1
|
Raspe S, Kümmerlen K, Harzsch S. Immunolocalization of SIFamide-like neuropeptides in the adult and developing central nervous system of the amphipod Parhyale hawaiensis (Malacostraca, Peracarida, Amphipoda). ARTHROPOD STRUCTURE & DEVELOPMENT 2023; 77:101309. [PMID: 37879171 DOI: 10.1016/j.asd.2023.101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Immunohistochemical analyses on the distribution of neuropeptides in the pancrustacean brain in the past have focussed mostly on representatives of the decapod ("ten-legged") pancrustaceans whereas other taxa are understudied in this respect. The current report examines the post-embryogenic and adult brain and ventral nerve cord of the amphipod pancrustacean Parhyale hawaiensis (Dana. 1853; Peracarida, Amphipoda, Hyalide), a subtropical species with a body size of 1.5 cm and a direct post-embryonic development using immunohistochemistry to label the neuropeptide SIFamide and synaptic proteins (synapsins). We found strong SIFamide-like labelling in proto-, deuto- and tritocerebrum, especially in the lamina, the lateral protocerebrum, lateral assessory lobe, the central body, olfactory lobe, medial antenna 1 neuropil and antenna 2 neuropil. Out of a total of 28 ± 5 (N = 12) SIFamide-positive neurons in the central brain of adult P. hawaiensis, we found three individually identifiable somata which were consistently present within the brain of adult and subadult animals. Additionally, the subesophageal and two adjacent thoracic ganglia were analysed in only adult animals and also showed a strong SIFamide-like immunoreactivity. We compare our findings to other pancrustaceans including hexapods and discuss them in an evolutionary context.
Collapse
Affiliation(s)
- Sophie Raspe
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany
| | - Katja Kümmerlen
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany
| | - Steffen Harzsch
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany.
| |
Collapse
|
2
|
Phetsanthad A, Roycroft C, Li L. Enrichment and fragmentation approaches for enhanced detection and characterization of endogenous glycosylated neuropeptides. Proteomics 2023; 23:e2100375. [PMID: 35906894 PMCID: PMC9884999 DOI: 10.1002/pmic.202100375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023]
Abstract
Glycosylated neuropeptides were recently discovered in crustaceans, a model organism with a well-characterized neuroendocrine system. Several workflows exist to characterize enzymatically digested peptides; however, the unique properties of endogenous neuropeptides require methods to be re-evaluated. We investigate the use of hydrophilic interaction liquid chromatography (HILIC) enrichment and different fragmentation methods to further probe the expression of glycosylated neuropeptides in Callinectes sapidus. During the evaluation of HILIC, we observed the necessity of a less aqueous solvent for endogenous peptide samples. This modification enabled the number of detected neuropeptide glycoforms to increase almost two-fold, from 18 to 36. Product ion-triggered electron-transfer/higher-energy collision dissociation enabled the site-specific detection of 55 intact N- and O-linked glycoforms, while the faster stepped collision energy higher-energy collisional dissociation resulted in detection of 25. Additionally, applying this workflow to five neuronal tissues enabled the characterization of 36 more glycoforms of known neuropeptides and 11 more glycoforms of nine putative novel neuropeptides. Overall, the database of glycosylated neuropeptides in crustaceans was largely expanded from 18 to 136 glycoforms of 40 neuropeptides from 10 neuropeptide families. Both macro- and micro-heterogeneity were observed, demonstrating the chemical diversity of this simple invertebrate, establishing a framework to use crustacean to probe modulatory effects of glycosylation on neuropeptides.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Caroline Roycroft
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
3
|
DeLaney K, Phetsanthad A, Li L. ADVANCES IN HIGH-RESOLUTION MALDI MASS SPECTROMETRY FOR NEUROBIOLOGY. MASS SPECTROMETRY REVIEWS 2022; 41:194-214. [PMID: 33165982 PMCID: PMC8106695 DOI: 10.1002/mas.21661] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/13/2020] [Indexed: 05/08/2023]
Abstract
