observed for any tachykinin genes in CD mucosa. In CD muscle, expression of TAC1 (P < 0.01), TAC4 and TACR1 (both P < 0.05) were moderately upregulated. In DD, there was a decrease in TACR1 (P < 0.05), and TACR2 (encoding NK2 receptor, P < 0.0001) in muscle compared with control. Histological staining showed increased collagen fibers between muscle bundles in DD smooth muscle. CONCLUSIONS & INFERENCES We provide evidence for the first time that HK-1, like SP, may be involved in the pathophysiology of inflammatory bowel disease. Distinctly different expression patterns of tachykinin-related genes occur in UC, CD and DD.
Collapse
Affiliation(s)
- L Liu
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia.
| | | | | | | | | | | |
Collapse
|
11
|
Keita AV, Söderholm JD, Ericson AC. Stress-induced barrier disruption of rat follicle-associated epithelium involves corticotropin-releasing hormone, acetylcholine, substance P, and mast cells. Neurogastroenterol Motil 2010; 22:770-8, e221-2. [PMID: 20149111 DOI: 10.1111/j.1365-2982.2010.01471.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The follicle-associated epithelium (FAE) is specialized in uptake and sampling of luminal antigens and bacteria. We previously showed that stress increased FAE permeability in rats. An increased uptake may alter antigen exposure in Peyer's patches leading to intestinal disease. The aim of this study was to elucidate mechanisms involved in the acute stress-induced increase in FAE permeability. METHODS Rats were pretreated i.p. with corticotropin-releasing hormone receptor (CRH-R) antagonist, neurokinin receptor 1 (NK-1R) antagonist, atropine, the mast cell stabilizer doxantrazole (DOX), or NaCl, and submitted to 1-h acute water avoidance stress. FAE tissues were mounted in Ussing chambers for measurements of permeability to (51)Cr-EDTA, horseradish peroxidase (HRP) and chemically killed Escherichia coli K-12. Further, FAE segments were exposed in vitro in chambers to CRH, substance P (SP), carbachol, and DOX. Neurotransmitter- and receptor distribution was studied by immunohistochemistry. KEY RESULTS Stress-induced increases in uptake across FAE of HRP and E. coli were reduced by DOX, CRH-R antagonist and atropine, whereas the NK-1R antagonist decreased (51)Cr-EDTA permeability. Exposure to CRH and carbachol increased HRP and E. coli passage, whereas SP increased bacterial and (51)Cr-EDTA permeability. DOX counteracted all of these effects. Immunohistochemistry revealed CRH, acetylcholine, SP, and their receptors on mast cells within the Peyer's patches, subepithelial dome, and adjacent villi. CONCLUSIONS & INFERENCES Corticotropin-releasing hormone and acetylcholine signaling affect mainly transcellular permeability while SP seems more selective toward the paracellular pathways. Our findings may be of importance for the understanding of the pathogenesis of stress-related intestinal disorders.
Collapse
Affiliation(s)
- A V Keita
- Division of Surgery and Clinical Oncology, Department of Clinical and Experimental Medicine, Clinical and Experimental Research, Faculty of Health Science, University Hospital, Linköping, Sweden
| | | | | |
Collapse
|
12
|
Grimsholm O, Rantapää-Dahlqvist S, Dalén T, Forsgren S. Unexpected finding of a marked non-neuronal cholinergic system in human knee joint synovial tissue. Neurosci Lett 2008; 442:128-33. [DOI: 10.1016/j.neulet.2008.06.082] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 06/19/2008] [Accepted: 06/19/2008] [Indexed: 10/21/2022]
|
13
|
Grimsholm O, Rantapää-Dahlqvist S, Dalén T, Forsgren S. Observations favouring the occurrence of local production and marked effects of bombesin/gastrin-releasing peptide in the synovial tissue of the human knee joint--comparisons with substance P and the NK-1 receptor. Neuropeptides 2008; 42:133-45. [PMID: 18289674 DOI: 10.1016/j.npep.2007.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 12/05/2007] [Accepted: 12/27/2007] [Indexed: 11/26/2022]
Abstract
