1
|
Satake H, Sasakura Y. The neuroendocrine system of Ciona intestinalis Type A, a deuterostome invertebrate and the closest relative of vertebrates. Mol Cell Endocrinol 2024; 582:112122. [PMID: 38109989 DOI: 10.1016/j.mce.2023.112122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
Deuterostome invertebrates, including echinoderms, hemichordates, cephalochordates, and urochordates, exhibit common and species-specific morphological, developmental, physiological, and behavioral characteristics that are regulated by neuroendocrine and nervous systems. Over the past 15 years, omics, genetic, and/or physiological studies on deuterostome invertebrates have identified low-molecular-weight transmitters, neuropeptides and their cognate receptors, and have clarified their various biological functions. In particular, there has been increasing interest on the neuroendocrine and nervous systems of Ciona intestinalis Type A, which belongs to the subphylum Urochordata and occupies the critical phylogenetic position as the closest relative of vertebrates. During the developmental stage, gamma-aminobutylic acid, D-serine, and gonadotropin-releasing hormones regulate metamorphosis of Ciona. In adults, the neuropeptidergic mechanisms underlying ovarian follicle growth, oocyte maturation, and ovulation have been elucidated. This review article provides the most recent and fundamental knowledge of the neuroendocrine and nervous systems of Ciona, and their evolutionary aspects.
Collapse
Affiliation(s)
- Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan.
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| |
Collapse
|
2
|
Hildebrand J, Chang WW, Hu MY, Stumpp M. Characterization of digestive proteases in the gut of a basal deuterostome. J Exp Biol 2023; 226:jeb245789. [PMID: 37470128 DOI: 10.1242/jeb.245789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Digestive systems are complex organs that allow organisms to absorb energy from their environment to fuel vital processes such as growth, development and the maintenance of homeostasis. A comprehensive understanding of digestive physiology is therefore essential to fully understand the energetics of an organism. The digestion of proteins is of particular importance because most heterotrophic organisms are not able to synthesize all essential amino acids. While Echinoderms are basal deuterostomes that share a large genetic similarity with vertebrates, their digestion physiology remains largely unexplored. Using a genetic approach, this work demonstrated that several protease genes including an enteropeptidase, aminopeptidase, carboxypeptidase and trypsin involved in mammalian digestive networks are also found in sea urchin larvae. Through characterization including perturbation experiments with different food treatments and pharmacological inhibition of proteases using specific inhibitors, as well as transcriptomic analysis, we conclude that the trypsin-2 gene codes for a crucial enzyme for protein digestion in Strongylocentrotus purpuratus. Measurements of in vivo digestion rates in the transparent sea urchin larva were not altered by pharmacological inhibition of trypsin (using soybean trypsin inhibitor) or serine proteases (aprotinin), suggesting that proteases are not critically involved in the initial step of microalgal breakdown. This work provides new insights into the digestive physiology of a basal deuterostome and allows comparisons from the molecular to the functional level in the digestive systems of vertebrates and mammals. This knowledge will contribute to a better understanding for conserved digestive mechanisms that evolved in close interaction with their biotic and abiotic environment.
Collapse
Affiliation(s)
- Jasper Hildebrand
- Zoological Institute, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - William W Chang
- Institute of Physiology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Marian Y Hu
- Institute of Physiology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Meike Stumpp
- Zoological Institute, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
3
|
Satake H. Kobayashi Award 2021: Neuropeptides, receptors, and follicle development in the ascidian, Ciona intestinalis Type A: New clues to the evolution of chordate neuropeptidergic systems from biological niches. Gen Comp Endocrinol 2023; 337:114262. [PMID: 36925021 DOI: 10.1016/j.ygcen.2023.114262] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Ciona intestinalis Type A (Ciona robusta) is a cosmopolitan species belonging to the phylum Urochordata, invertebrate chordates that are phylogenetically the most closely related to the vertebrates. Therefore, this species is of interest for investigation of the evolution and comparative physiology of endocrine, neuroendocrine, and nervous systems in chordates. Our group has identified>30 Ciona neuropeptides (80% of all identified ascidian neuropeptides) primarily using peptidomic approaches combined with reference to genome sequences. These neuropeptides are classified into two groups: homologs or prototypes of vertebrate neuropeptides and novel (Ciona-specific) neuropeptides. We have also identified the cognate receptors for these peptides. In particular, we elucidated multiple receptors for Ciona-specific neuropeptides by a combination of a novel machine learning system and experimental validation of the specific interaction of the predicted neuropeptide-receptor pairs, and verified unprecedented phylogenies of receptors for neuropeptides. Moreover, several neuropeptides were found to play major roles in the regulation of ovarian follicle development. Ciona tachykinin facilitates the growth of vitellogenic follicles via up-regulation of the enzymatic activities of proteases. Ciona vasopressin stimulates oocyte maturation and ovulation via up-regulation of maturation-promoting factor- and matrix metalloproteinase-directed collagen degradation, respectively. Ciona cholecystokinin also triggers ovulation via up-regulation of receptor tyrosine kinase signaling and the subsequent activation of matrix metalloproteinase. These studies revealed that the neuropeptidergic system plays major roles in ovarian follicle growth, maturation, and ovulation in Ciona, thus paving the way for investigation of the biological roles for neuropeptides in the endocrine, neuroendocrine, nervous systems of Ciona, and studies of the evolutionary processes of various neuropeptidergic systems in chordates.
Collapse
Affiliation(s)
- Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan.
| |
Collapse
|
4
|
Paganos P, Ronchi P, Carl J, Mizzon G, Martinez P, Benvenuto G, Arnone MI. Integrating single cell transcriptomics and volume electron microscopy confirms the presence of pancreatic acinar-like cells in sea urchins. Front Cell Dev Biol 2022; 10:991664. [PMID: 36060803 PMCID: PMC9437490 DOI: 10.3389/fcell.2022.991664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023] Open
Abstract
The identity and function of a given cell type relies on the differential expression of gene batteries that promote diverse phenotypes and functional specificities. Therefore, the identification of the molecular and morphological fingerprints of cell types across taxa is essential for untangling their evolution. Here we use a multidisciplinary approach to identify the molecular and morphological features of an exocrine, pancreas-like cell type harbored within the sea urchin larval gut. Using single cell transcriptomics, we identify various cell populations with a pancreatic-like molecular fingerprint that are enriched within the S. purpuratus larva digestive tract. Among these, in the region where they reside, the midgut/stomach domain, we find that populations of exocrine pancreas-like cells have a unique regulatory wiring distinct from the rest the of the cell types of the same region. Furthermore, Serial Block-face scanning Electron Microscopy (SBEM) of the exocrine cells shows that this reported molecular diversity is associated to distinct morphological features that reflect the physiological and functional properties of this cell type. Therefore, we propose that these sea urchin exocrine cells are homologous to the well-known mammalian pancreatic acinar cells and thus we trace the origin of this particular cell type to the time of deuterostome diversification. Overall, our approach allows a thorough characterization of a complex cell type and shows how both the transcriptomic and morphological information contribute to disentangling the evolution of cell types and organs such as the pancreatic cells and pancreas.