Research in the field of neurobiology and neurochemistry has seen a rapid expansion in the last several years due to advances in technologies and instrumentation, facilitating the detection of biomolecules critical to the complex signaling of neurons. Part of this growth has been due to the development and implementation of high-resolution Fourier transform (FT) mass spectrometry (MS), as is offered by FT ion cyclotron resonance (FTICR) and Orbitrap mass analyzers, which improves the accuracy of measurements and helps resolve the complex biological mixtures often analyzed in the nervous system. The coupling of matrix-assisted laser desorption/ionization (MALDI) with high-resolution MS has drastically expanded the information that can be obtained with these complex samples. This review discusses notable technical developments in MALDI-FTICR and MALDI-Orbitrap platforms and their applications toward molecules in the nervous system, including sequence elucidation and profiling with de novo sequencing, analysis of post-translational modifications, in situ analysis, key advances in sample preparation and handling, quantitation, and imaging. Notable novel applications are also discussed to highlight key developments critical to advancing our understanding of neurobiology and providing insight into the exciting future of this field. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
4
|
Oleisky ER, Stanhope ME, Hull JJ, Dickinson PS. Isoforms of the neuropeptide myosuppressin differentially modulate the cardiac neuromuscular system of the American lobster, Homarus americanus. J Neurophysiol 2022; 127:702-713. [PMID: 35044860 PMCID: PMC8897000 DOI: 10.1152/jn.00338.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Post-translational modifications (PTMs) diversify peptide structure and allow for greater flexibility within signaling networks. The cardiac neuromuscular system of the American lobster, Homarus americanus, consists of a central pattern generator, the cardiac ganglion (CG), and peripheral cardiac muscle. Together, these components produce flexible output in response to peptidergic modulation. Here, we examined the role of PTMs in determining the effects of a cardioactive neuropeptide, myosuppressin (pQDLDHVFLRFamide), on the whole heart, the neuromuscular junction/muscle, the isolated CG, and the neurons of the CG. Mature myosuppressin and non-cyclized myosuppressin (QDLDHVFLRFamide) elicited similar and significant changes in whole heart contraction amplitude and frequency, stimulated muscle contraction amplitude, and the bursting pattern of the intact and ligatured neurons of the ganglion. In the whole heart, non-amidated myosuppressin (pQDLDHVFLRFG) elicited only a small decrease in frequency and amplitude. In the absence of motor neuron input, non-amidated myosuppressin did not cause any significant changes in the amplitude of stimulated contractions. In the intact CG, non-amidated myosuppressin elicited a small but significant decrease in burst duration. Further analysis revealed a correlation between the extent of modulation elicited by non-amidated myosuppressin in the whole heart and the isolated, intact CG. When the neurons of the CG were physically decoupled, non-amidated myosuppressin elicited highly variable responses. Taken together, these data suggest that amidation, but not cyclization, is critical in enabling this peptide to exert its effects on the cardiac neuromuscular system.
Collapse
Affiliation(s)
- Emily R Oleisky
- Department of Biology, Bowdoin College, Brunswick, ME, United States
| | | | | | - Patsy S Dickinson
- Department of Biology, Bowdoin College, Brunswick, ME, United States
| |
Collapse
|
5
|
Tu S, Xu R, Wang M, Xie X, Bao C, Zhu D. Identification and characterization of expression profiles of neuropeptides and their GPCRs in the swimming crab, Portunus trituberculatus. PeerJ 2021; 9:e12179. [PMID: 34616625 PMCID: PMC8449533 DOI: 10.7717/peerj.12179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/29/2021] [Indexed: 12/16/2022] Open
Abstract
Neuropeptides and their G protein-coupled receptors (GPCRs) regulate multiple physiological processes. Currently, little is known about the identity of native neuropeptides and their receptors in Portunus trituberculatus. This study employed RNA-sequencing and reverse transcription-polymerase chain reaction (RT-PCR) techniques to identify neuropeptides and their receptors that might be involved in regulation of reproductive processes of P. trituberculatus. In the central nervous system transcriptome data, 47 neuropeptide transcripts were identified. In further analyses, the tissue expression profile of 32 putative neuropeptide-encoding transcripts was estimated. Results showed that the 32 transcripts were expressed in the central nervous system and 23 of them were expressed in the ovary. A total of 47 GPCR-encoding transcripts belonging to two classes were identified, including 39 encoding GPCR-A family and eight encoding GPCR-B family. In addition, we assessed the tissue expression profile of 33 GPCRs (27 GPCR-As and six GPCR-Bs) transcripts. These GPCRs were found to be widely expressed in different tissues. Similar to the expression profiles of neuropeptides, 20 of these putative GPCR-encoding transcripts were also detected in the ovary. This is the first study to establish the identify of neuropeptides and their GPCRs in P. trituberculatus, and provide information for further investigations into the effect of neuropeptides on the physiology and behavior of decapod crustaceans.
