1
|
Yao P, Zhou Q, Ren B, Yang L, Bai Y, Feng Z. Transcranial pulsed current stimulation alleviates neuronal pyroptosis and neurological dysfunction following traumatic brain injury via the orexin-A/NLRP3 pathway. Neuropeptides 2025; 110:102501. [PMID: 39764896 DOI: 10.1016/j.npep.2025.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 03/03/2025]
Abstract
Traumatic brain injury (TBI) is a life-threatening condition with high incidence and mortality rates. The current pharmacological interventions for TBI exhibit limited efficacy, underscoring the necessity to explore novel and effective therapeutic approaches to ameliorate its impact. Previous studies have indicated that transcranial pulsed current stimulation (tPCS) can improve neurofunctional deficits in patients by modulating brain neuroplasticity. However, the exact mechanism underlying this neuroprotective effect remains elusive. In this study, mice with TBI induced by controlled cortical impact were subjected to 30 min of daily tPCS for 5 consecutive days and intraperitoneally administered an orexin receptor type 1 (OX1R) antagonist (SB334867). The neuroprotective effects of tPCS and its potential mechanisms were assessed through behavioral tests, histopathological examination, immunohistochemistry and Western blotting. In vitro experiments involved stimulating HT22 cells with LPS + ATP to assess the anti-neuroinflammatory effects of Orexin-A (OX-A) using CCK-8, Western blotting, and Flow cytometry. The results demonstrated that tPCS reduced the mNSS in TBI mice, ameliorated tissue damage, improved motor and cognitive deficits, and upregulated OX-A expression. Notably, SB334867 reversed the protective effects of tPCS. In vitro studies revealed that OX-A inhibited the formation and activation of NLRP3 inflammasomes, resulting in reduced levels of ROS and restoration of MMP. However, this effect could be reversed by the NLRP3 agonist BMS-986299. Our findings suggest that tPCS promotes the release of OX-A and modulates the OX1R/NLRP3 pathway to mitigate the inflammatory response following TBI, thereby exerting neuroprotective effects.
Collapse
Affiliation(s)
- Peng Yao
- Affiliated Rehabilitation Hospital, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330003, Jiangxi, China; Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, 330003, Jiangxi, China; The First Affiliated Hospital of Nanchang University, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Qianhui Zhou
- Affiliated Rehabilitation Hospital, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330003, Jiangxi, China; Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, 330003, Jiangxi, China; The First Affiliated Hospital of Nanchang University, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Bingkai Ren
- Affiliated Rehabilitation Hospital, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330003, Jiangxi, China; Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, 330003, Jiangxi, China; The First Affiliated Hospital of Nanchang University, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Li Yang
- Affiliated Rehabilitation Hospital, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330003, Jiangxi, China; Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, 330003, Jiangxi, China; The First Affiliated Hospital of Nanchang University, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Yang Bai
- Affiliated Rehabilitation Hospital, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330003, Jiangxi, China; Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, 330003, Jiangxi, China.
| | - Zhen Feng
- Affiliated Rehabilitation Hospital, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330003, Jiangxi, China; Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, 330003, Jiangxi, China.