We have previously shown that levels of the neuropeptides substance P (SP) and bombesin/gastrin-releasing peptide (BN/GRP) in blood and synovial fluid correlate with levels of pro-inflammatory cytokines in patients with rheumatoid arthritis (RA). It is well-established that SP is present in nerve endings in the synovium whilst the source of BN/GRP in human joints is completely unknown. Nor is it known whether GRP-receptors (GRP-R) are present in human synovial tissue. This study aimed to investigate the expression pattern of SP, BN/GRP and their receptors (NK-1R and GRP-R) in synovial tissue. Synovial tissue specimens from patients with RA or osteoarthritis (OA) were processed for immunohistochemistry, in situ hybridisation and ELISA. The results show the presence of BN/GRP, but not SP, in cells in the synovial tissue at both the protein and mRNA level. We did not find immunoreactive BN/GRP in nerve structures. NK-1R and GRP-R were also expressed at both protein and mRNA levels in cells associated with blood vessels and cells in the interstitial tissue. ELISA analyses revealed both SP and BN/GRP to be present in synovial tissue extracts and that synovial levels of SP were higher in RA patients than those with OA. Our results indicate that BN/GRP is produced by non-neuronal cells in the synovial tissue. Furthermore, both BN/GRP and SP may exert their effects on the synovial tissue through the respective receptors. These results suggest that BN/GRP and SP may modulate inflammation and vascular events, and possibly healing processes in the synovium. Finally, nerves should not be considered as the source of BN/GRP in synovial tissue although this peptide is presumably intimately involved functionally in synovial tissue, a previously unrecognised fact.
Collapse
Affiliation(s)
- O Grimsholm
- Section for Anatomy, Department of Integrative Medical Biology, Umeå University, and Department of Rheumatology, Umeå University Hospital, SE-901 87 Umeå, Sweden.
| | | | | | | |
Collapse
|
14
|
Andersson G, Danielson P, Alfredson H, Forsgren S. Presence of substance P and the neurokinin-1 receptor in tenocytes of the human Achilles tendon. ACTA ACUST UNITED AC 2008; 150:81-7. [PMID: 18394729 DOI: 10.1016/j.regpep.2008.02.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/31/2008] [Accepted: 02/07/2008] [Indexed: 11/19/2022]
Abstract
Nerve signal substances, such as the tachykinin substance P (SP), may be involved in the changes that occur in response to tendinopathy (tendinosis). It is previously known that the level of SP innervation within tendon tissue is limited, but results of experimental studies have suggested that SP may have stimulatory, angiogenetic and healing effects in injured tendons. Therefore, it would be of interest to know if there is a local SP-supply in tendon tissue. In the present study, the patterns of expression of SP and its preferred receptor, the neurokinin-1 receptor (NK-1 R), in normal and tendinosis human Achilles tendons were analyzed by use of both immunohistochemistry and in situ hybridization. We found that there was expression of SP mRNA in tenocytes, and that tenocytes showed expression of NK-1 R at protein as well as mRNA levels. The observations concerning both SP and NK-1 R were most evident for tenocytes in tendinosis tendons. Our findings suggest that SP is produced in tendinosis tendons, and furthermore that SP has marked effects on the tenocytes via the NK-1 R. It cannot be excluded that the SP effects are of importance concerning the processes of reorganization and healing that occur for tendon tissue in tendinosis. In conclusion, it appears as if SPergic autocrine/paracrine effects occur in tendon tissue during the processes of tendinosis, hitherto unknown effects for human tendons.
Collapse
Affiliation(s)
- Gustav Andersson
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | |
Collapse
|
15
|
Appleyard CB, Morales M, Santiago C. Chronic inflammation alters the contribution of neurokinin receptor subtypes to epithelial function in rat colon. Dig Dis Sci 2008; 53:220-8. [PMID: 17510797 DOI: 10.1007/s10620-007-9847-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 04/05/2007] [Indexed: 12/24/2022]
Abstract
We have previously shown that neurokinin-1 (NK1) receptors predominantly mediate substance P-induced secretion of the non-inflamed rat colonic mucosa in vitro with a gradient in the magnitude of these responses. The aim of this study was to examine the effects of chronic inflammation on the contributions of different neurokinin receptor subtypes to colonic mucosal secretion. Colitis was induced by the intracolonic administration of 2,4,6-trinitrobenzene sulfonic acid in rats, reactivated 6 weeks later. Segments of proximal, mid- and distal colon were stripped of muscularis propria and mounted in Ussing chambers for measurement of short-circuit current. Use of selective agonists suggests that in the chronically inflamed rat colon NK1 receptors play a greater role in neurokinin-mediated mucosal secretion than do either NK2 or NK3. Selective antagonism implies that this is region-specific, with the inflammatory process altering the relative contribution of the neurokinin receptor subtypes within each region of the rat colon.
