1
|
Liu D, Liu Y, Lu CY, Wang Q, Bao Y, Yu Y, Wang Q, Peng W. Investigating genetic variants in early-onset obesity through exome sequencing: A retrospective cohort study. Obes Res Clin Pract 2024; 18:417-425. [PMID: 39667993 DOI: 10.1016/j.orcp.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVE This study aimed to examine clinical data and analyze exome sequencing (ES) findings in children diagnosed with early-onset obesity. METHODS We screened children presenting with severe (body mass index-standard deviation score >3) and early-onset (<7 years) obesity using ES. Participants were categorized into either the "no variant identified" group or the "variant identified" group, facilitating the exploration of correlations between clinical-demographic characteristics and genetic mutations linked to early-onset obesity. The functional implications of identified variants were assessed through in silico analyses. RESULTS Of the patients, 32 (35.5 %) possessed one or more mutations in pathways associated with obesity, all of which were heterozygous and patients with more than two obesity-associated variants were more obese. This cohort included 29 novel mutations distinct to our study population, 7 previously reported pathogenic variants, two instances of uniparental disomy, and one mitochondrial hotspot mutation. Variants in the SH2B1 gene emerged as a prevalent genetic determinant of obesity within our group, accounting for 16.6 % of cases. Statistical evaluations showed no significant differences in demographic attributes between the two groups. CONCLUSION Exome sequencing proves to be an instrumental approach for uncovering new variants and broadening the spectrum of mutations in early-onset obesity among children. Concurrently, further functional studies, both in vitro and in vivo, are crucial to elucidate the contributions of these variants to obesity's pathogenesis.
Collapse
Affiliation(s)
- Deyun Liu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| | - Yuxiang Liu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Chen Yu Lu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Qian Wang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yingying Bao
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yue Yu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Qiang Wang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wu Peng
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
2
|
Yu H, Fan J, Zhang Y, Zhao Z, Lin Z, Jiang P. Syndecan-3 inhibits LPS-induced Inflammation of Bovine Mammary Epithelial Cells through the NF-κB Signal Transduction Pathway. J Dairy Sci 2024:S0022-0302(24)01164-0. [PMID: 39343222 DOI: 10.3168/jds.2024-25212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024]
Abstract
In mastitis, excessive inflammation caused by lipopolysaccharide (LPS) is an important factor leading to mammary tissue damage. Therefore, exploring the regulatory factors that can inhibit the widespread inflammation caused by LPS is crucial. Syndecan-3 (SDC3) has been found to play an active role in anti-inflammatory infection by inhibiting leukocyte adhesion, reducing the accumulation of inflammatory products, such as reactive oxygen species, and competing with chemokines; however, the role and regulatory mechanism of SDC3 in mastitis remains unknown. Therefore, this study aimed to reveal the effect of SDC3 on LPS-induced inflammation in bovine mammary epithelial cells (BMECs) and explore its possible molecular mechanisms. First, we constructed a BMEC inflammatory model. It was found that cells stimulated with 10 μg/mL LPS for 24 h strongly induced the expression of inflammatory cytokines and had no toxic effect on cells, which was the best condition to simulate the BMECs inflammatory response in vitro. Subsequently, we used overexpression and RNAi interference, Real Time Quantitative PCR (RT-qPCR), and Western blot assays to explore the effects of SDC3 on LPS-induced inflammatory factors and their mechanisms. The results showed that overexpression of SDC3 could inhibit the transcriptional levels of inflammatory cytokines IL-6, IL-1β, and TNFα induced by LPS and inhibit the activation of the NF-κB inflammatory pathway by inhibiting the expression of NF-κB p50 and p-IκBα and promoting the expression of IκBα. Our results suggest that SDC3 inhibits the LPS-induced inflammatory response of BMECs through the NF-κB pathway, in which NF-κB p50 may be an important target of SDC3. These findings lay the foundation for elucidating the molecular regulatory mechanisms of dairy cow mastitis.