| |
Collapse
|
2
|
Zhang D, Cui Y, Zhao M, Zheng X, Li C, Wei J, Wang K, Cui J. Orexin-A exerts neuroprotective effect in experimental intracerebral hemorrhage by suppressing autophagy via OXR1-mediated ERK/mTOR signaling pathway. Front Cell Neurosci 2022; 16:1045034. [PMID: 36619670 PMCID: PMC9815810 DOI: 10.3389/fncel.2022.1045034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Background Orexin-A (OXA) is a polypeptide produced in the hypothalamus, which binds to specific receptors and exerts multiple physiological effects. Autophagy plays a vital role in early brain injury (EBI) after intracerebral hemorrhage (ICH). However, the relationship between OXA and autophagy after ICH has not been confirmed. Methods In this study, the protective role of OXA was investigated in a model of hemin-induced injury in PC12 cells and blood-injection ICH model in rats, and its potential molecular mechanism was clarified. Neurobehavioral tests, brain water content, and pathologic morphology were assessed after ICH. Cell survival rate was determined using Cell Counting Kit-8 (CCK-8), while apoptosis was detected using flow cytometry. The autophagy protein LC3 that was originally identified as microtubule-associated protein 1 light 3 was evaluated by immunohistochemistry. The ultrastructural changes of cells following ICH were observed by transmission electron microscopy. Western blotting was performed to determine the expression levels of LC3, p62/SQSTM1 (p62), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), total extracellular signal-regulated kinase 1/2 (t-ERK1/2), mammalian target of rapamycin (mTOR), and phosphorylated mammalian target of rapamycin (p-mTOR). Results OXA treatment significantly improved neurofunctional outcomes, reduced brain edema, and alleviated neuronal apoptosis. OXA administration upregulated p-mTOR and p62, while it downregulated p-ERK1/2 and LC3; this effect was reversed by the orexin receptor 1 (OXR1) antagonist SB-334867. Conclusions This study demonstrates that OXA suppresses autophagy via the OXR1-mediated ERK/mTOR signaling pathway to exert neuroprotective effects, and it might provide a novel therapeutic approach in patients suffering from ICH.
Collapse
Affiliation(s)
- Dexin Zhang
- Department of Surgery, Hebei Medical University, Shijiazhuang, China
| | - Ying Cui
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, China
| | - Manman Zhao
- Department of Histology and Embryology, North China University of Science and Technology, Tangshan, China
| | - Xuecheng Zheng
- Department of Surgery, Hebei Medical University, Shijiazhuang, China
| | - Chunyan Li
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jingbo Wei
- Department of Histology and Embryology, North China University of Science and Technology, Tangshan, China
| | - Kaijie Wang
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Jianzhong Cui
- Department of Surgery, Hebei Medical University, Shijiazhuang, China,Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China,*Correspondence: Jianzhong Cui,
| |
Collapse
|
3
|
Chavda V, Chaurasia B, Umana GE, Tomasi SO, Lu B, Montemurro N. Narcolepsy-A Neuropathological Obscure Sleep Disorder: A Narrative Review of Current Literature. Brain Sci 2022; 12:1473. [PMID: 36358399 PMCID: PMC9688775 DOI: 10.3390/brainsci12111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 08/29/2023] Open
Abstract
Narcolepsy is a chronic, long-term neurological disorder characterized by a decreased ability to regulate sleep-wake cycles. Some clinical symptoms enter into differential diagnosis with other neurological diseases. Excessive daytime sleepiness and brief involuntary sleep episodes are the main clinical symptoms. The majority of people with narcolepsy experience cataplexy, which is a loss of muscle tone. Many people experience neurological complications such as sleep cycle disruption, hallucinations or sleep paralysis. Because of the associated neurological conditions, the exact pathophysiology of narcolepsy is unknown. The differential diagnosis is essential because relatively clinical symptoms of narcolepsy are easy to diagnose when all symptoms are present, but it becomes much more complicated when sleep attacks are isolated and cataplexy is episodic or absent. Treatment is tailored to the patient's symptoms and clinical diagnosis. To facilitate the diagnosis and treatment of sleep disorders and to better understand the neuropathological mechanisms of this sleep disorder, this review summarizes current knowledge on narcolepsy, in particular, genetic and non-genetic associations of narcolepsy, the pathophysiology up to the inflammatory response, the neuromorphological hallmarks of narcolepsy, and possible links with other diseases, such as diabetes, ischemic stroke and Alzheimer's disease. This review also reports all of the most recent updated research and therapeutic advances in narcolepsy. There have been significant advances in highlighting the pathogenesis of narcolepsy, with substantial evidence for an autoimmune response against hypocretin neurons; however, there are some gaps that need to be filled. To treat narcolepsy, more research should be focused on identifying molecular targets and novel autoantigens. In addition to therapeutic advances, standardized criteria for narcolepsy and diagnostic measures are widely accepted, but they may be reviewed and updated in the future with comprehension. Tailored treatment to the patient's symptoms and clinical diagnosis and future treatment modalities with hypocretin agonists, GABA agonists, histamine receptor antagonists and immunomodulatory drugs should be aimed at addressing the underlying cause of narcolepsy.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pathology, Stanford of School of Medicine, Stanford University Medical Centre, Palo Alto, CA 94305, USA