Collapse
Affiliation(s)
| | - Paolo Ronchi
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jil Carl
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Giulia Mizzon
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Pedro Martinez
- Institut Català de Recerca i Estudis Avancats (ICREA), Barcelona, Spain,Genetics Department, University of Barcelona, Barcelona, Spain
| | | | - Maria Ina Arnone
- Stazione Zoologica Anton Dohrn (SZN), Naples, Italy,*Correspondence: Maria Ina Arnone,
| |
Collapse
|
5
|
Cionin, a vertebrate cholecystokinin/gastrin homolog, induces ovulation in the ascidian Ciona intestinalis type A. Sci Rep 2021; 11:10911. [PMID: 34035343 PMCID: PMC8149874 DOI: 10.1038/s41598-021-90295-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023] Open
Abstract
Cionin is a homolog of vertebrate cholecystokinin/gastrin that has been identified in the ascidian Ciona intestinalis type A. The phylogenetic position of ascidians as the closest living relatives of vertebrates suggests that cionin can provide clues to the evolution of endocrine/neuroendocrine systems throughout chordates. Here, we show the biological role of cionin in the regulation of ovulation. In situ hybridization demonstrated that the mRNA of the cionin receptor, Cior2, was expressed specifically in the inner follicular cells of pre-ovulatory follicles in the Ciona ovary. Cionin was found to significantly stimulate ovulation after 24-h incubation. Transcriptome and subsequent Real-time PCR analyses confirmed that the expression levels of receptor tyrosine kinase (RTK) signaling genes and a matrix metalloproteinase (MMP) gene were significantly elevated in the cionin-treated follicles. Of particular interest is that an RTK inhibitor and MMP inhibitor markedly suppressed the stimulatory effect of cionin on ovulation. Furthermore, inhibition of RTK signaling reduced the MMP gene expression in the cionin-treated follicles. These results provide evidence that cionin induces ovulation by stimulating MMP gene expression via the RTK signaling pathway. This is the first report on the endogenous roles of cionin and the induction of ovulation by cholecystokinin/gastrin family peptides in an organism.
Collapse
|
6
|
The ventral peptidergic system of the adult ascidian Ciona robusta (Ciona intestinalis Type A) insights from a transgenic animal model. Sci Rep 2020; 10:1892. [PMID: 32024913 PMCID: PMC7002689 DOI: 10.1038/s41598-020-58884-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Ascidians are the sister group of vertebrates and occupy a critical position in explorations of the evolution of the endocrine and nervous systems of chordates. Here, we describe the complete ventral peptidergic system in adult transgenic Ciona robusta (Ciona intestinalis Type A) which expresses the Kaede reporter gene driven by the prohormone convertase 2 (PC2) gene promoter. Numerous PC2 promoter-driven fluorescent (Kaede-positive) non-neural cells were distributed in the blood sinus located at the anterior end of the pharynx, suggesting the acquisition of a peptidergic circulatory system in Ciona. Kaede-positive ciliated columnar cells, rounded cells, and tall ciliated cells were observed in the alimentary organs, including the endostyle, pharynx, esophagus, stomach, and intestine, suggesting that digestive functions are regulated by multiple peptidergic systems. In the heart, Kaede-positive neurons were located in the ring-shaped plexus at both ends of the myocardium. Nerve fiber-like tracts ran along the raphe and appeared to be connected with the plexuses. Such unique structures suggest a role for the peptidergic system in cardiac function. Collectively, the present anatomic analysis revealed the major framework of the ventral peptidergic system of adult Ciona, which could facilitate investigations of peptidergic regulation of the pharynx, endostyle, alimentary tissues, and heart.
Collapse
|
7
|
Annunziata R, Andrikou C, Perillo M, Cuomo C, Arnone MI. Development and evolution of gut structures: from molecules to function. Cell Tissue Res 2019; 377:445-458. [PMID: 31446445 DOI: 10.1007/s00441-019-03093-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022]
Abstract
The emergence of a specialized system for food digestion and nutrient absorption was a crucial innovation for multicellular organisms. Digestive systems with different levels of complexity evolved in different animals, with the endoderm-derived one-way gut of most bilaterians to be the prevailing and more specialized form. While the molecular events regulating the early phases of embryonic tissue specification have been deeply investigated in animals occupying different phylogenetic positions, the mechanisms underlying gut patterning and gut-associated structures differentiation are still mostly obscure. In this review, we describe the main discoveries in gut and gut-associated structures development in echinoderm larvae (mainly for sea urchin and, when available, for sea star) and compare them with existing information in vertebrates. An impressive degree of conservation emerges when comparing the transcription factor toolkits recruited for gut cells and tissue differentiation in animals as diverse as echinoderms and vertebrates, thus suggesting that their function emerged in the deuterostome ancestor.
Collapse
Affiliation(s)
- Rossella Annunziata
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy
| | - Carmen Andrikou
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Margherita Perillo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting St, Providence, RI, 02912, USA
| | - Claudia Cuomo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy
| | - Maria I Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy.
| |
Collapse
|
8
|
Nakayama S, Sekiguchi T, Ogasawara M. Molecular and evolutionary aspects of the protochordate digestive system. Cell Tissue Res 2019; 377:309-320. [PMID: 31049686 DOI: 10.1007/s00441-019-03035-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/12/2019] [Indexed: 02/03/2023]
Abstract
The digestive system is a functional unit consisting of an endodermal tubular structure (alimentary canal) and accessory organs that function in nutrition processing in most triploblastic animals. Various morphologies and apparatuses are formed depending on the phylogenetical relationship and food habits of the specific species. Nutrition processing and morphogenesis of the alimentary canal and accessory organs have both been investigated in vertebrates, mainly humans and mammals. When attempting to understand the evolutionary processes that led to the vertebrate digestive system, however, it is useful to examine other chordates, specifically protochordates, which share fundamental functional and morphogenetic molecules with vertebrates, which also possess non-duplicated genomes. In protochordates, basic anatomical and physiological studies have mainly described the characteristic traits of suspension feeders. Recent progress in genome sequencing has allowed researchers to comprehensively detail protochordate genes and has compared the genetic backgrounds among chordate nutrition processing and alimentary canal/accessory organ systems based on genomic information. Gene expression analyses have revealed spatiotemporal gene expression profiles in protochordate alimentary canals. Additionally, to investigate the basis of morphological diversity in the chordate alimentary canal and accessory organs, evolutionary developmental research has examined developmental transcription factors related to morphogenesis and anterior-posterior pattering of the alimentary canal and accessory organs. In this review, we summarize the current knowledge of molecules involved in nutrition processing and the development of the alimentary canal and accessory organs with innate immune and endocrine roles in protochordates and we explore the molecular basis for understanding the evolution of the chordate digestive system.
Collapse
Affiliation(s)
- Satoshi Nakayama
- The Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Toshio Sekiguchi
- The Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Hosu-gun, Ishikawa, 927-0553, Japan
| | - Michio Ogasawara
- The Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
9
|
Cherif--Feildel M, Berthelin CH, Rivière G, Favrel P, Kellner K. Data for evolutive analysis of insulin related peptides in bilaterian species. Data Brief 2019; 22:546-550. [PMID: 30627605 PMCID: PMC6321970 DOI: 10.1016/j.dib.2018.12.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 01/05/2023] Open
Abstract
In bilaterian species, the amino acid sequence conservation between Insulin related peptides is relatively low except for the cysteine residues involved in the disulphide bonds. In the A chain, the conserved cystein residues are included in a signature motif. Investigating the variations in this motif would give insight into the phylogenetic history of the family. The table presented in this paper contains a large set of insulin-related peptides in bilateral phylogenetic groups (deuterostomian, ecdysozoan, lophotrochozoan). NCBI databases in silico wide screening combined with bibliographic researches provided a framework for identifying and categorising the structural characteristics of these insulin related peptides. The dataset includes NCBI IDs of each sequence with hyperlinks to FASTA format. Moreover, the structural type (α, β or γ), the A chain motif, the total number of cysteins, the C peptide cleavage mode and the potential additional domains (D or E) are specified for each sequence. The data are associated with the research article "Molecular evolution and functional characterisation of insulin-related peptides in molluscs: contributions of Crassostrea gigas genomic and transcriptomic-wide screening" [1]. The table presented here can be found at http://dx.doi.org/10.17632/w4gr8zcpk5.4#file-21c0f6a5-a3e3-4a15-86e0-e5a696458866.