Collapse
Affiliation(s)
- Haibin Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Jing Fan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Yongliang Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhihui Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Ziwei Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China.
| | - Ping Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China.
| |
Collapse
|
3
|
Fan J, Zhao Z, Wu H, Fang X, Miao F, Chen X, Jiang X, Li J, Jiang P, Yu H. Syndecan-3 Coregulates Milk Fat Metabolism and Inflammatory Reactions in Bovine Mammary Epithelial Cells through AMPK/SIRT1 Signaling Pathway. Int J Mol Sci 2023; 24:6657. [PMID: 37047630 PMCID: PMC10095454 DOI: 10.3390/ijms24076657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Transcriptome sequencing showed that syndecan-3 (SDC3) was differentially expressed in high-fat and low-fat mammary epithelial cells of Chinese Holstein cows. Previous studies found that SDC3 plays an important role in inflammatory diseases and virus infection. However, those studies did not confirm whether or not the functional gene SDC3, which plays an important role in regulating milk fat metabolism, has an effect on susceptibility to breast tissue diseases. Therefore, we studied the effects of SDC3 on milk lipid metabolism and inflammation in bovine mammary epithelial cells (BMECs) and further explored the common regulatory pathway of SDC3 in both. The overexpression of SDC3 increased the contents of triglycerides and cholesterol, reduced the content of non-esterified fatty acids, inhibited the expression of inflammatory factors (IL-6, IL-1β, TNF-α and COX-2), and reduced the production of ROS in BMECs. However, silenced SDC3 had the opposite effect. Further exploring the mechanisms of SDC3, we found that SDC3 upregulated the expression of peroxisome proliferator-activated receptor gamma (PPARG) through the AMPK/SIRT1 signal pathway to promote milk fat synthesis. It also regulated the activation of the NF-κB pathway through the AMPK/SIRT1 signal pathway, reducing the expression of inflammatory factors and ROS production, thus inhibiting the inflammatory response of BMECs. Nuclear factor kappa B subunit 1 (NF-κB p50) was an important target of SDC3 in this process. To sum up, our results showed that SDC3 coregulated milk fat metabolism and inflammation through the AMPK/SIRT1 signaling pathway. This study laid a foundation for the comprehensive evaluation of breeding value based on multi-effect functional genes in dairy cow molecular breeding.
Collapse
Affiliation(s)
- Jing Fan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Zhihui Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Haochen Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Xibi Fang
- College of Animal Science, Jilin University, Changchun 130062, China;
| | - Fengshuai Miao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Xuanxu Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Xinyi Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Jing Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Ping Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Haibin Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.F.); (Z.Z.); (H.W.); (F.M.); (X.C.); (X.J.); (J.L.)
- The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| |
Collapse
|
4
|
Syndecans in cancer: A review of function, expression, prognostic value, and therapeutic significance. Cancer Treat Res Commun 2021; 27:100312. [PMID: 33485180 DOI: 10.1016/j.ctarc.2021.100312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
While our understanding of tumors and how to treat them has advanced significantly since the days of Aminopterin and the radical mastectomy, cancer remains among the leading causes of death worldwide. Despite innumerable advancements in medical technology the non-static and highly heterogeneous nature of a tumor can make characterization and treatment exceedingly difficult. Because of this complexity, the identification of new cellular constituents that can be used for diagnostic, prognostic, and therapeutic purposes is crucial in improving patient outcomes worldwide. Growing evidence has demonstrated that among the myriad of changes seen in cancer cells, the Syndecan family of proteins has been observed to undergo drastic alterations in expression. Syndecans are transmembrane heparan sulfate proteoglycans that are responsible for cell signaling, proliferation, and adhesion, and many studies have shed light on their unique involvement in both tumor progression and suppression. This review seeks to discuss Syndecan expression levels in various cancers, whether they make reliable biomarkers for detection and prognosis, and whether they may be viable targets for future cancer therapies. The conclusions drawn from the literature reviewed in this article indicate that changes in expression of Syndecan protein can have profound effects on tumor size, metastatic capability, and overall patient survival rate. Further, while data regarding the therapeutic targeting of Syndecan proteins is sparse, the available literature does demonstrate promise for their use in cancer treatment going forward.