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj 44300, Nepal
| | - Giuseppe E. Umana
- Department of Neurosurgery, Associate Fellow of American College of Surgeons, Trauma and Gamma-Knife Centre, Cannizzaro Hospital Catania, 95100 Catania, Italy
| | | | - Bingwei Lu
- Department of Pathology, Stanford of School of Medicine, Stanford University Medical Centre, Palo Alto, CA 94305, USA
| | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
4
|
Huang L, Kang J, Chen G, Ye W, Meng X, Du Q, Feng Z. Low-intensity focused ultrasound attenuates early traumatic brain injury by OX-A/NF-κB/NLRP3 signaling pathway. Aging (Albany NY) 2022; 14:7455-7469. [PMID: 36126193 PMCID: PMC9550253 DOI: 10.18632/aging.204290] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022]
Abstract
Background: Traumatic brain injury (TBI) is a serious hazard to human health and is characterized by high rates of disability and mortality. It is necessary to explore new effective treatment methods to reduce the impact of TBI on individuals and society. As an emerging neuromodulation technique, ultrasound is used to treat some neurological diseases, but the neuroprotective mechanism of low-intensity focused ultrasound (LIFUS) in TBI remains unclear. We aimed to investigate the protective effects and potential mechanisms of LIFUS in TBI. Methods: A rat model of TBI was established using the free-fall method. After establishing the TBI model, the hypothalamus region was covered with LIFUS radiation, and an orexin receptor 1 (OXR1) antagonist (SB334867) was injected intraperitoneally. Neurobehavioral examination, Nissl staining, hematoxylin and eosin staining of the brain tissue, and brain water content, were performed 3 days later. Western blotting, quantitative real-time polymerase chain reaction, immunofluorescence staining, and immunohistochemical staining, were used to evaluate the neuroprotective mechanisms of LIFUS. Results: LIFUS improved tissue damage, neurological deficits, and brain edema. LIFUS can increase the expression of orexin-A (OX-A) and OXR1, significantly inhibit the activation of nuclear factor-κB (NF-κB) protein and nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome after TBI, and reduce the release of pro-inflammatory factors after TBI; however, SB334867 can reverse this effect. Conclusions: This study suggests that LIFUS may play a neuroprotective role by promoting the release of OX-A from the hypothalamus and inhibiting the inflammatory response after TBI through the OX-A /NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Lianghua Huang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Junwei Kang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Gengfa Chen
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Wen Ye
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Xiangqiang Meng
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Qing Du
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Zhen Feng
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| |
Collapse
|
5
|
Li T, Xu W, Ouyang J, Lu X, Sherchan P, Lenahan C, Irio G, Zhang JH, Zhao J, Zhang Y, Tang J. Orexin A alleviates neuroinflammation via OXR2/CaMKKβ/AMPK signaling pathway after ICH in mice. J Neuroinflammation 2020; 17:187. [PMID: 32539736 PMCID: PMC7294616 DOI: 10.1186/s12974-020-01841-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Background Orexins are two neuropeptides (orexin A, OXA; orexin B, OXB) secreted mainly from the lateral hypothalamus, which exert a wide range of physiological effects by activating two types of receptors (orexin receptor 1, OXR1; orexin receptor 2, OXR2). OXA has equal affinity for OXR1 and OXR2, whereas OXB binds preferentially to OXR2. OXA rapidly crosses the blood-brain barrier by simple diffusion. Many studies have reported OXA’s protective effect on neurological diseases via regulating inflammatory response which is also a fundamental pathological process in intracerebral hemorrhage (ICH). However, neuroprotective mechanisms of OXA have not been explored in ICH. Methods ICH models were established using stereotactic injection of autologous arterial blood into the right basal ganglia of male CD-1 mice. Exogenous OXA was administered intranasally; CaMKKβ inhibitor (STO-609), OXR1 antagonist (SB-334867), and OXR2 antagonist (JNJ-10397049) were administered intraperitoneally. Neurobehavioral tests, hematoma volume, and brain water content were evaluated after ICH. Western blot and ELISA were utilized to evaluate downstream mechanisms. Results OXA, OXR1, and OXR2 were expressed moderately in microglia and astrocytes and abundantly in neurons. Expression of OXA decreased whereas OXR1 and OXR2 increased after ICH. OXA treatment significantly improved not only short-term but also long-term neurofunctional outcomes and reduced brain edema in ipsilateral hemisphere. OXA administration upregulated p-CaMKKβ, p-AMPK, and anti-inflammatory cytokines while downregulated p-NFκB and pro-inflammatory cytokines after ICH; this effect was reversed by STO-609 or JNJ-10397049 but not SB-334867. Conclusions OXA improved neurofunctional outcomes and mitigated brain edema after ICH, possibly through alleviating neuroinflammation via OXR2/CaMKKβ/AMPK pathway.