Collapse
MESH Headings
- Anesthetics, Local/pharmacology
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antipsychotic Agents/pharmacology
- Benzamides/pharmacology
- Colitis/chemically induced
- Colitis/metabolism
- Colitis/pathology
- Disease Models, Animal
- Indomethacin/pharmacology
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Male
- Neurokinin A/pharmacology
- Neurokinin-1 Receptor Antagonists
- Neurotransmitter Agents/pharmacology
- Piperidines/pharmacology
- Quinuclidines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Neurokinin-1/agonists
- Receptors, Neurokinin-1/metabolism
- Receptors, Neurokinin-2/agonists
- Receptors, Neurokinin-2/antagonists & inhibitors
- Receptors, Neurokinin-2/metabolism
- Receptors, Neurokinin-3/agonists
- Receptors, Neurokinin-3/antagonists & inhibitors
- Receptors, Neurokinin-3/metabolism
- Receptors, Tachykinin/drug effects
- Receptors, Tachykinin/metabolism
- Stereoisomerism
- Substance P/pharmacology
- Tetrodotoxin/pharmacology
- Trinitrobenzenesulfonic Acid/toxicity
Collapse
Affiliation(s)
- Caroline B Appleyard
- Department of Physiology & Pharmacology, Ponce School of Medicine, Ponce, PR 00732-7004, USA.
| | | | | |
Collapse
|
16
|
Andersson G, Danielson P, Alfredson H, Forsgren S. Nerve-related characteristics of ventral paratendinous tissue in chronic Achilles tendinosis. Knee Surg Sports Traumatol Arthrosc 2007; 15:1272-9. [PMID: 17604979 DOI: 10.1007/s00167-007-0364-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 05/07/2007] [Indexed: 11/29/2022]
Abstract
Ultrasound and Doppler examination has shown high blood flow-neovascularisation inside and outside the ventral Achilles tendon in chronic painful tendinosis, but not in pain-free normal Achilles tendons. In patients with Achilles tendinosis, injections with the sclerosing substance polidocanol, targeting the areas with increased blood flow, have been demonstrated to give pain relief. A drawback when interpreting these findings is the fact that the pattern of nerve supply in the target area, i.e. the ventral area of the tendon, is so far unknown. In this study, therefore, tissue specimens from this area, obtained during surgical treatment of patients with chronic painful midportion Achilles tendinosis, were examined. In the examined area, containing loose connective tissue, the general finding was a presence of large and small arteries and nerve fascicles. The nerve fascicles were distinguished in sections processed for the pan-neural marker protein gene-product 9.5. The nerve fascicles contain sensory nerve fibers, as shown via staining for the sensory markers substance P (SP) and calcitonin gene-related peptide, and sympathetic nerve fibers as seen via processing for tyrosine hydroxylase. In addition, there were immunoreactions for the SP-preferred receptor, the neurokinin-1 receptor, in blood vessel walls and nerve fascicles. Some of the blood vessels were supplied by an extensive peri-vascular innervation, sympathetic nerve fibers being a distinct component of this innervation. There was also a marked occurrence of immunoreactions for the alpha1-adrenoreceptor in arterial walls as well as in the nerve fascicles. Altogether, these findings suggest that the area investigated is under marked influence by the nervous system, including sympathetic and sensory components. Thus, sympathetic/sensory influences may be involved in the pain mechanisms from this area. In conclusion, the nerve-related characteristics of the area targeted by the polidicanol injection treatment for Achilles tendinosis, are shown here for the first time.
Collapse
Affiliation(s)
- Gustav Andersson
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, 901 87, Umeå, Sweden
| | | | | | | |
Collapse
|
17
|
Jönsson M, Norrgård O, Hansson M, Forsgren S. Decrease in binding for the neuropeptide VIP in response to marked inflammation of the mucosa in ulcerative colitis. Ann N Y Acad Sci 2007; 1107:280-9. [PMID: 17804556 DOI: 10.1196/annals.1381.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The neuropeptide vasoactive intestinal peptide (VIP) is involved in the neuroimmunomodulation of the intestine. In the present study, specimens from the sigmoid colon of ulcerative colitis (UC) and non-UC patients were examined for immunohistochemistry and in vitro receptor autoradiography. Marked occurrence of VIP binding was observed in the mucosa. However, there were very low levels of binding in areas showing pronounced inflammation/derangement. The study shows that marked derangement of the mucosa leads to a distinct decrease in VIP binding. Thus, it is possible that a decrease in trophic and anti-inflammatory VIP effects occurs in areas exhibiting a very marked inflammation.