Collapse
|
5
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Arokiasamy S, Balderstone MJM, De Rossi G, Whiteford JR. Syndecan-3 in Inflammation and Angiogenesis. Front Immunol 2020; 10:3031. [PMID: 31998313 PMCID: PMC6962229 DOI: 10.3389/fimmu.2019.03031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/10/2019] [Indexed: 01/04/2023] Open
Abstract
Syndecans are a four member multifunctional family of cell surface molecules with diverse biological roles. Syndecan-3 (SDC3) is the largest of these, but in comparison to the other family members relatively little is known about this molecule. SDC3 null mice grow and develop normally, all be it with subtle anatomical phenotypes in the brain. Roles for this molecule in both neuronal and brain tissue have been identified, and is associated with altered satiety responses. Recent studies suggest that SDC3 expression is not restricted to neuronal tissues and has important roles in inflammatory disorders such as rheumatoid arthritis, disease associated processes such as angiogenesis and in the facilitation of infection of dendritic cells by HIV. The purpose of this review article is to explore these new biological insights into SDC3 functions in inflammatory disease.
Collapse
Affiliation(s)
- Samantha Arokiasamy
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Michaela J. M. Balderstone
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Giulia De Rossi
- Department of Cell Biology, UCL Institute of Ophthalmology, London, United Kingdom
| | - James R. Whiteford
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
7
|
De Luca M, Vecchie’ D, Athmanathan B, Gopalkrishna S, Valcin JA, Swain TM, Sertie R, Wekesa K, Rowe GC, Bailey SM, Nagareddy PR. Genetic Deletion of Syndecan-4 Alters Body Composition, Metabolic Phenotypes, and the Function of Metabolic Tissues in Female Mice Fed A High-Fat Diet. Nutrients 2019; 11:nu11112810. [PMID: 31752080 PMCID: PMC6893658 DOI: 10.3390/nu11112810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/26/2022] Open
Abstract
Syndecans are transmembrane proteoglycans that, like integrins, bind to components of the extracellular matrix. Previously, we showed significant associations of genetic variants in the Syndecan-4 (SDC4) gene with intra-abdominal fat, fasting plasma glucose levels, and insulin sensitivity index in children, and with fasting serum triglyceride levels in healthy elderly subjects. An independent study also reported a correlation between SDC4 and the risk of coronary artery disease in middle-aged patients. Here, we investigated whether deletion of Sdc4 promotes metabolic derangements associated with diet-induced obesity by feeding homozygous male and female Sdc4-deficient (Sdc4-/-) mice and their age-matched wild-type (WT) mice a high-fat diet (HFD). We found that WT and Sdc4-/- mice gained similar weight. However, while no differences were observed in males, HFD-fed female Sdc4-/- mice exhibited a higher percentage of body fat mass than controls and displayed increased levels of plasma total cholesterol, triglyceride, and glucose, as well as reduced whole-body insulin sensitivity. Additionally, they had an increased adipocyte size and macrophage infiltration in the visceral adipose tissue, and higher triglyceride and fatty acid synthase levels in the liver. Together with our previous human genetic findings, these results provide evidence of an evolutionarily conserved role of SDC4 in adiposity and its complications.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (R.S.)
- Correspondence: ; Tel.: +1-205-934-7033
| | - Denise Vecchie’
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (R.S.)
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Baskaran Athmanathan
- Department of Surgery, Ohio State University, Columbus, OH 43209, USA; (B.A.); (S.G.); (P.R.N.)
| | - Sreejit Gopalkrishna
- Department of Surgery, Ohio State University, Columbus, OH 43209, USA; (B.A.); (S.G.); (P.R.N.)
| | - Jennifer A. Valcin
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.A.V.); (T.M.S.); (S.M.B.)
| | - Telisha M. Swain
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.A.V.); (T.M.S.); (S.M.B.)
| | - Rogerio Sertie
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (R.S.)
| | - Kennedy Wekesa
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | - Glenn C. Rowe
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Shannon M. Bailey
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.A.V.); (T.M.S.); (S.M.B.)
| | - Prabhakara R. Nagareddy
- Department of Surgery, Ohio State University, Columbus, OH 43209, USA; (B.A.); (S.G.); (P.R.N.)