Collapse
Affiliation(s)
| | | | | | | | - Kristell Kellner
- Normandy University, Caen, France. University of Caen Normandie, Unity Biology of Organisms and Aquatic Ecosystems (BOREA), MNHN, Sorbonne University, UCN, CNRS, IRD, Esplanade de la Paix, 14032 Caen, France
| |
Collapse
|
10
|
Cherif-Feildel M, Heude Berthelin C, Adeline B, Rivière G, Favrel P, Kellner K. Molecular evolution and functional characterisation of insulin related peptides in molluscs: Contributions of Crassostrea gigas genomic and transcriptomic-wide screening. Gen Comp Endocrinol 2019; 271:15-29. [PMID: 30389328 DOI: 10.1016/j.ygcen.2018.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022]
Abstract
Insulin Related Peptides (IRPs) belong to the insulin superfamily and possess a typical structure with two chains, B and A, linked by disulphide bonds. As the sequence conservation is usually low between members, IRPs are classified according to the number and position of their disulphide bonds. In molluscan species, the first IRPs identified, named Molluscan Insulin-related Peptides (MIPs), exhibit four disulphide bonds. The genomic and transcriptomic data screening in the Pacific oyster Crassostrea gigas (Mollusc, Bivalvia) allowed us to identify six IRP sequences belonging to three structural groups. Cg-MIP1 to 4 have the typical structure of MIPs with four disulphide bonds. Cg-ILP has three disulphide bonds like vertebrate Insulin-Like Peptides (ILPs). The last one, Cg-MILP7 has a significant homology with Drosophila ILP7 (DILP7) associated with two additional cysteines allowing the formation of a fourth disulphide bond. The phylogenetic analysis points out that ILPs may be the most ancestral form. Moreover, it appears that ILP7 orthologs are probably anterior to lophotrochozoa and ecdysozoa segregation. In order to investigate the diversity of physiological functions of the oyster IRPs, we combine in silico expression data, qPCR measurements and in situ hybridization. The Cg-ilp transcript, mainly detected in the digestive gland and in the gonadal area, is potentially involved in the control of digestion and gametogenesis. The expression of Cg-mip4 is mainly associated with the larval development. The Cg-mip transcript shared by the Cg-MIP1, 2 and 3, is mainly expressed in visceral ganglia but its expression was also observed in the gonads of mature males. This pattern suggested the key roles of IRPs in the control of sexual reproduction in molluscan species.
Collapse
Affiliation(s)
- Maëva Cherif-Feildel
- Normandy University, Caen, France; University of Caen Normandie, Unity Biology of Organisms and Aquatic Ecosystems (BOREA), MNHN, Sorbonne University, UCN, CNRS, IRD, Esplanade de la Paix, 14032 Caen, France
| | - Clothilde Heude Berthelin
- Normandy University, Caen, France; University of Caen Normandie, Unity Biology of Organisms and Aquatic Ecosystems (BOREA), MNHN, Sorbonne University, UCN, CNRS, IRD, Esplanade de la Paix, 14032 Caen, France
| | - Beatrice Adeline
- Normandy University, Caen, France; University of Caen Normandie, Unity Biology of Organisms and Aquatic Ecosystems (BOREA), MNHN, Sorbonne University, UCN, CNRS, IRD, Esplanade de la Paix, 14032 Caen, France
| | - Guillaume Rivière
- Normandy University, Caen, France; University of Caen Normandie, Unity Biology of Organisms and Aquatic Ecosystems (BOREA), MNHN, Sorbonne University, UCN, CNRS, IRD, Esplanade de la Paix, 14032 Caen, France
| | - Pascal Favrel
- Normandy University, Caen, France; University of Caen Normandie, Unity Biology of Organisms and Aquatic Ecosystems (BOREA), MNHN, Sorbonne University, UCN, CNRS, IRD, Esplanade de la Paix, 14032 Caen, France
| | - Kristell Kellner
- Normandy University, Caen, France; University of Caen Normandie, Unity Biology of Organisms and Aquatic Ecosystems (BOREA), MNHN, Sorbonne University, UCN, CNRS, IRD, Esplanade de la Paix, 14032 Caen, France.
| |
Collapse
|
11
|
Perillo M, Paganos P, Mattiello T, Cocurullo M, Oliveri P, Arnone MI. New Neuronal Subtypes With a "Pre-Pancreatic" Signature in the Sea Urchin Stongylocentrotus purpuratus. Front Endocrinol (Lausanne) 2018; 9:650. [PMID: 30450080 PMCID: PMC6224346 DOI: 10.3389/fendo.2018.00650] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/16/2018] [Indexed: 11/24/2022] Open
Abstract
Neurons and pancreatic endocrine cells have a common physiology and express a similar toolkit of transcription factors during development. To explain these common features, it has been hypothesized that pancreatic cells most likely co-opted a pre-existing gene regulatory program from ancestral neurons. To test this idea, we looked for neurons with a "pre-pancreatic" program in an early-branched deuterostome, the sea urchin. Only vertebrates have a proper pancreas, however, our lab previously found that cells with a pancreatic-like signature are localized within the sea urchin embryonic gut. We also found that the pancreatic transcription factors Xlox/Pdx1 and Brn1/2/4 co-localize in a sub-population of ectodermal cells. Here, we find that the ectodermal SpLox+ SpBrn1/2/4 cells are specified as SpSoxC and SpPtf1a neuronal precursors that become the lateral ganglion and the apical organ neurons. Two of the SpLox+ SpBrn1/2/4 cells also express another pancreatic transcription factor, the LIM-homeodomain gene islet-1. Moreover, we find that SpLox neurons produce the neuropeptide SpANP2, and that SpLox regulates SpANP2 expression. Taken together, our data reveal that there is a subset of sea urchin larval neurons with a gene program that predated pancreatic cells. These findings suggest that pancreatic endocrine cells co-opted a regulatory signature from an ancestral neuron that was already present in an early-branched deuterostome.
Collapse
Affiliation(s)
| | | | - Teresa Mattiello
- Centre For Life's Origins and Evolution, University College London, London, United Kingdom
| | | | - Paola Oliveri
- Centre For Life's Origins and Evolution, University College London, London, United Kingdom
| | | |
Collapse
|
12
|
The nervous system of the adult ascidian Ciona intestinalis Type A (Ciona robusta): Insights from transgenic animal models. PLoS One 2017. [PMID: 28651020 PMCID: PMC5484526 DOI: 10.1371/journal.pone.0180227] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The nervous system of ascidians is an excellent model system to provide insights into the evolutionary process of the chordate nervous system due to their phylogenetic positions as the sister group of vertebrates. However, the entire nervous system of adult ascidians has yet to be functionally and anatomically investigated. In this study, we have revealed the whole dorsal and siphon nervous system of the transgenic adult ascidian of Ciona intestinalis Type A (Ciona robusta) in which a Kaede reporter gene is expressed in a pan-neuronal fashion. The fluorescent signal of Kaede revealed the innervation patterns and distribution of neurons in the nervous system of Ciona. Precise microscopic observation demonstrated the clear innervation of the anterior and posterior main nerves to eight and six lobes of the oral and atrial siphons, respectively. Moreover, visceral nerves, previously identified as unpaired nerves, were found to be paired; one nerve was derived from the posterior end of the cerebral ganglion and the other from the right posterior nerve. This study further revealed the full trajectory of the dorsal strand plexus and paired visceral nerves on either side from the cerebral ganglion to the ovary, and precise innervation between the cerebral ganglion and the peripheral organs including the gonoduct, cupular organ, rectum and ovary. The differential innervation patterns of visceral nerves and the dorsal strand plexus indicate that the peripheral organs including the ovary undergo various neural regulations. Collectively, the present anatomical analysis revealed the major innervation of the dorsal and siphon nervous systems of adult Ciona.