Collapse
Affiliation(s)
- Tao Li
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Yunnan, 650032, China.,Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA.,Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
| | - Weilin Xu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA.,Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
| | - Jinsong Ouyang
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Yunnan, 650032, China
| | - Xiaoyang Lu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA.,Burrell College of Osteopathic Medicine, 3501 Arrowhead Dr, Las Cruces, NM, 88001, USA
| | - Giselle Irio
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA.,Burrell College of Osteopathic Medicine, 3501 Arrowhead Dr, Las Cruces, NM, 88001, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Jianhua Zhao
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Yunnan, 650032, China
| | - Yongfa Zhang
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Yunnan, 650032, China.
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA.
| |
Collapse
|
6
|
Wang C, Wang Q, Ji B, Pan Y, Xu C, Cheng B, Bai B, Chen J. The Orexin/Receptor System: Molecular Mechanism and Therapeutic Potential for Neurological Diseases. Front Mol Neurosci 2018; 11:220. [PMID: 30002617 PMCID: PMC6031739 DOI: 10.3389/fnmol.2018.00220] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/06/2018] [Indexed: 12/25/2022] Open
Abstract
Orexins, also known as hypocretins, are two neuropeptides secreted from orexin-containing neurons, mainly in the lateral hypothalamus (LH). Orexins orchestrate their effects by binding and activating two G-protein–coupled receptors (GPCRs), orexin receptor type 1 (OX1R) and type 2 (OX2R). Orexin/receptor pathways play vital regulatory roles in many physiological processes, especially feeding behavior, sleep–wake rhythm, reward and addiction and energy balance. Furthermore several reports showed that orexin/receptor pathways are involved in pathological processes of neurological diseases such as narcolepsy, depression, ischemic stroke, drug addiction and Alzheimer’s disease (AD). This review article summarizes the expression patterns, physiological functions and potential molecular mechanisms of the orexin/receptor system in neurological diseases, providing an overall framework for considering these pathways from the standpoints of basic research and clinical treatment of neurological diseases.
Collapse
Affiliation(s)
- Chunmei Wang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Qinqin Wang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Bingyuan Ji
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Yanyou Pan
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Chao Xu
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Baohua Cheng
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Bo Bai
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
7
|
Kang YJ, Tian G, Bazrafkan A, Farahabadi MH, Azadian M, Abbasi H, Shamaoun BE, Steward O, Akbari Y. Recovery from Coma Post-Cardiac Arrest Is Dependent on the Orexin Pathway. J Neurotrauma 2017; 34:2823-2832. [PMID: 28447885 DOI: 10.1089/neu.2016.4852] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cardiac arrest (CA) affects >550,000 people annually in the United States whereas 80-90% of survivors suffer from a comatose state. Arousal from coma is critical for recovery, but mechanisms of arousal are undefined. Orexin-A, a hypothalamic excitatory neuropeptide, has been linked to arousal deficits in various brain injuries. We investigated the orexinergic system's role in recovery from CA-related neurological impairments, including arousal deficits. Using an asphyxial CA and resuscitation model in rats, we examine neurological recovery post-resuscitation in conjunction with changes in orexin-A levels in cerebrospinal fluid (CSF) and orexin-expressing neurons. We also conduct pharmacological inhibition of orexin post-resuscitation. We show that recovery from neurological deficits begins between 4 and 24 h post-resuscitation, with additional recovery by 72 h post-resuscitation. Orexin-A levels in the CSF are lowest during periods of poorest arousal post-resuscitation (4 h) and recover to control levels by 24 h. Immunostaining revealed that the number of orexin-A immunoreactive neurons declined at 4 h post-resuscitation, but increased to near normal levels by 24 h. There were no significant changes in the number of neurons expressing melanin-concentrating hormone, another neuropeptide localized in similar hypothalamus regions. Last, administration of the dual orexin receptor antagonist, suvorexant, during the initial 24 h post-resuscitation, led to sustained neurological deficits. The orexin pathway is critical during early phases of neurological recovery post-CA. Blocking this early action leads to persistent neurological deficits. This is of considerable clinical interest given that suvorexant recently received U.S. Food and Drug Administration approval for insomnia treatment.