| |
Collapse
|
8
|
Chang BCC, Hwang LC, Huang WH. Positive Association of Metabolic Syndrome with a Single Nucleotide Polymorphism of Syndecan-3 (rs2282440) in the Taiwanese Population. Int J Endocrinol 2018; 2018:9282598. [PMID: 29666642 PMCID: PMC5830967 DOI: 10.1155/2018/9282598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/19/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND/PURPOSE Metabolic syndrome (MetS) poses a major public health burden on the general population worldwide. Syndecan-3 (SDC3), a heparin sulfate proteoglycan, had been found by previous studies to be linked with energy balance and obesity, but its association with MetS is not known. The objective of this study is to investigate whether SDC3 polymorphism (rs2282440) is associated with MetS in the Taiwanese population. METHODS Genotypes of SDC3 polymorphism (rs2282440) were analyzed in 545 Taiwanese adult subjects, of which 154 subjects had MetS. RESULTS Subjects with SDC3 rs2282440 TT homozygote had higher frequency of MetS than those with CC or CT genotype (p = 0.0217). SDC3 rs2282440 TT homozygote had a 1.96-fold risk of being obese and 1.8-fold risk of having MetS (with CC genotype as reference). As for the individual components of MetS, subjects with SDC3 rs2282440 TT homozygote were more likely to have large waist circumference and low high-density lipoprotein cholesterol (OR = 1.75 and OR = 1.84, resp.). CONCLUSION SDC3 rs2282440 polymorphism is positively associated with MetS in the Taiwanese population. Further investigation is needed to see if this association is mediated by mere adiposity or SDC3 polymorphism is also linked with other components of MetS such as lipid metabolism.
Collapse
Affiliation(s)
| | - Lee-Ching Hwang
- Department of Family Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
- Mackay Medical College, New Taipei City, Taiwan
| | - Wei-Hsin Huang
- Department of Family Medicine, Mackay Memorial Hospital, Taipei City, Taiwan
- Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
9
|
Palomino R, Lee HW, Millhauser GL. The agouti-related peptide binds heparan sulfate through segments critical for its orexigenic effects. J Biol Chem 2017; 292:7651-7661. [PMID: 28264929 DOI: 10.1074/jbc.m116.772822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/03/2017] [Indexed: 12/20/2022] Open
Abstract
Syndecans potently modulate agouti-related peptide (AgRP) signaling in the central melanocortin system. Through heparan sulfate moieties, syndecans are thought to anchor AgRP near its receptor, enhancing its orexigenic effects. Original work proposed that the N-terminal domain of AgRP facilitates this interaction. However, this is not compatible with evidence that this domain is posttranslationally cleaved. Addressing this long-standing incongruity, we used calorimetry and magnetic resonance to probe interactions of AgRP peptides with glycosaminoglycans, including heparan sulfate. We show that mature, cleaved, C-terminal AgRP, not the N-terminal domain, binds heparan sulfate. NMR shows that the binding site consists of regions distinct from the melanocortin receptor-binding site. Using a library of designed AgRP variants, we find that the strength of the syndecan interaction perfectly tracks orexigenic action. Our data provide compelling evidence that AgRP is a heparan sulfate-binding protein and localizes critical regions in the AgRP structure required for this interaction.