Collapse
|
13
|
Matsubara S, Kawada T, Sakai T, Aoyama M, Osugi T, Shiraishi A, Satake H. The significance of Ciona intestinalis as a stem organism in integrative studies of functional evolution of the chordate endocrine, neuroendocrine, and nervous systems. Gen Comp Endocrinol 2016; 227:101-8. [PMID: 26031189 DOI: 10.1016/j.ygcen.2015.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/13/2015] [Accepted: 05/16/2015] [Indexed: 11/19/2022]
Abstract
Ascidians are the closest phylogenetic neighbors to vertebrates and are believed to conserve the evolutionary origin in chordates of the endocrine, neuroendocrine, and nervous systems involving neuropeptides and peptide hormones. Ciona intestinalis harbors various homologs or prototypes of vertebrate neuropeptides and peptide hormones including gonadotropin-releasing hormones (GnRHs), tachykinins (TKs), and calcitonin, as well as Ciona-specific neuropeptides such as Ciona vasopressin, LF, and YFV/L peptides. Moreover, molecular and functional studies on Ciona tachykinin (Ci-TK) have revealed the novel molecular mechanism of inducing oocyte growth via up-regulation of vitellogenesis-associated protease activity, which is expected to be conserved in vertebrates. Furthermore, a series of studies on Ciona GnRH receptor paralogs have verified the species-specific regulation of GnRHergic signaling including unique signaling control via heterodimerization among multiple GnRH receptors. These findings confirm the remarkable significance of ascidians in investigations of the evolutionary processes of the peptidergic systems in chordates, leading to the promising advance in the research on Ciona peptides in the next stage based on the recent development of emerging technologies including genome-editing techniques, peptidomics-based multi-color staining, machine-learning prediction, and next-generation sequencing. These technologies and bioinformatic integration of the resultant "multi-omics" data will provide unprecedented insights into the comprehensive understanding of molecular and functional regulatory mechanisms of the Ciona peptides, and will eventually enable the exploration of both conserved and diversified endocrine, neuroendocrine, and nervous systems in the evolutionary lineage of chordates.
Collapse
Affiliation(s)
- Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Tsubasa Sakai
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Masato Aoyama
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Kitauoyahigashi-machi, Nara 630-8506, Japan
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan.
| |
Collapse
|
14
|
Abdul-Wajid S, Morales-Diaz H, Khairallah SM, Smith WC. T-type Calcium Channel Regulation of Neural Tube Closure and EphrinA/EPHA Expression. Cell Rep 2015; 13:829-839. [PMID: 26489462 DOI: 10.1016/j.celrep.2015.09.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/06/2015] [Accepted: 09/11/2015] [Indexed: 10/22/2022] Open
Abstract
A major class of human birth defects arise from aberrations during neural tube closure (NTC). We report on a NTC signaling pathway requiring T-type calcium channels (TTCCs) that is conserved between primitive chordates (Ciona) and Xenopus. With loss of TTCCs, there is a failure to seal the anterior neural folds. Accompanying loss of TTCCs is an upregulation of EphrinA effectors. Ephrin signaling is known to be important in NTC, and ephrins can affect both cell adhesion and repulsion. In Ciona, ephrinA-d expression is downregulated at the end of neurulation, whereas, with loss of TTCC, ephrinA-d remains elevated. Accordingly, overexpression of ephrinA-d phenocopied TTCC loss of function, while overexpression of a dominant-negative Ephrin receptor was able to rescue NTC in a Ciona TTCC mutant. We hypothesize that signaling through TTCCs is necessary for proper anterior NTC through downregulation of ephrins, and possibly elimination of a repulsive signal.
Collapse
Affiliation(s)
- Sarah Abdul-Wajid
- Department of Molecular, Cell and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Heidi Morales-Diaz
- Department of Molecular, Cell and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Stephanie M Khairallah
- Department of Molecular, Cell and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - William C Smith
- Department of Molecular, Cell and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
15
|
Yegorov S, Bogerd J, Good SV. The relaxin family peptide receptors and their ligands: new developments and paradigms in the evolution from jawless fish to mammals. Gen Comp Endocrinol 2014; 209:93-105. [PMID: 25079565 DOI: 10.1016/j.ygcen.2014.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 07/01/2014] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
Relaxin family peptide receptors (Rxfps) and their ligands, relaxin (Rln) and insulin-like (Insl) peptides, are broadly implicated in the regulation of reproductive and neuroendocrine processes in mammals. Most placental mammals harbour genes for four receptors, namely rxfp1, rxfp2, rxfp3 and rxfp4. The number and identity of rxfps in other vertebrates are immensely variable, which is probably attributable to intraspecific variation in reproductive and neuroendocrine regulation. Here, we highlight several interesting, but greatly overlooked, aspects of the rln/insl-rxfp evolutionary history: the ancient origin, recruitment of novel receptors, diverse roles of selection, differential retention and lineage-specific loss of genes over evolutionary time. The tremendous diversity of rln/insl and rxfp genes appears to have arisen from two divergent receptors and one ligand that were duplicated by whole genome duplications (WGD) in early vertebrate evolution, although several genes, notably relaxin in mammals, were also duplicated via small scale duplications. Duplication and loss of genes have varied across lineages: teleosts retained more WGD-derived genes, dominated by those thought to be involved in neuroendocrine regulation (rln3, insl5 and rxfp 3/4 genes), while eutherian mammals witnessed the diversification and rapid evolution of genes involved in reproduction (rln/insl3). Several genes that arose early in evolutionary history were lost in most mammals, but retained in teleosts and, to a lesser extent, in early diverging tetrapods. To elaborate on their evolutionary history, we provide updated phylogenies of the Rxfp1/2 and Rxfp3/4 receptors and their ligands, including new sequences from early diverging vertebrate taxa such as coelacanth, skate, spotted gar, and lamprey. We also summarize the recent progress made towards understanding the functional biology of Rxfps in non-mammalian taxa, providing a new conceptual framework for research on Rxfp signaling across vertebrates.
Collapse
Affiliation(s)
- Sergey Yegorov
- Department of Biology, University of Winnipeg, 599 Portage Ave., Winnipeg, MB, Canada
| | - Jan Bogerd
- Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sara V Good
- Department of Biology, University of Winnipeg, 599 Portage Ave., Winnipeg, MB, Canada.
| |
Collapse
|
16
|
Thompson JM, Di Gregorio A. Insulin-like genes in ascidians: findings in Ciona and hypotheses on the evolutionary origins of the pancreas. Genesis 2014; 53:82-104. [PMID: 25378051 DOI: 10.1002/dvg.22832] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 10/13/2014] [Accepted: 10/16/2014] [Indexed: 12/22/2022]
Abstract
Insulin plays an extensively characterized role in the control of sugar metabolism, growth and homeostasis in a wide range of organisms. In vertebrate chordates, insulin is mainly produced by the beta cells of the endocrine pancreas, while in non-chordate animals insulin-producing cells are mainly found in the nervous system and/or scattered along the digestive tract. However, recent studies have indicated the notochord, the defining feature of the chordate phylum, as an additional site of expression of insulin-like peptides. Here we show that two of the three insulin-like genes identified in Ciona intestinalis, an invertebrate chordate with a dual life cycle, are first expressed in the developing notochord during embryogenesis and transition to distinct areas of the adult digestive tract after metamorphosis. In addition, we present data suggesting that the transcription factor Ciona Brachyury is involved in the control of notochord expression of at least one of these genes, Ciona insulin-like 2. Finally, we review the information currently available on insulin-producing cells in ascidians and on pancreas-related transcription factors that might control their expression.
Collapse
Affiliation(s)
- Jordan M Thompson
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York
| | | |
Collapse
|
17
|
Perillo M, Arnone MI. Characterization of insulin-like peptides (ILPs) in the sea urchin Strongylocentrotus purpuratus: insights on the evolution of the insulin family. Gen Comp Endocrinol 2014; 205:68-79. [PMID: 24971803 DOI: 10.1016/j.ygcen.2014.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 06/10/2014] [Accepted: 06/15/2014] [Indexed: 11/21/2022]
Abstract
The evolutionary history of the insulin-like peptides (ILPs), members of the insulin family, is still a matter of debate. Although ILPs structure and expression have been described in different metazoans, little is known about these molecules in non-chordate deuterostomes, such as the echinoderms. In order to fill this gap in the current literature, we have characterized two members of the insulin family found in the sea urchin Strongylocentrotus purpuratus genome (SpIgf1 and SpIgf2 that, after our analysis, we suggest to rename SpILP1 and SpILP2, respectively) together with their putative receptor (SpInsr). We found that SpILP1 gene structure is more similar to the cephalochordate amphioxus ILP, while the SpILP2 gene shows a completely different organization. In addition, we have revealed that SpILP1 and SpILP2 transcripts are expressed in different compartments during embryo/larva development and that the SpILP1 protein mature form differs in the egg and the larva, suggesting different biological roles. Finally, we have analyzed SpILP1 transcript and protein expression in response to different feeding regimes through real-time quantitative PCR, Western blot and immunohistochemistry methodologies, and found that its expression and localization are feeding-dependent. We discuss our findings in a comparative evolutionary perspective including data available in other animal models and provide new insights into the evolution of the insulin family molecules. In the model we put forward, the last common ancestor of all deuterostomes presented an ILP composed of the B-C-A-D-E domains, and successive lineage specific independent gene duplication events resulted in the presence of several ILPs in vertebrates and in echinoderms.