Collapse
Affiliation(s)
- Young-Jin Kang
- 1 Department of Neurology, School of Medicine, University of California , Irvine, California
| | - Guilian Tian
- 1 Department of Neurology, School of Medicine, University of California , Irvine, California
| | - Afsheen Bazrafkan
- 1 Department of Neurology, School of Medicine, University of California , Irvine, California
| | - Maryam H Farahabadi
- 1 Department of Neurology, School of Medicine, University of California , Irvine, California
| | - Matine Azadian
- 1 Department of Neurology, School of Medicine, University of California , Irvine, California
| | - Hamidreza Abbasi
- 1 Department of Neurology, School of Medicine, University of California , Irvine, California
| | - Brittany E Shamaoun
- 1 Department of Neurology, School of Medicine, University of California , Irvine, California
| | - Oswald Steward
- 2 Department of Anatomy & Neurobiology, School of Medicine, University of California , Irvine, California.,3 Reeve-Irvine Research Center, School of Medicine, University of California , Irvine, California
| | - Yama Akbari
- 1 Department of Neurology, School of Medicine, University of California , Irvine, California
| |
Collapse
|
8
|
|
9
|
Gemici B, Tan R, Birsen İ, İzgüt Uysal VN. Gastroprotective effect of orexin-A and heme oxygenase system. J Surg Res 2015; 193:626-33. [DOI: 10.1016/j.jss.2014.08.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/25/2014] [Accepted: 08/27/2014] [Indexed: 12/24/2022]
|
10
|
Martin J, Kagerbauer SM, Schuster T, Blobner M, Kochs EF, Landgraf R. Vasopressin and oxytocin in CSF and plasma of patients with aneurysmal subarachnoid haemorrhage. Neuropeptides 2014; 48:91-6. [PMID: 24412107 DOI: 10.1016/j.npep.2013.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 12/06/2013] [Accepted: 12/23/2013] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Clinicopathological studies on patients succumbing to subarachnoid haemorrhage (SAH) demonstrated hypothalamic lesions. The implication of the hypothalamic neuropeptides arginine-vasopressin (AVP) and oxytocin (OXT) has not been linked to aneurysmal SAH yet. This study investigates AVP and OXT in CSF and plasma of patients with spontaneous aneurysmal SAH and their association with outcome. METHODS CSF and plasma samples of 12 patients with aneurysmal SAH were prospectively studied for 2weeks. AVP and OXT were measured by radioimmunoassay. Outcome was assessed on Glasgow-Outcome-Scale. Twenty-nine patients without neuropsychiatric disturbances served as controls. Differences in neuropeptide concentration time courses were assessed by regression models. Group comparisons were performed by Kruskal-Wallis and correlations by Spearman tests. RESULTS Regression of CSF levels between patients with poor and good outcome revealed significantly lower levels of AVP in patients with poor outcome (p=0.012) while OXT showed a trend towards lower levels (p=0.063). In plasma, no significant differences between outcome groups were found. Group comparisons between poor outcome patients and controls revealed significant differences in CSF for AVP (p=0.001) and OXT (p=0.015). In plasma, AVP yielded significantly different results while OXT did not. No differences were found between the good outcome group and controls. Plasma and CSF concentrations showed no significant correlation. CONCLUSION Patients with poor outcome after aneurysmal SAH have lower AVP and OXT levels in CSF than patients with good outcome while neuropeptide levels in plasma failed to reflect differences in outcome. The data indicate hypothalamic damage as an aetiologic factor for outcome after aneurysmal SAH.