Collapse
Affiliation(s)
- Rafael Palomino
- From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Hsiau-Wei Lee
- From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Glenn L Millhauser
- From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| |
Collapse
|
10
|
Kunnas T, Solakivi T, Määttä K, Nikkari ST. Glucuronic Acid Epimerase (GLCE) Variant rs3865014 (A>G) Is Associated with BMI, Blood Hemoglobin, Hypertension, and Cerebrovascular Events, the TAMRISK Study. Ann Hum Genet 2016; 80:332-335. [DOI: 10.1111/ahg.12166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/05/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Tarja Kunnas
- Department of Medical Biochemistry; University of Tampere Medical School and Fimlab laboratories; Tampere Finland
| | - Tiina Solakivi
- Department of Medical Biochemistry; University of Tampere Medical School and Fimlab laboratories; Tampere Finland
| | - Kirsi Määttä
- Department of Medical Biochemistry; University of Tampere Medical School and Fimlab laboratories; Tampere Finland
| | - Seppo T. Nikkari
- Department of Medical Biochemistry; University of Tampere Medical School and Fimlab laboratories; Tampere Finland
| |
Collapse
|
11
|
Heparanase affects food intake and regulates energy balance in mice. PLoS One 2012; 7:e34313. [PMID: 22479599 PMCID: PMC3313980 DOI: 10.1371/journal.pone.0034313] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 02/26/2012] [Indexed: 12/17/2022] Open
Abstract
Mutation of the melanocortin-receptor 4 (MC4R) is the most frequent cause of severe obesity in humans. Binding of agouti-related peptide (AgRP) to MC4R involves the co-receptor syndecan-3, a heparan sulfate proteoglycan. The proteoglycan can be structurally modified by the enzyme heparanase. Here we tested the hypothesis that heparanase plays a role in food intake behaviour and energy balance regulation by analysing body weight, body composition and food intake in genetically modified mice that either lack or overexpress heparanase. We also assessed food intake and body weight following acute central intracerebroventricular administration of heparanase; such treatment reduced food intake in wildtype mice, an effect that was abolished in mice lacking MC4R. By contrast, heparanase knockout mice on a high-fat diet showed increased food intake and maturity-onset obesity, with up to a 40% increase in body fat. Mice overexpressing heparanase displayed essentially the opposite phenotypes, with a reduced fat mass. These results implicate heparanase in energy balance control via the central melanocortin system. Our data indicate that heparanase acts as a negative modulator of AgRP signaling at MC4R, through cleavage of heparan sulfate chains presumably linked to syndecan-3.
Collapse
|
12
|
Breit A, Büch TRH, Boekhoff I, Solinski HJ, Damm E, Gudermann T. Alternative G protein coupling and biased agonism: new insights into melanocortin-4 receptor signalling. Mol Cell Endocrinol 2011; 331:232-40. [PMID: 20674667 DOI: 10.1016/j.mce.2010.07.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 05/06/2010] [Accepted: 07/13/2010] [Indexed: 11/20/2022]
Abstract
The melanocortin-4 receptor (MC4R) is a prototypical G protein-coupled receptor (GPCR) that plays a considerable role in controlling appetite and energy homeostasis. Signalling initiated by MC4R is orchestrated by multiple agonists, inverse agonism and by interactions with accessory proteins. The exact molecular events translating MC4R signalling into its physiological role, however, are not fully understood. This review is an attempt to summarize new aspects of MC4R signalling in the context of its recently discovered alternative G protein coupling, and to give a perspective on how future research could improve our knowledge about the intertwining molecular mechanisms that are responsible for the regulation of energy homeostasis by the melanocortin system.
Collapse
Affiliation(s)
- Andreas Breit
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Goethestrasse 33, Ludwig-Maximilians-Universität München, 80336 München, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Garfield AS, Lam DD, Marston OJ, Przydzial MJ, Heisler LK. Role of central melanocortin pathways in energy homeostasis. Trends Endocrinol Metab 2009; 20:203-15. [PMID: 19541496 DOI: 10.1016/j.tem.2009.02.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/06/2009] [Accepted: 02/06/2009] [Indexed: 02/07/2023]
Abstract
The rise in the global prevalence of human obesity has emphasized the need for a greater understanding of the physiological mechanisms that underlie energy homeostasis. Numerous circulating nutritional cues and central neuromodulatory signals are integrated within the brain to regulate both short- and long-term nutritional state. The central melanocortin system represents a crucial point of convergence for these signals and, thus, has a fundamental role in regulating body weight. The melanocortin ligands, synthesized in discrete neuronal populations within the hypothalamus and brainstem, modulate downstream homeostatic signalling via their action at central melanocortin-3 and -4 receptors. Intimately involved in both ingestive behaviour and energy expenditure, the melanocortin system has garnered much interest as a potential therapeutic target for human obesity.