Collapse
Affiliation(s)
- Margherita Perillo
- Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Maria Ina Arnone
- Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Napoli, Italy.
| |
Collapse
|
18
|
Idris MM, Thorndyke MC, Brown ER. Evidence for dynamic and multiple roles for huntingtin in Ciona intestinalis. INVERTEBRATE NEUROSCIENCE 2014; 13:151-65. [PMID: 23797324 DOI: 10.1007/s10158-013-0158-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/12/2013] [Indexed: 11/29/2022]
Abstract
Although mutations in the huntingtin gene (HTT) due to poly-Q expansion cause neuropathology in humans (Huntington’s disease; HD), the normal function(s) of the gene and its protein (HTT) remain obscure. With new information from recently sequenced invertebrate genomes, the study of new animal models opens the possibility of a better understanding of HTT function and its evolution. To these ends, we studied huntingtin expression pattern and dynamics in the invertebrate chordate Ciona intestinalis. Ciona huntingtin (Ci-HTT) shows a biphasic expression pattern during larval development and prior to metamorphosis. A single form of huntingtin protein is present until the early larval stages, at which time two different mass proteins become evident in the metamorphically competent larva. An antibody against Ci-HTT labeled 50 cells in the trunk mesenchyme regions in pre-hatching and hatched larvae and probably represents the distribution of the light form of the protein. Dual labeling with anti-Ci-HTT and anti-aldoketoreductase confirmed the presence of Ci-HTT in mesenchyme cells. Suppression of Ci-HTT RNA by a morpholino oligonucleotide reduced the number and apparent mobility of Ci-HTT positive cells. In Ciona, HTT expression has a dynamic temporal and spatial expression pattern that in ontogeny precedes metamorphosis. Although our results may reflect a derived function for the protein in pre- and post-metamorphic events in Ciona, we also note that as in vertebrates, there is evidence for multiple differential temporal expression, indicating that this protein probably has multiple roles in ontogeny and cell migration.
Collapse
|
19
|
Exploiting the extraordinary genetic polymorphism of ciona for developmental genetics with whole genome sequencing. Genetics 2014; 197:49-59. [PMID: 24532781 DOI: 10.1534/genetics.114.161778] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Studies in tunicates such as Ciona have revealed new insights into the evolutionary origins of chordate development. Ciona populations are characterized by high levels of natural genetic variation, between 1 and 5%. This variation has provided abundant material for forward genetic studies. In the current study, we make use of deep sequencing and homozygosity mapping to map spontaneous mutations in outbred populations. With this method we have mapped two spontaneous developmental mutants. In Ciona intestinalis we mapped a short-tail mutation with strong phenotypic similarity to a previously identified mutant in the related species Ciona savignyi. Our bioinformatic approach mapped the mutation to a narrow interval containing a single mutated gene, α-laminin3,4,5, which is the gene previously implicated in C. savignyi. In addition, we mapped a novel genetic mutation disrupting neural tube closure in C. savignyi to a T-type Ca(2+) channel gene. The high efficiency and unprecedented mapping resolution of our study is a powerful advantage for developmental genetics in Ciona, and may find application in other outbred species.
Collapse
|
20
|
Wang S, Luo X, Zhang S, Yin C, Dou Y, Cai X. Identification of putative insulin-like peptides and components of insulin signaling pathways in parasitic platyhelminths by the use of genome-wide screening. FEBS J 2013; 281:877-93. [PMID: 24286276 DOI: 10.1111/febs.12655] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/31/2013] [Accepted: 11/21/2013] [Indexed: 11/28/2022]
Abstract
No endogenous insulin-like peptides in parasitic flatworms have been reported. Insulin receptors from flukes and tapeworms have been shown to interact directly with the host-derived insulin molecule, which suggests the exploitation of host-derived insulin. In this study, a strategy of genome-wide searches followed by comprehensive analyses of strictly conserved features of the insulin family was used to demonstrate the presence of putative insulin-like peptides in the genomes of six tapeworms and two flukes. In addition, whole insulin signaling pathways were annotated on a genome-wide scale. Two putative insulin-like peptide genes in each genome of tapeworms and one insulin-like peptide gene in each genome of flukes were identified. The comprehensive analyses revealed that all of these peptides showed the common features shared by other members of the insulin family, and the phylogenetic analysis implied a putative gene duplication event in the Cestoda during the evolution of insulin-like peptide genes. The quantitative expression analysis and immunolocalization results suggested a putative role of these peptides in reproduction. Entire sets of major components of the classic insulin signaling pathway were successfully identified, suggesting that this pathway in parasitic flatworms might also regulate many other important biological activities. We believe that the identification of the insulin-like peptides gives us a better understanding of the insulin signaling pathway in these parasites, as well as host-parasite interactions.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | | | | | | | | | | |
Collapse
|
21
|
Lugo JM, Carpio Y, Morales R, Rodríguez-Ramos T, Ramos L, Estrada MP. First report of the pituitary adenylate cyclase activating polypeptide (PACAP) in crustaceans: conservation of its functions as growth promoting factor and immunomodulator in the white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1788-1796. [PMID: 24036332 DOI: 10.1016/j.fsi.2013.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/02/2013] [Accepted: 08/30/2013] [Indexed: 06/02/2023]
Abstract
The high conservation of the pituitary adenylate cyclase activating polypeptide (PACAP) sequence indicates that this peptide fulfills important biological functions in a broad spectrum of organisms. However, in invertebrates, little is known about its presence and its functions remain unclear. Up to now, in non-mammalian vertebrates, the majority of studies on PACAP have focused mainly on the localization, cloning and structural evolution of this peptide. As yet, little is known about its biological functions as growth factor and immunomodulator in lower vertebrates. Recently, we have shown that PACAP, apart from its neuroendocrine role, influences immune functions in larval and juvenile fish. In this work, we isolated for the first time the cDNA encoding the mature PACAP from a crustacean species, the white shrimp Litopenaeus vannamei, corroborating its high degree of sequence conservation, when compared to sequences reported from tunicates to mammalian vertebrates. Based on this, we have evaluated the effects of purified recombinant Clarias gariepinus PACAP administrated by immersion baths on white shrimp growth and immunity. We demonstrated that PACAP improves hemocyte count, superoxide dismutase, lectins and nitric oxide synthase derived metabolites in treated shrimp related with an increase in total protein concentration and growth performance. From our results, PACAP acts as a regulator of shrimp growth and immunity, suggesting that in crustaceans, as in vertebrate organisms, PACAP is an important molecule shared by both the endocrine and the immune systems.