Collapse
Affiliation(s)
- Maria Jönsson
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | |
Collapse
|
18
|
Grimsholm O, Guo Y, Ny T, Rantapää-Dahlqvist S, Forsgren S. Are Neuropeptides Important in Arthritis?: Studies on the Importance of Bombesin/GRP and Substance P in a Murine Arthritis Model. Ann N Y Acad Sci 2007; 1110:525-38. [PMID: 17911468 DOI: 10.1196/annals.1423.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Interference with the effects of neuropeptides may be of potential therapeutic value for the treatment of rheumatoid arthritis (RA). Two neuropeptides that can be discussed in this context are bombesin/gastrin-releasing peptide (BN/GRP) and substance P (SP). In order to obtain new information on the possible importance of these two peptides, the patterns of immunohistochemical expression of BN/GRP and SP and their related receptors in the mouse knee joint from healthy and arthritic mice were examined. Positive staining for GRP receptor and the SP preferred receptor (the neurokinin-1 receptor [NK-1 R]) was observed in articular chondrocytes. On the whole, there was a decrease in immunoreactions for both the GRP- and the NK-1 receptors in the articular chondrocytes in joints exhibiting severe arthritis. Staining for BN/GRP and GRP receptor was seen in the inflammatory infiltrates of the arthritic joints. New evidence for the occurrence of marked effects of BN/GRP concerning both the articular chondrocytes and the inflammatory process is obtained in this study. With these findings and previous observations of neuropeptide expression patterns and functions we discuss the possibility that interventions with the effects of BN/GRP, SP, and other neuropeptides might be worthwhile in RA.
Collapse
Affiliation(s)
- O Grimsholm
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | | | |
Collapse
|
19
|
Taylor CT, Keely SJ. The autonomic nervous system and inflammatory bowel disease. Auton Neurosci 2007; 133:104-14. [PMID: 17234460 DOI: 10.1016/j.autneu.2006.11.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 10/19/2006] [Indexed: 12/22/2022]
Abstract
Crohn's disease and ulcerative colitis, collectively known as inflammatory bowel disease (IBD), are chronic, recurring, inflammatory conditions of the intestine. The precise mechanisms underlying the pathogenesis of IBD are not yet clear but they are believed to involve a number of precipitating factors, most notably genetic susceptibility and environmental influences. The autonomic nervous system (ANS) has long been known as a critical regulator of intestinal function and much evidence now exists to suggest that it also plays an important role in the development of IBD. Dramatic changes in the ANS in IBD are apparent from the cellular to the molecular level ultimately leading to altered communication between the ANS and effector cells of the intestine. This review aims to synthesize the current understanding of the pathogenesis of IBD with a particular emphasis on the role that the ANS plays in the progression of these diseases.