Collapse
Affiliation(s)
- Jan Martin
- Klinik für Anaesthesiologie, Technische Universität München, Klinikum rechts der Isar, Ismaninger Strasse 22, 81675 München, Germany.
| | - Simone M Kagerbauer
- Klinik für Anaesthesiologie, Technische Universität München, Klinikum rechts der Isar, Ismaninger Strasse 22, 81675 München, Germany
| | - Tibor Schuster
- Institut für Medizinische Statistik und Epidemiologie, Technische Universität München, Klinikum rechts der Isar, Ismaninger Strasse 22, 81675 München, Germany
| | - Manfred Blobner
- Klinik für Anaesthesiologie, Technische Universität München, Klinikum rechts der Isar, Ismaninger Strasse 22, 81675 München, Germany
| | - Eberhard F Kochs
- Klinik für Anaesthesiologie, Technische Universität München, Klinikum rechts der Isar, Ismaninger Strasse 22, 81675 München, Germany
| | - Rainer Landgraf
- Max-Planck-Institut für Psychiatrie, Kraepelinstrasse 2, 80804 München, Germany
| |
Collapse
|
11
|
Xiong X, White RE, Xu L, Yang L, Sun X, Zou B, Pascual C, Sakurai T, Giffard RG, Xie XS. Mitigation of murine focal cerebral ischemia by the hypocretin/orexin system is associated with reduced inflammation. Stroke 2013; 44:764-70. [PMID: 23349191 DOI: 10.1161/strokeaha.112.681700] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND PURPOSE Brain ischemia causes immediate and delayed cell death that is exacerbated by inflammation. Recent studies show that hypocretin-1/orexin-A (Hcrt-1) reduces ischemic brain injury, and Hcrt-positive neurons modulate infection-induced inflammation. Here, we tested the hypothesis that Hcrt plays a protective role against ischemia by modulating inflammation. METHODS Orexin/ataxin-3 (AT) mice, a transgenic strain in which Hcrt-producing neurons degenerate in early adulthood, and wild-type mice were subjected to transient middle cerebral artery occlusion (MCAO). Infarct volume, neurological score, and spontaneous home cage activity were assessed. Inflammation was measured using immunohistochemistry, ELISA, and assessment of cytokine mRNA levels. RESULTS Infarct volumes 24 and 48 hours after MCAO were significantly larger, neurological score was worse, and spontaneous activity decreased in AT compared with wild-type mice. Macrophage/microglial infiltration and myeloperoxidase-positive cells were higher in AT compared with wild-type mice. Pre-MCAO intracerebroventricular injection of Hcrt-1 significantly reduced infarct volume and macrophage/microglial infiltration in both genotypes and improved neurological score in AT mice. Post-MCAO treatment decreased infarct size in both wild-type and AT mice, but had no effect on neurological score in either genotype. Microglia express the Hcrt-1 receptor after MCAO. Tumor necrosis factor-α production by lipopolysaccharide-stimulated microglial BV2 cells was significantly reduced by Hcrt-1 pretreatment. Sham AT mice exhibit increased brain tumor necrosis factor-α and interleukin-6 mRNA, suggesting chronic inflammation. CONCLUSIONS Loss of Hcrt neurons in AT mice resulted in worsened stroke outcomes, which were reversed by administration of exogenous Hcrt-1. The mechanism underlying Hcrt-mediated neuroprotection includes attenuation of inflammatory responses after ischemic insult.