Collapse
Affiliation(s)
- Alastair S Garfield
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | | | | | | | | |
Collapse
|
14
|
Amadi B, Fagbemi AO, Kelly P, Mwiya M, Torrente F, Salvestrini C, Day R, Golden MH, Eklund EA, Freeze HH, Murch SH. Reduced production of sulfated glycosaminoglycans occurs in Zambian children with kwashiorkor but not marasmus. Am J Clin Nutr 2009; 89:592-600. [PMID: 19116330 DOI: 10.3945/ajcn.2008.27092] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Kwashiorkor, a form of severe malnutrition with high mortality, is characterized by edema and systemic abnormalities. Although extremely common, its pathophysiology remains poorly understood, and its characteristic physical signs are unexplained. OBJECTIVE Because kwashiorkor can develop in protein-losing enteropathy, which is caused by a loss of enterocyte heparan sulfate proteoglycan (HSPG), and previous observations suggest abnormal sulfated glycosaminoglycan (GAG) metabolism, we examined whether intestinal GAG and HSPG are abnormal in children with kwashiorkor. DESIGN Duodenal biopsy samples collected from Zambian children with marasmus (n = 18), marasmic kwashiorkor (n = 8), and kwashiorkor (n = 15) were examined for expression of HSPG, GAGs, and immunologic markers and compared against reference samples from healthy UK control children. GAG and HSPG expression density and inflammatory cell populations were quantitated by computerized analysis. RESULTS The kwashiorkor group was less wasted and had a lower HIV incidence than did the other groups. All duodenal biopsy samples showed inflammation compared with the histologically uninflamed control samples. Biopsy samples from marasmic children had greater inflammation and greater CD3+ and HLA-DR (human leukocyte antigen DR)-positive cell densities than did samples from children with kwashiorkor. Expression of both HSPG and GAGs was similar between marasmic and well-nourished UK children but was markedly lower in children with kwashiorkor in both the epithelium and lamina propria. Although underglycosylated and undersulfated, epithelial syndecan-1 protein was normally expressed in kwashiorkor, which confirmed that abnormalities arise after core protein synthesis. CONCLUSIONS Intestinal HSPG loss occurs in kwashiorkor, which may precipitate protein-losing enteropathy to cause edema. If occurring systemically, impaired HSPG expression could cause several previously unexplained features of kwashiorkor. We speculate that a genetic predisposition to reduced HSPG biosynthesis may offer a contrasting selective advantage, by both diminishing protein catabolism during transient undernutrition and protecting against specific infectious diseases.
Collapse
Affiliation(s)
- Beatrice Amadi
- Department of Paediatrics and Child Health, University Teaching Hospital of Lusaka, Lusaka, Zambia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lindahl U, Li JP. Interactions between heparan sulfate and proteins-design and functional implications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 276:105-59. [PMID: 19584012 DOI: 10.1016/s1937-6448(09)76003-4] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heparan sulfate (HS) proteoglycans at cell surfaces and in the extracellular matrix of most animal tissues are essential in development and homeostasis, and variously implicated in disease processes. Functions of HS polysaccharide chains depend on ionic interactions with a variety of proteins including growth factors and their receptors. Negatively charged sulfate and carboxylate groups are arranged in various types of domains, generated through strictly regulated biosynthetic reactions and with enormous potential for structural variability. The level of specificity of HS-protein interactions is assessed through binding experiments in vitro using saccharides of defined composition, signaling assays in cell culture, and targeted disruption of genes for biosynthetic enzymes followed by phenotype analysis. While some protein ligands appear to require strictly defined HS structure, others bind to variable saccharide domains without any apparent dependence on distinct saccharide sequence. These findings raise intriguing questions concerning the functional significance of regulation in HS biosynthesis.
Collapse
Affiliation(s)
- Ulf Lindahl
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | | |
Collapse
|
16
|
Targeting melanocortin receptors: an approach to treat weight disorders and sexual dysfunction. Nat Rev Drug Discov 2008; 7:307-23. [PMID: 18323849 DOI: 10.1038/nrd2331] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The melanocortin system has multifaceted roles in the control of body weight homeostasis, sexual behaviour and autonomic functions, and so targeting this pathway has immense promise for drug discovery across multiple therapeutic areas. In this Review, we first outline the physiological roles of the melanocortin system, then discuss the potential of targeting melanocortin receptors by using MC3 and MC4 agonists for treating weight disorders and sexual dysfunction, and MC4 antagonists to treat anorectic and cachectic conditions. Given the complexity of the melanocortin system, we also highlight the challenges and opportunities for future drug discovery in this area.