Collapse
Affiliation(s)
- Juana María Lugo
- Aquatic Biotechnology Project, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| | | | | | | | | | | |
Collapse
|
22
|
Fiengo M, Donizetti A, del Gaudio R, Minucci S, Aniello F. Characterization, cDNA cloning and expression pattern of relaxin gene during embryogenesis of Danio rerio. Dev Growth Differ 2012; 54:579-87. [DOI: 10.1111/j.1440-169x.2012.01361.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 05/04/2012] [Accepted: 05/06/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Marcella Fiengo
- Department of Biological Sciences; University of Naples Federico II; Via Mezzocannone 8; 80134; Napoli; Italy
| | - Aldo Donizetti
- Department of Biological Sciences; University of Naples Federico II; Via Mezzocannone 8; 80134; Napoli; Italy
| | - Rosanna del Gaudio
- Department of Biological Sciences; University of Naples Federico II; Via Mezzocannone 8; 80134; Napoli; Italy
| | - Sergio Minucci
- Department of Experimental Medicine; Second University of Naples; Via Costantinopoli 16; 80138; Napoli; Italy
| | - Francesco Aniello
- Department of Biological Sciences; University of Naples Federico II; Via Mezzocannone 8; 80134; Napoli; Italy
| |
Collapse
|
23
|
Yegorov S, Good S. Using paleogenomics to study the evolution of gene families: origin and duplication history of the relaxin family hormones and their receptors. PLoS One 2012; 7:e32923. [PMID: 22470432 PMCID: PMC3310001 DOI: 10.1371/journal.pone.0032923] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/05/2012] [Indexed: 11/28/2022] Open
Abstract
Recent progress in the analysis of whole genome sequencing data has resulted in the emergence of paleogenomics, a field devoted to the reconstruction of ancestral genomes. Ancestral karyotype reconstructions have been used primarily to illustrate the dynamic nature of genome evolution. In this paper, we demonstrate how they can also be used to study individual gene families by examining the evolutionary history of relaxin hormones (RLN/INSL) and relaxin family peptide receptors (RXFP). Relaxin family hormones are members of the insulin superfamily, and are implicated in the regulation of a variety of primarily reproductive and neuroendocrine processes. Their receptors are G-protein coupled receptors (GPCR's) and include members of two distinct evolutionary groups, an unusual characteristic. Although several studies have tried to elucidate the origins of the relaxin peptide family, the evolutionary origin of their receptors and the mechanisms driving the diversification of the RLN/INSL-RXFP signaling systems in non-placental vertebrates has remained elusive. Here we show that the numerous vertebrate RLN/INSL and RXFP genes are products of an ancestral receptor-ligand system that originally consisted of three genes, two of which apparently trace their origins to invertebrates. Subsequently, diversification of the system was driven primarily by whole genome duplications (WGD, 2R and 3R) followed by almost complete retention of the ligand duplicates in most vertebrates but massive loss of receptor genes in tetrapods. Interestingly, the majority of 3R duplicates retained in teleosts are potentially involved in neuroendocrine regulation. Furthermore, we infer that the ancestral AncRxfp3/4 receptor may have been syntenically linked to the AncRln-like ligand in the pre-2R genome, and show that syntenic linkages among ligands and receptors have changed dynamically in different lineages. This study ultimately shows the broad utility, with some caveats, of incorporating paleogenomics data into understanding the evolution of gene families.
Collapse
Affiliation(s)
- Sergey Yegorov
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Sara Good
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
24
|
Van Hiel MB, Vandersmissen HP, Van Loy T, Vanden Broeck J. An evolutionary comparison of leucine-rich repeat containing G protein-coupled receptors reveals a novel LGR subtype. Peptides 2012; 34:193-200. [PMID: 22100731 DOI: 10.1016/j.peptides.2011.11.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/03/2011] [Accepted: 11/03/2011] [Indexed: 10/15/2022]
Abstract
Leucine-rich repeat containing G protein-coupled receptors or LGRs are receptors with important functions in development and reproduction. Belonging to this evolutionarily conserved group of receptors are the well-studied glycoprotein hormone receptors and relaxin receptors in mammals, as well as the bursicon receptor, which triggers cuticle hardening and tanning in freshly enclosed insects. In this study, the numerous LGR sequences in different animal phyla are analyzed and compared. Based on these data a phylogenetic tree was generated. This information sheds new light on structural and evolutionary aspects regarding this receptor group. Apart from vertebrates and insects, LGRs are also present in early chordates (Urochordata, Cephalochordata and Hyperoartia) and other arthropods (Arachnida and Branchiopoda) as well as in Mollusca, Echinodermata, Hemichordata, Nematoda, and even in ancient animal life forms, such as Cnidaria and Placozoa. Three distinct types of LGR exist, distinguishable by their number of leucine-rich repeats (LRRs), their type-specific hinge region and the presence or absence of an LDLa motif. Type C LGRs containing only one LDLa (C1 subtype) appear to be present in nearly all animal phyla. We here describe a second subtype, C2, containing multiple LDLa motifs, which was discovered in echinoderms, mollusks and in one insect species (Pediculus humanis corporis). In addition, eight putative LGRs can be predicted from the genome data of the placozoan species Trichoplax adhaerens. They may represent an ancient form of the LGRs, however, more genomic data will be required to confirm this hypothesis.
Collapse
Affiliation(s)
- Matthias B Van Hiel
- Zoological Institute of the Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | |
Collapse
|
25
|
Arroyo JI, Hoffmann FG, Opazo JC. Gene turnover and differential retention in the relaxin/insulin-like gene family in primates. Mol Phylogenet Evol 2012; 63:768-76. [PMID: 22405815 DOI: 10.1016/j.ympev.2012.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 02/15/2012] [Accepted: 02/17/2012] [Indexed: 11/28/2022]
Abstract
The relaxin/insulin-like gene family is related to the insulin gene family, and includes two separate types of peptides: relaxins (RLNs) and insulin-like peptides (INSLs) that perform a variety of physiological roles including testicular descent, growth and differentiation of the mammary glands, trophoblast development, and cell differentiation. In vertebrates, these genes are found on three separate genomic loci, and in mammals, variation in the number and nature of genes in this family is mostly restricted to the Relaxin Family Locus B. For example, this locus contains a single copy of RLN in platypus and opossum, whereas it contains copies of the INSL6, INSL4, RLN2 and RLN1 genes in human and chimp. The main objective of this research is to characterize changes in the size and membership composition of the RLN/INSL gene family in primates, reconstruct the history of the RLN/INSL genes of primates, and test competing evolutionary scenarios regarding the origin of INSL4 and of the duplicated copies of the RLN gene of apes. Our results show that the relaxin/INSL-like gene family of primates has had a more dynamic evolutionary history than previously thought, including several examples of gene duplications and losses which are consistent with the predictions of the birth-and-death model of gene family evolution. In particular, we found that the differential retention of relatively old paralogs played a key role in shaping the gene complement of this family in primates. Two examples of this phenomenon are the origin of the INSL4 gene of catarrhines (the group that includes Old World monkeys and apes), and of the duplicate RLN1 and RLN2 paralogs of apes. In the case of INSL4, comparative genomics and phylogenetic analyses indicate that the origin of this gene, which was thought to represent a catarrhine-specific evolutionary innovation, is as old as the split between carnivores and primates, which took place approximately 97 million years ago. In addition, in the case of the RLN1 and RLN2 genes of apes our phylogenetic trees and topology tests indicate that the duplication that gave rise to these two genes maps to the last common ancestor of anthropoid primates. All these genomic changes in gene complement, which are particularly prevalent among anthropoid primates, might be linked to the many physiological and anatomical changes found in this group. Given the various roles of members of the RLN/INSL-like gene family in reproductive biology, it might be that changes in this gene family are associated to changes in reproductive traits.