Collapse
Affiliation(s)
- Shisheng Tu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Rui Xu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Mengen Wang
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Xi Xie
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Chenchang Bao
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Dongfa Zhu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
6
|
Grininger D, Birmingham JT. Dual modulatory effects on feedback from a proprioceptor in the crustacean stomatogastric nervous system. J Neurophysiol 2021; 125:1755-1767. [PMID: 33760675 DOI: 10.1152/jn.00080.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuromodulatory actions that change the properties of proprioceptors or the muscle movements to which they respond necessarily affect the feedback provided to the central network. Here we further characterize the responses of the gastropyloric receptor 1 (GPR1) and gastropyloric receptor 2 (GPR2) neurons in the stomatogastric nervous system of the crab Cancer borealis to movements and contractions of muscles, and we report how neuromodulation modifies those responses. We observed that the GPR1 response to contractions of the gastric mill 4 muscle (gm4) was absent, or nearly so, when the neuron was quiescent but robust when it was spontaneously active. We also found that the effects of four neuromodulatory substances (GABA, serotonin, proctolin, and TNRNFLRFamide) on the GPR1 response to muscle stretch were similar to those previously reported for GPR2. Finally, we showed that an excitatory action on gm4 due to proctolin combined with an inhibitory action on GPR2 due to GABA can allow for larger muscle contractions without increased proprioceptive feedback.NEW & NOTEWORTHY We report that the combination of GABA and the peptide proctolin increases contraction of a stomatogastric muscle while decreasing the corresponding response of the proprioceptor that reports on it. These results suggest a general mechanism by which muscle movements can be modified while sensory feedback is conserved, one that may be particularly well suited for providing flexibility to central pattern generator networks.
Collapse
Affiliation(s)
- Davis Grininger
- Department of Physics, Santa Clara University, Santa Clara, California
| | - John T Birmingham
- Department of Physics, Santa Clara University, Santa Clara, California
| |
Collapse
|
7
|
Oleisky ER, Stanhope ME, Hull JJ, Christie AE, Dickinson PS. Differential neuropeptide modulation of premotor and motor neurons in the lobster cardiac ganglion. J Neurophysiol 2020; 124:1241-1256. [PMID: 32755328 PMCID: PMC7654637 DOI: 10.1152/jn.00089.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The American lobster, Homarus americanus, cardiac neuromuscular system is controlled by the cardiac ganglion (CG), a central pattern generator consisting of four premotor and five motor neurons. Here, we show that the premotor and motor neurons can establish independent bursting patterns when decoupled by a physical ligature. We also show that mRNA encoding myosuppressin, a cardioactive neuropeptide, is produced within the CG. We thus asked whether myosuppressin modulates the decoupled premotor and motor neurons, and if so, how this modulation might underlie the role(s) that these neurons play in myosuppressin's effects on ganglionic output. Although myosuppressin exerted dose-dependent effects on burst frequency and duration in both premotor and motor neurons in the intact CG, its effects on the ligatured ganglion were more complex, with different effects and thresholds on the two types of neurons. These data suggest that the motor neurons are more important in determining the changes in frequency of the CG elicited by low concentrations of myosuppressin, whereas the premotor neurons have a greater impact on changes elicited in burst duration. A single putative myosuppressin receptor (MSR-I) was previously described from the Homarus nervous system. We identified four additional putative MSRs (MSR-II-V) and investigated their individual distributions in the CG premotor and motor neurons using RT-PCR. Transcripts for only three receptors (MSR-II-IV) were amplified from the CG. Potential differential distributions of the receptors were observed between the premotor and motor neurons; these differences may contribute to the distinct physiological responses of the two neuron types to myosuppressin.NEW & NOTEWORTHY Premotor and motor neurons of the Homarus americanus cardiac ganglion (CG) are normally electrically and chemically coupled, and generate rhythmic bursting that drives cardiac contractions; we show that they can establish independent bursting patterns when physically decoupled by a ligature. The neuropeptide myosuppressin modulates different aspects of the bursting pattern in these neuron types to determine the overall modulation of the intact CG. Differential distribution of myosuppressin receptors may underlie the observed responses to myosuppressin.