Collapse
Affiliation(s)
- Cormac T Taylor
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Ireland
| | | |
Collapse
|
20
|
Lecci A, Capriati A, Altamura M, Maggi CA. Tachykinins and tachykinin receptors in the gut, with special reference to NK2 receptors in human. Auton Neurosci 2006; 126-127:232-49. [PMID: 16616700 DOI: 10.1016/j.autneu.2006.02.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 02/21/2006] [Accepted: 02/27/2006] [Indexed: 12/12/2022]
Abstract
Tachykinins (TKs), substance P (SP), neurokinin A (NKA) and B (NKB) are important peptide modulators of intestinal motility in animal species studied so far, including humans. Modulation of motility by TKs can occur at various levels, since these peptides are expressed in cholinergic excitatory motor neurons projecting to both circular and longitudinal muscle, interneurons, and intramural and extramural sensory neurons. The effects of SP, NKA and NKB are preferentially mediated through the stimulation of NK1, NK2 and NK3 receptors, respectively; however, the selectivity of natural TKs for their preferred receptors is relative. In addition, SP and NKA are expressed in similar quantities in the human intestine and adequate stimuli can release similar amount of these TKs from enteric nerves. Furthermore, a single anatomical substrate can express more than one TK receptor type, so that the blockade of a single receptor type may not reveal functional effects in integrated models of motility. In isolated human small intestine and colon circular muscle strips, both NK1 and NK2 receptors mediate contractile effects. Indeed, in the human small intestine, smooth muscle electrical and motor events induced by electrical field stimulation (EFS) can involve either or both NK1 and NK2 receptors or these latter receptors predominantly, depending on the experimental conditions. In contrast, in the human colonic smooth muscle, only the NK2 receptor-mediated component of the response to EFS is prominent and some evidence would suggest that this component is the main excitatory motor mechanism at this level. Furthermore, a NK2 receptor-mediated secretory component in the human colonic mucosa has been recently demonstrated. Thus, it could be speculated that the blockade of both NK1 and NK2 receptors will be necessary to antagonise motor effects induced by exogenous administration or endogenous release of TKs in the small intestine, whereas the blockade of the NK2 receptors would be sufficient to disrupt physiological motor and, possibly, secretory activity at the colonic level. Available evidence indicates that, in healthy volunteers, the infusion of NKA (25 pmol/kg/min i.v.) stimulated small intestine motility and precipitated a series of intestinal and non-intestinal adverse events. Nepadutant (8 mg i.v.), a selective NK2 receptor antagonist, antagonised small intestine motility induced by NKA and prevented associated intestinal adverse events. In another study, the same dose of nepadutant increased colo-rectal compliance during isobaric balloon distension in healthy volunteers pretreated with a glycerol enema, disclosing a NK2 receptor-mediated component in the regulation of colonic smooth muscle tone. However, the prolonged blockade of NK2 receptors by nepadutant (16 mg i.v. b.i.d. for 8 days) did not affect bowel habits, neither in term of movements nor of stool consistency. Altogether, these results indicate that, even when there is a significant redundance in the effects of TKs and in the role of their receptors, the selective blockade of tachykinin NK2 receptors can have functional consequences on human intestinal motility and perception, but this can occur without the disruption of the physiological functions.
Collapse
Affiliation(s)
- Alessandro Lecci
- Clinical Research Department, Menarini Ricerche, via Sette Santi 1, 50131 Firenze, Italy.
| | | | | | | |
Collapse
|
21
|
Persson-Sjögren S, Lejon K, Holmberg D, Forsgren S. Expression of the NK-1 receptor on islet cells and invading immune cells in the non-obese diabetic mouse. J Autoimmun 2005; 24:269-79. [PMID: 15869864 DOI: 10.1016/j.jaut.2005.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 02/28/2005] [Accepted: 02/28/2005] [Indexed: 11/20/2022]
Abstract
The underlying mechanistic causes of immune cell infiltration in the islets of Langerhans and beta cell failure in the non-obese diabetic (NOD) mouse is still to be completely revealed. Substance P (SP) is a substance known to have pro-inflammatory, endocrine, neuromodulatory and trophic effects, and its preferred receptor, the neurokinin receptor 1 (NK-1 R), is reported to be involved in extravasation of granulocytes and in inflammation and tissue derangement. Therefore, we have investigated the expression of NK-1 R during development of insulitis in the NOD mouse. We show that the magnitude of immunoreactivity scoring NK-1 R expression in the islets was increased in the 12-week-old NOD mouse. Expression of NK-1 R co-localized with expression of glucagon. In line with this expression pattern, we did not detect any effect of SP on glucose-induced insulin release. NK-1 R expression was particularly observed in islet cells in association with the clusters of immune cells. Expression of NK-1 R was also demonstrated in a fraction of the infiltrating B and T lymphocytes, as well as on infiltrating macrophages and dendritic cells. The observations show that the level of NK-1 R expression is increased in 12-week-old NOD mice, being correlated with the occurrence of islet mononuclear infiltration. Our data suggest that SP may act as a chemoattractant, contributing to the pathogenic mononuclear infiltration process in the NOD mouse. On the whole, the observations suggest that SP and the NK-1 R to certain extents are involved in the changes that occur during the development of insulitis in the NOD mouse.
Collapse
Affiliation(s)
- Solveig Persson-Sjögren
- Section for Histology and Cell Biology, Department of Integrative Medical Biology, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | |
Collapse
|