Collapse
Affiliation(s)
- José Ignacio Arroyo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | | |
Collapse
|
26
|
Evolution of the Relaxin/Insulin-like Gene Family in Placental Mammals: Implications for Its Early Evolution. J Mol Evol 2010; 72:72-9. [DOI: 10.1007/s00239-010-9403-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 10/25/2010] [Indexed: 10/18/2022]
|
27
|
Kawada T, Sekiguchi T, Sakai T, Aoyama M, Satake H. Neuropeptides, hormone peptides, and their receptors in Ciona intestinalis: an update. Zoolog Sci 2010; 27:134-53. [PMID: 20141419 DOI: 10.2108/zsj.27.134] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The critical phylogenetic position of ascidians leads to the presumption that neuropeptides and hormones in vertebrates are highly likely to be evolutionarily conserved in ascidians, and the cosmopolitan species Ciona intestinalis is expected to be an excellent deuterostome Invertebrate model for studies on neuropeptides and hormones. Nevertheless, molecular and functional characterization of Ciona neuropeptides and hormone peptides was restricted to a few peptides such as a cholecystokinin (CCK)/gastrin peptide, cionin, and gonadotropin-releasing hormones (GnRHs). In the past few years, mass spectrometric analyses and database searches have detected Ciona orthologs or prototypes of vertebrate peptides and their receptors, including tachykinin, insulin/relaxin, calcitonin, and vasopressin. Furthermore, studies have shown that several Ciona peptides, including vasopressin and a novel GnRH-related peptide, have acquired ascidian-specific molecular forms and/or biological functions. These findings provided indisputable evidence that ascidians, unlike other invertebrates (including the traditional protostome model animals), possess neuropeptides and hormone peptides structurally and functionally related to vertebrate counterparts, and that several peptides have uniquely diverged in ascidian evolutionary lineages. Moreover, recent functional analyses of Ciona tachykinin in the ovary substantiated the novel tachykininergic protease-assoclated oocyte growth pathway, which could not have been revealed in studies on vertebrates. These findings confirm the outstanding advantages of ascidians in understanding the neuroscience, endocrinology, and evolution of vertebrate neuropeptides and hormone peptides. This article provides an overview of basic findings and reviews new knowledge on ascidian neuropeptides and hormone peptides.
Collapse
Affiliation(s)
- Tsuyoshi Kawada
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | | | | | | | | |
Collapse
|
28
|
Donizetti A, Fiengo M, Minucci S, Aniello F. Duplicated zebrafish relaxin-3 gene shows a different expression pattern from that of the co-orthologue gene. Dev Growth Differ 2009; 51:715-22. [PMID: 19780785 DOI: 10.1111/j.1440-169x.2009.01131.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Relaxin-3 (Rln3) is thought to function as a neurotransmitter mainly produced in the mammalian nucleus incertus and is involved in different neural processes; among them, the stress response and food intake. Here, we report the expression pattern of the duplicated zebrafish rln3b gene and compare it to the previously analyszd spatial expression pattern of the rln3a gene. Both genes, during the embryogenesis and in the adult fish, are active and show relevant differences in their expression patterns. rln3b is diffusely expressed in the brain until the pharyngula period, when, at 48 h postfertilization (hpf), the expression becomes restricted to the periaqueductal gray, where it persists also at later developmental stages. No expression was observed in the nucleus incertus cells that express the rln3a gene from 72 hpf. In the adult, both genes are expressed in brain, but only rln3b transcript is revealed in testis at the similar expression level, whereas in the other analyzed tissues the transcript levels are lower or absent. Both the putative mature protein sequences are highly conserved, this feature and their differential expression patterns might indicate a sub-functionalization during evolution with the consequent retention of the two paralogues genes.
Collapse
Affiliation(s)
- Aldo Donizetti
- Department of Structural and Functional Biology, University of Naples Federico II, 80126 Napoli, Italy
| | | | | | | |
Collapse
|
29
|
Kawada T, Aoyama M, Okada I, Sakai T, Sekiguchi T, Ogasawara M, Satake H. A novel inhibitory gonadotropin-releasing hormone-related neuropeptide in the ascidian, Ciona intestinalis. Peptides 2009; 30:2200-5. [PMID: 19712719 DOI: 10.1016/j.peptides.2009.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/18/2009] [Accepted: 08/18/2009] [Indexed: 01/26/2023]
Abstract
The gonadotropin-releasing hormone (GnRH) family peptides are most widely distributed neuropeptides and/or neurophysial hormones. GnRH is involved in diverse neuroendocrine, paracrine, autocrine, and neurotransmitter/neuromodulatory functions in the central and peripheral nervous system as well as peripheral tissues. In the present study, we show the identification of a novel GnRH-related peptide, Ci-GnRH-X, in the ascidian, Ciona intestinalis. Intriguingly, Ci-GnRH-X possesses a unique primary sequence consisting of 16 amino acids, although typical GnRH family peptides are composed of 10 amino acids. On the other hand, Ci-GnRH-X shares the GnRH consensus motifs, including the N-terminal pQHWS ('pQ' indicates a pyro-glutamic acid) and C-terminal Gly-amide. Reverse transcription (RT)-PCR analysis shows that the Ci-GnRH-X gene is expressed exclusively in the central nervous system. Moreover, in situ hybridization demonstrated that the Ciona GnRH-1 gene encoding Ciona GnRHs (t-GnRH-3, -5 and -6) was co-expressed with the Ci-GnRH-X gene in neurons of the cerebral ganglion. Of particular interest is that Ci-GnRH-X exhibited moderate (10-50%) inhibitory activity against t-GnRHs at their cognate receptors. Ci-GnRH-X repressed the elevation of the intracellular calcium and cAMP production by t-GnRH-6 at Ci-GnRHR-1, and cAMP production by t-GnRH-3, and t-GnRH-5 via Ci-GnRHR-3 was also inhibited by Ci-GnRH-X. In contrast, no inhibitory effect of Ci-GnRH-X at Ci-GnRHR-2 was observed. The localization and biochemical assays revealed that Ci-GnRH-X acts as an endogenous antagonist for the Ciona GnRHergic system. This is the first molecular and functional characterization of an endogenous inhibitor of GnRHs in an animal species.
Collapse
Affiliation(s)
- Tsuyoshi Kawada
- Suntory Institute for Bioorganic Research, Mishima-gun, Osaka 618-8503, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Kawada T, Sekiguchi T, Itoh Y, Ogasawara M, Satake H. Characterization of a novel vasopressin/oxytocin superfamily peptide and its receptor from an ascidian, Ciona intestinalis. Peptides 2008; 29:1672-8. [PMID: 18586058 DOI: 10.1016/j.peptides.2008.05.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 05/16/2008] [Accepted: 05/19/2008] [Indexed: 11/24/2022]
Abstract
The vasopressin (VP)/oxytocin (OT) superfamily peptides are one of the most widely distributed neuropeptides and/or neurohypophysial hormones, but have ever not been characterized from any deuterostome invertebrates including protochordates, ascidians. In the present study, we show the identification of a novel VP/OT superfamily peptide and its receptor in the ascidian, Ciona intestinalis. Intriguingly, the Ciona VP/OT-related peptide (Ci-VP), unlike other 9-amino acid and C-terminally amidated VP/OT superfamily peptides, consists of 13 amino acids and lacks a C-terminal amidation. Mass spectrometry confirmed the presence of the 13-residue Ci-VP in the neural complex. Furthermore, 10 of 14 cysteines are conserved in the neurophysin domain, compared with other VP/OT counterparts. These results revealed that the VP/OT superfamily is conserved in ascidians, but the Ci-VP gene encodes an unprecedented VP/OT-related peptide and neurophysin protein. Ci-VP was also shown to activate its endogenous receptor, Ci-VP-R, at physiological concentrations, confirming the functionality of Ci-VP as an endogenous ligand. The Ci-VP gene was expressed exclusively in neurons of the brain, whereas the Ci-TK-R mRNA was distributed in various tissues including the neural complex, alimentary tract, gonad, and heart. These expression profiles suggest that Ci-VP, like other VP/OT superfamily peptides, serves as a multifunctional neuropeptides. Altogether, our data revealed both evolutionary conservation and specific divergence of the VP/OT superfamily in protochordates. This is the first molecular characterization of a VP/OT superfamily peptide and its cognate receptor from not only ascidians but also deuterostome invertebrates.