Collapse
Affiliation(s)
| | | | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, Arizona
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii
| | | |
Collapse
|
8
|
Hyde CJ, Nguyen T, Fitzgibbon QP, Elizur A, Smith GG, Ventura T. Neural remodelling in spiny lobster larvae is characterized by broad neuropeptide suppression. Gen Comp Endocrinol 2020; 294:113496. [PMID: 32360560 DOI: 10.1016/j.ygcen.2020.113496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/09/2020] [Accepted: 04/27/2020] [Indexed: 02/05/2023]
Abstract
Neuropeptides are ancient endocrine components which have evolved to regulate many aspects of biology across the animal kingdom including behaviour, development and metabolism. To supplement current knowledge, we have utilized a transcriptome series describing larval development in the ornate spiny lobster, Panulirus ornatus. The biology of this animal has been leveraged to provide insights into the roles of molting, metamorphosis and metabolism across the neuropeptide family. We report an extensive list of neuropeptides across three distinct life phases of the animal. We show distinct groups of neuropeptides with differential expression between larval phases, indicating phase-specific roles for these peptides. For selected neuropeptides, we describe and discuss expression profiles throughout larval development and report predicted peptide cleavage sites and mature peptide sequences. We also report the neuropeptide nesfatin for the first time in a crustacean, and report secondary peptide products with a level of evolutionary conservation similar to the conventional mature peptide nesfatin-1, indicating a conserved role in these secondary products which are widely regarded as biologically inactive. In addition, we report a trend of downregulation in the neuropeptides as the animal undergoes extensive neural remodelling in fulfillment of metamorphosis. We suggest that this downregulation in neuropeptides relates to the brief, yet dramatic changes in morphology experienced by the central nervous system in the process of metamorphosis.
Collapse
Affiliation(s)
- Cameron J Hyde
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4556 Australia
| | - Tuan Nguyen
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4556 Australia
| | - Quinn P Fitzgibbon
- Institute for Marine & Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
| | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4556 Australia
| | - Gregory G Smith
- Institute for Marine & Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
| | - Tomer Ventura
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4556 Australia.
| |
Collapse
|
9
|
Christie AE. Identification of putative neuropeptidergic signaling systems in the spiny lobster, Panulirus argus. INVERTEBRATE NEUROSCIENCE 2020; 20:2. [DOI: 10.1007/s10158-020-0235-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/04/2020] [Indexed: 01/22/2023]
|
10
|
Dickinson PS, Samuel HM, Stemmler EA, Christie AE. SIFamide peptides modulate cardiac activity differently in two species of Cancer crab. Gen Comp Endocrinol 2019; 282:113204. [PMID: 31201801 PMCID: PMC6719312 DOI: 10.1016/j.ygcen.2019.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022]
Abstract
The SIFamides are a broadly conserved arthropod peptide family characterized by the C-terminal motif -SIFamide. In decapod crustaceans, two isoforms of SIFamide are known, GYRKPPFNGSIFamide (Gly1-SIFamide), which is nearly ubiquitously conserved in the order, and VYRKPPFNGSIFamide (Val1-SIFamide), known only from members of the astacidean genus Homarus. While much work has focused on the identification of SIFamide isoforms in decapods, there are few direct demonstrations of physiological function for members of the peptide family in this taxon. Here, we assessed the effects of Gly1- and Val1-SIFamide on the cardiac neuromuscular system of two closely related species of Cancer crab, Cancer borealis and Cancer irroratus. In each species, both peptides were cardioactive, with identical, dose-dependent effects elicited by both isoforms in a given species. Threshold concentrations for bioactivity are in the range typically associated with hormonal delivery, i.e., 10-9 to 10-8 M. Interestingly, and quite surprisingly, while the predicted effects of SIFamide on cardiac output are similar in both C. borealis and C. irroratus, frequency effects predominate in C. borealis, while amplitude effects predominate in C. irroratus. These findings suggest that, while SIFamide is likely to increase cardiac output in both crabs, the mechanism through which this is achieved is different in the two species. Immunohistochemical/mass spectrometric data suggest that SIFamide is delivered to the heart hormonally rather than locally, with the source of hormonal release being midgut epithelial endocrine cells in both Cancer species. If so, midgut-derived SIFamide may function as a regulator of cardiac output during the process of digestion.