Collapse
|
17
|
Nairn AV, Kinoshita-Toyoda A, Toyoda H, Xie J, Harris K, Dalton S, Kulik M, Pierce JM, Toida T, Moremen KW, Linhardt RJ. Glycomics of proteoglycan biosynthesis in murine embryonic stem cell differentiation. J Proteome Res 2007; 6:4374-87. [PMID: 17915907 DOI: 10.1021/pr070446f] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glycosaminoglycans (GAGs) play a critical role in binding and activation of growth factors involved in cell signaling critical for developmental biology. The biosynthetic pathways for GAGs have been elucidated over the past decade and now analytical methodology makes it possible to determine GAG composition in as few as 10 million cells. A glycomics approach was used to examine GAG content, composition, and the level of transcripts encoding for GAG biosynthetic enzymes as murine embryonic stem cells (mESCs) differentiate to embryoid bodies (EBs) and to extraembryonic endodermal cells (ExE) to better understand the role of GAGs in stem cell differentiation. Hyaluronan synthesis was enhanced by 13- and 24-fold, most likely due to increased expression of hyaluronan synthase-2. Chondroitin sulfate (CS)/dermatan sulfate (DS) synthesis was enhanced by 4- and 6-fold, and heparan sulfate (HS) synthesis was enhanced by 5- and 8-fold following the transition from mESC to EB and ExE. Transcripts associated with the synthesis of the early precursors were largely unaltered, suggesting other factors account for enhanced GAG synthesis. The composition of both CS/DS and HS also changed upon differentiation. Interestingly, CS type E and highly sulfated HS both increase as mESCs differentiate to EBs and ExE. Differentiation was also accompanied by enhanced 2-sulfation in both CS/DS and HS families. Transcript levels for core proteins generally showed increases or remained constant upon mESC differentiation. Finally, transcripts encoding selected enzymes and isoforms, including GlcNAc-4,6-O-sulfotransferase, C5-epimerases, and 3-O-sulfotransferases involved in late GAG biosynthesis, were also enriched. These biosynthetic enzymes are particularly important in introducing GAG fine structure, essential for intercellular communication, cell adhesion, and outside-in signaling. Knowing the changes in GAG fine structure should improve our understanding the biological properties of differentiated stem cells.
Collapse
Affiliation(s)
- Alison V Nairn
- Complex Carbohydrate Research Center and the University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jackson PJ, Douglas NR, Chai B, Binkley J, Sidow A, Barsh GS, Millhauser GL. Structural and molecular evolutionary analysis of Agouti and Agouti-related proteins. CHEMISTRY & BIOLOGY 2006; 13:1297-305. [PMID: 17185225 PMCID: PMC2907901 DOI: 10.1016/j.chembiol.2006.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/20/2006] [Accepted: 10/11/2006] [Indexed: 10/23/2022]
Abstract
Agouti (ASIP) and Agouti-related protein (AgRP) are endogenous antagonists of melanocortin receptors that play critical roles in the regulation of pigmentation and energy balance, respectively, and which arose from a common ancestral gene early in vertebrate evolution. The N-terminal domain of ASIP facilitates antagonism by binding to an accessory receptor, but here we show that the N-terminal domain of AgRP has the opposite effect and acts as a prodomain that negatively regulates antagonist function. Computational analysis reveals similar patterns of evolutionary constraint in the ASIP and AgRP C-terminal domains, but fundamental differences between the N-terminal domains. These studies shed light on the relationships between regulation of pigmentation and body weight, and they illustrate how evolutionary structure function analysis can reveal both unique and common mechanisms of action for paralogous gene products.
Collapse
Affiliation(s)
- Pilgrim J. Jackson
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Nick R. Douglas
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Biaoxin Chai
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0682
| | - Jonathan Binkley
- Department of Pathology, Stanford University Medical Center, Stanford, California 94305
| | - Arend Sidow
- Department of Genetics, Stanford University Medical Center, Stanford, California 94305
- Department of Pathology, Stanford University Medical Center, Stanford, California 94305
| | - Gregory S. Barsh
- Department of Genetics, Stanford University Medical Center, Stanford, California 94305
- Department of Pediatrics, Stanford University Medical Center, Stanford, California 94305
| | - Glenn L. Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| |
Collapse
|