Collapse
Affiliation(s)
- Tsuyoshi Kawada
- Suntory Institute for Bioorganic Research, Wakayamadai 1-1-1, Shimamoto-cho, Mishima-gun, Osaka 618-8503, Japan
| | | | | | | | | |
Collapse
|
31
|
Kamesh N, Aradhyam GK, Manoj N. The repertoire of G protein-coupled receptors in the sea squirt Ciona intestinalis. BMC Evol Biol 2008; 8:129. [PMID: 18452600 PMCID: PMC2396169 DOI: 10.1186/1471-2148-8-129] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Accepted: 05/01/2008] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND G protein-coupled receptors (GPCRs) constitute a large family of integral transmembrane receptor proteins that play a central role in signal transduction in eukaryotes. The genome of the protochordate Ciona intestinalis has a compact size with an ancestral complement of many diversified gene families of vertebrates and is a good model system for studying protochordate to vertebrate diversification. An analysis of the Ciona repertoire of GPCRs from a comparative genomic perspective provides insight into the evolutionary origins of the GPCR signalling system in vertebrates. RESULTS We have identified 169 gene products in the Ciona genome that code for putative GPCRs. Phylogenetic analyses reveal that Ciona GPCRs have homologous representatives from the five major GRAFS (Glutamate, Rhodopsin, Adhesion, Frizzled and Secretin) families concomitant with other vertebrate GPCR repertoires. Nearly 39% of Ciona GPCRs have unambiguous orthologs of vertebrate GPCR families, as defined for the human, mouse, puffer fish and chicken genomes. The Rhodopsin family accounts for ~68% of the Ciona GPCR repertoire wherein the LGR-like subfamily exhibits a lineage specific gene expansion of a group of receptors that possess a novel domain organisation hitherto unobserved in metazoan genomes. CONCLUSION Comparison of GPCRs in Ciona to that in human reveals a high level of orthology of a protochordate repertoire with that of vertebrate GPCRs. Our studies suggest that the ascidians contain the basic ancestral complement of vertebrate GPCR genes. This is evident at the subfamily level comparisons since Ciona GPCR sequences are significantly analogous to vertebrate GPCR subfamilies even while exhibiting Ciona specific genes. Our analysis provides a framework to perform future experimental and comparative studies to understand the roles of the ancestral chordate versions of GPCRs that predated the divergence of the urochordates and the vertebrates.
Collapse
Affiliation(s)
- N Kamesh
- Department of Biotechnology, Bhupat and Jyothi Mehta School of Biosciences Building, Indian Institute of Technology Madras, Chennai 600036, India.
| | | | | |
Collapse
|
32
|
El-Mouatassim S, Bilotto S, Russo GL, Tosti E, Menezo Y. APEX/Ref-1 (apurinic/apyrimidic endonuclease DNA-repair gene) expression in human and ascidian (Ciona intestinalis) gametes and embryos. Mol Hum Reprod 2007; 13:549-56. [PMID: 17567600 DOI: 10.1093/molehr/gam038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In recent years, the impact of sperm DNA damage on fertility has become an important issue. The different technologies developed to check sperm DNA fragmentation lead to the same conclusion: DNA damage negatively impacts upon reproductive processes. Oocyte DNA repair capacity is one of the cues to understanding embryo developmental arrest. APEX/Ref-1 (apurinic/apyrimidic endonuclease) is an enzyme involved in the DNA base excision repair pathway removing the abasic sites, the most common DNA decays. In humans, APEX has a multifunctional role, including the control of the redox status of transcription factors. RT-PCR allowed us to detect human APEX transcripts in oocytes, spermatozoa and preimplantation blocked embryos. In parallel, a comparative study on sea squirt Ciona intestinalis (ascidian) indicated that APEX transcripts are clearly detectable in oocytes and embryos until the larva stage, but not in spermatozoa, suggesting the appearance of the paternal contribution to DNA repair during development having arisen only late in Vertebrate evolution. Of additional phylogenetic significance is the observation that sea squirt APEX appears to lack redox transcriptional activity.
Collapse
|
33
|
Comes S, Locascio A, Silvestre F, d'Ischia M, Russo GL, Tosti E, Branno M, Palumbo A. Regulatory roles of nitric oxide during larval development and metamorphosis in Ciona intestinalis. Dev Biol 2007; 306:772-84. [PMID: 17499701 DOI: 10.1016/j.ydbio.2007.04.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 04/11/2007] [Accepted: 04/16/2007] [Indexed: 01/30/2023]
Abstract
Metamorphosis in the ascidian Ciona intestinalis is a very complex process which converts a swimming tadpole to an adult. The process involves reorganisation of the body plan and a remarkable regression of the tail, which is controlled by caspase-dependent apoptosis. However, the endogenous signals triggering apoptosis and metamorphosis are little explored. Herein, we report evidence that nitric oxide (NO) regulates tail regression in a dose-dependent manner, acting on caspase-dependent apoptosis. An increase or decrease of NO levels resulted in a delay or acceleration of tail resorption, without affecting subsequent juvenile development. A similar hastening effect was induced by suppression of cGMP-dependent NO signalling. Inhibition of NO production resulted in an increase in caspase-3-like activity with respect to untreated larvae. Detection of endogenously activated caspase-3 and NO revealed the existence of a spatial correlation between the diminution of the NO signal and caspase-3 activation during the last phases of tail regression. Real-time PCR during development, from early larva to early juveniles, showed that during all stages examined, NO synthase (NOS) is always more expressed than arginase and it reaches the maximum value at late larva, the stage immediately preceding tail resorption. The spatial expression pattern of NOS is very dynamic, moving rapidly along the body in very few hours, from the anterior part of the trunk to central nervous system (CNS), tail and new forming juvenile digestive organs. NO detection revealed free diffusion from the production sites to other cellular districts. Overall, the results of this study provide a new important link between NO signalling and apoptosis during metamorphosis in C. intestinalis and hint at novel roles for the NO signalling system in other developmental and metamorphosis-related events preceding and following tail resorption.
Collapse
Affiliation(s)
- Stefania Comes
- Biochemistry and Molecular Biology Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Burke RD, Angerer LM, Elphick MR, Humphrey GW, Yaguchi S, Kiyama T, Liang S, Mu X, Agca C, Klein WH, Brandhorst BP, Rowe M, Wilson K, Churcher AM, Taylor JS, Chen N, Murray G, Wang D, Mellott D, Olinski R, Hallböök F, Thorndyke MC. A genomic view of the sea urchin nervous system. Dev Biol 2006; 300:434-60. [PMID: 16965768 PMCID: PMC1950334 DOI: 10.1016/j.ydbio.2006.08.007] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/29/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
The sequencing of the Strongylocentrotus purpuratus genome provides a unique opportunity to investigate the function and evolution of neural genes. The neurobiology of sea urchins is of particular interest because they have a close phylogenetic relationship with chordates, yet a distinctive pentaradiate body plan and unusual neural organization. Orthologues of transcription factors that regulate neurogenesis in other animals have been identified and several are expressed in neurogenic domains before gastrulation indicating that they may operate near the top of a conserved neural gene regulatory network. A family of genes encoding voltage-gated ion channels is present but, surprisingly, genes encoding gap junction proteins (connexins and pannexins) appear to be absent. Genes required for synapse formation and function have been identified and genes for synthesis and transport of neurotransmitters are present. There is a large family of G-protein-coupled receptors, including 874 rhodopsin-type receptors, 28 metabotropic glutamate-like receptors and a remarkably expanded group of 161 secretin receptor-like proteins. Absence of cannabinoid, lysophospholipid and melanocortin receptors indicates that this group may be unique to chordates. There are at least 37 putative G-protein-coupled peptide receptors and precursors for several neuropeptides and peptide hormones have been identified, including SALMFamides, NGFFFamide, a vasotocin-like peptide, glycoprotein hormones and insulin/insulin-like growth factors. Identification of a neurotrophin-like gene and Trk receptor in sea urchin indicates that this neural signaling system is not unique to chordates. Several hundred chemoreceptor genes have been predicted using several approaches, a number similar to that for other animals. Intriguingly, genes encoding homologues of rhodopsin, Pax6 and several other key mammalian retinal transcription factors are expressed in tube feet, suggesting tube feet function as photosensory organs. Analysis of the sea urchin genome presents a unique perspective on the evolutionary history of deuterostome nervous systems and reveals new approaches to investigate the development and neurobiology of sea urchins.
Collapse
Affiliation(s)
- R D Burke
- Department of Biology, University of Victoria, Victoria, POB 3020, STN CSC, Victoria, BC, Canada V8W 3N5.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|