Collapse
Affiliation(s)
- Xiaoxing Xiong
- AfaSci Research Laboratories, Redwood City, CA 94063, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Butterick TA, Nixon JP, Billington CJ, Kotz CM. Orexin A decreases lipid peroxidation and apoptosis in a novel hypothalamic cell model. Neurosci Lett 2012; 524:30-4. [PMID: 22796468 DOI: 10.1016/j.neulet.2012.07.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/14/2012] [Accepted: 07/03/2012] [Indexed: 11/18/2022]
Abstract
Current data support the idea that hypothalamic neuropeptide orexin A (OxA; hypocretin 1) mediates resistance to high fat diet-induced obesity. We previously demonstrated that OxA elevates spontaneous physical activity (SPA), that rodents with high SPA have higher endogenous orexin sensitivity, and that OxA-induced SPA contributes to obesity resistance in rodents. Recent reports show that OxA can confer neuroprotection against ischemic damage, and may decrease lipid peroxidation. This is noteworthy as independent lines of evidence indicate that diets high in saturated fats can decrease SPA, increase hypothalamic apoptosis, and lead to obesity. Together data suggest OxA may protect against obesity both by inducing SPA and by modulation of anti-apoptotic mechanisms. While OxA effects on SPA are well characterized, little is known about the short- and long-term effects of hypothalamic OxA signaling on intracellular neuronal metabolic status, or the physiological relevance of such signaling to SPA. To address this issue, we evaluated the neuroprotective effects of OxA in a novel immortalized primary embryonic rat hypothalamic cell line. We demonstrate for the first time that OxA increases cell viability during hydrogen peroxide challenge, decreases hydrogen peroxide-induced lipid peroxidative stress, and decreases caspase 3/7 induced apoptosis in an in vitro hypothalamic model. Our data support the hypothesis that OxA may promote obesity resistance both by increasing SPA, and by influencing survival of OxA-responsive hypothalamic neurons. Further identification of the individual mediators of the anti-apoptotic and peroxidative effects of OxA on target neurons could lead to therapies designed to maintain elevated SPA and increase obesity resistance.
Collapse
Affiliation(s)
- Tammy A Butterick
- Department of Food Science and Nutrition, University of Minnesota, 225 Food Science and Nutrition, 1334 Eckles Avenue, St. Paul, MN 55108, USA.
| | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Seiji Nishino
- Stanford University School of Medicine, Stanford Sleep Research Center, Palo Alto, CA, USA.
| | | |
Collapse
|
14
|
Expression and localization of the orexin-1 receptor (OX1R) after traumatic brain injury in mice. J Mol Neurosci 2010; 43:162-8. [PMID: 20803175 DOI: 10.1007/s12031-010-9438-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Accepted: 08/10/2010] [Indexed: 01/30/2023]
Abstract
Orexins are neuropeptides that have a wide range of physiological effects, and recent studies have suggested that the orexin system may be involved in traumatic brain injury. However, the expression and localization of orexin receptors have not been examined yet under brain injury conditions. In the present study, we used immunohistochemical techniques to investigate the expression of orexin-1 receptor (OX1R) and its time-dependent changes in the mouse brain after controlled cortical impact (CCI) injury. OX1R-like immunoreactivity was first detected 6 h after injury in the surrounding penumbra of the injury. The intensity of this immunoreactivity was increased at 12 h, peaked at day 1, and then decreased from day 2 to day 7. To identify the cellular localization of OX1R, we also performed double-immunohistochemical staining with OX1R and several cell marker antibodies. OX1R-like immunopositive cells were clearly co-localized with immunoreactivity for the neuronal marker NeuN at day 7. It was also expressed on the periphery of cells immunopositive for CD11b, a microglial cell marker, at days 1 and 7. These results suggest that orexin and its receptor may play roles in traumatic brain injury, and that OX1R is induced in neurons and microglial cells after traumatic brain injury.
Collapse
|
15
|
Effect of orexin-a on ischemia-reperfusion-induced gastric damage in rats. J Gastroenterol 2008; 43:202-7. [PMID: 18373162 DOI: 10.1007/s00535-007-2148-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 12/05/2007] [Indexed: 02/04/2023]
Abstract
BACKGROUND Orexins are involved in the regulation of sleeping behavior and energy homeostasis, and they are also implicated in the regulation of gastrointestinal functions. Previous reports have demonstrated the expression of orexin receptors in the gastrointestinal system. The aim of this study was to investigate the gastroprotective effect of orexin-A in ischemia-reperfusion-induced gastric mucosal injury. METHODS The gastric ischemia-reperfusion model was established by clamping the celiac artery for 30 min and reperfusing for 60 min. Orexin-A was administered in doses of 500 pmol.kg(-1).min(-1) by infusion throughout the ischemia-reperfusion period. The mean lesion area, gastric prostaglandin E2 and mucus content, myeloperoxidase activity, and production of thiobarbituric acid reactive substances were measured. RESULTS Orexin-A significantly attenuated the ischemia-reperfusion-induced gastric lesions and also decreased myeloperoxidase activity and the thiobarbituric acid reactive substances content in gastric mucosa of rats exposed to ischemia-reperfusion. However, the decline in gastric prostaglandin E2 and mucus content was not restored by orexin-A treatment. CONCLUSIONS Orexin-A exhibited a gastroprotective effect against ischemia-reperfusion-induced lesions by decreasing neutrophil activation and lipid peroxidation.
Collapse
|
16
|
Dohi K, Ripley B, Fujiki N, Ohtaki H, Yamamoto T, Goto Y, Nakamachi T, Shioda S, Aruga T, Nishino S. CSF orexin-A/hypocretin-1 concentrations in patients with intracerebral hemorrhage (ICH). ACTA ACUST UNITED AC 2007; 145:60-4. [PMID: 17868933 DOI: 10.1016/j.regpep.2007.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Orexins/hypocretins are neuropeptides that have various physiological effects, including the regulation of both the feeding behavior neuroendocrine functions and sleep-wakefulness cycle. Recent studies have suggested that the orexin system may also be involved in neuronal damage in the clinical setting and animal experiments. The aim of this study was to examine the role of the hypothalamic orexin-A/hypocretin-1 system in patients with intracerebral hemorrhage (ICH). The CSF orexin-A/hypocretin-1 levels were measured in 11 ICH patients. CSF orexin-A/hypocretin-1 levels were low in ICH patients during the 13 days following the ICH event. The mean CSF orexin-A/hypocretin-1 levels were 61.1+/-22.3 (S.D.) pg/ml (range 27.5-106.9 pg/ml). The decreasing in the CSF orexin-A/hypocretin-1 levels was not related to the severity of ICH. The CSF orexin-A/hypocretin-1 levels were lower in the thalamic hemorrhage patients than those in other patients (48.5+/-23.3 pg/ml vs. 65.2+/-21.2 pg/ml; p=0.03.) These data indicate that orexin-A/hypocretin-1 may therefore play an important role in the various physiological responses including sleep, feeding, and the overall metabolism in ICH patients.
Collapse
Affiliation(s)
- Kenji Dohi
- Showa University, Department of Emergency and Critical Care Medicine, School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dohi K, Nishino S, Nakamachi T, Ohtaki H, Morikawa K, Takeda T, Shioda S, Aruga T. CSF orexin A concentrations and expressions of the orexin-1 receptor in rat hippocampus after cardiac arrest. Neuropeptides 2006; 40:245-50. [PMID: 16930690 DOI: 10.1016/j.npep.2006.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 06/16/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
Orexins/hypocretins are neuropeptides that have various physiological effects, including the regulation of feeding behavior, neuroendocrine functions and sleep-wake cycles. Recent studies have suggested that the orexin system may also be involved in brain ischemic reactions. It is also known that changes in sleep patterns, energy homeostasis and neuroendocrine functions are often occur in neurological conditions associated brain ischemia. In the current study, we investigated the time-dependent changes in cerebrospinal fluid (CSF) orexin-A concentration and the expression of the orexin-1 receptor (OX1R) in the rat hippocampus after global ischemia-reperfusion (5 min cardiopulmonary arrest), which is known to induce delayed cell death in the CA1 region of the hippocampus. The CSF orexin-A concentration was elevated transiently at 24 h after ischemia. On days 2 and 4 after ischemia, CSF orexin concentrations were significantly reduced relative to the baseline, and returned to the baseline level by day 7. These changes were correlated with increased expression of OX1R in the CA1 on days 1 and 2 post-ischemia. These results suggest that dynamics of orexin signaling observed may have functional roles for neuronal damage associated with transient ischemia.
Collapse
Affiliation(s)
- Kenji Dohi
- Department of Emergency and Critical Care Medicine, School of Medicine, Showa University, Shinagawa-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|