Collapse
Affiliation(s)
- Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA.
| | - Heidi M Samuel
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Elizabeth A Stemmler
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
11
|
Ivanova B, Spiteller M. Stochastic dynamic electrospray ionization mass spectrometric diffusion parameters and 3D structural determination of complexes of AgI–ion – Experimental and theoretical treatment. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
To what extent may peptide receptor gene diversity/complement contribute to functional flexibility in a simple pattern-generating neural network? COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:262-282. [PMID: 30974344 DOI: 10.1016/j.cbd.2019.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 12/11/2022]
Abstract
Peptides are known to contribute to central pattern generator (CPG) flexibility throughout the animal kingdom. However, the role played by receptor diversity/complement in determining this functional flexibility is not clear. The stomatogastric ganglion (STG) of the crab, Cancer borealis, contains CPGs that are models for investigating peptidergic control of rhythmic behavior. Although many Cancer peptides have been identified, their peptide receptors are largely unknown. Thus, the extent to which receptor diversity/complement contributes to modulatory flexibility in this system remains unresolved. Here, a Cancer mixed nervous system transcriptome was used to determine the peptide receptor complement for the crab nervous system as a whole. Receptors for 27 peptide families, including multiple receptors for some groups, were identified. To increase confidence in the predicted sequences, receptors for allatostatin-A, allatostatin-B, and allatostatin-C were cloned, sequenced, and expressed in an insect cell line; as expected, all three receptors trafficked to the cell membrane. RT-PCR was used to determine whether each receptor was expressed in the Cancer STG. Transcripts for 36 of the 46 identified receptors were amplified; these included at least one for each peptide family except RYamide. Finally, two peptides untested on the crab STG were assessed for their influence on its motor outputs. Myosuppressin, for which STG receptors were identified, exhibited clear modulatory effects on the motor patterns of the ganglion, while a native RYamide, for which no STG receptors were found, elicited no consistent modulatory effects. These data support receptor diversity/complement as a major contributor to the functional flexibility of CPGs.
Collapse
|
13
|
Blitz DM, Christie AE, Cook AP, Dickinson PS, Nusbaum MP. Similarities and differences in circuit responses to applied Gly 1-SIFamide and peptidergic (Gly 1-SIFamide) neuron stimulation. J Neurophysiol 2019; 121:950-972. [PMID: 30649961 PMCID: PMC6520624 DOI: 10.1152/jn.00567.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022] Open
Abstract
Microcircuit modulation by peptides is well established, but the cellular/synaptic mechanisms whereby identified neurons with identified peptide transmitters modulate microcircuits remain unknown for most systems. Here, we describe the distribution of GYRKPPFNGSIFamide (Gly1-SIFamide) immunoreactivity (Gly1-SIFamide-IR) in the stomatogastric nervous system (STNS) of the crab Cancer borealis and the Gly1-SIFamide actions on the two feeding-related circuits in the stomatogastric ganglion (STG). Gly1-SIFamide-IR localized to somata in the paired commissural ganglia (CoGs), two axons in the nerves connecting each CoG with the STG, and the CoG and STG neuropil. We identified one Gly1-SIFamide-IR projection neuron innervating the STG as the previously identified modulatory commissural neuron 5 (MCN5). Brief (~10 s) MCN5 stimulation excites some pyloric circuit neurons. We now find that bath applying Gly1-SIFamide to the isolated STG also enhanced pyloric rhythm activity and activated an imperfectly coordinated gastric mill rhythm that included unusually prolonged bursts in two circuit neurons [inferior cardiac (IC), lateral posterior gastric (LPG)]. Furthermore, longer duration (>30 s) MCN5 stimulation activated a Gly1-SIFamide-like gastric mill rhythm, including prolonged IC and LPG bursting. The prolonged LPG bursting decreased the coincidence of its activity with neurons to which it is electrically coupled. We also identified local circuit feedback onto the MCN5 axon terminals, which may contribute to some distinctions between the responses to MCN5 stimulation and Gly1-SIFamide application. Thus, MCN5 adds to the few identified projection neurons that modulate a well-defined circuit at least partly via an identified neuropeptide transmitter and provides an opportunity to study peptide regulation of electrical coupled neurons in a functional context. NEW & NOTEWORTHY Limited insight exists regarding how identified peptidergic neurons modulate microcircuits. We show that the modulatory projection neuron modulatory commissural neuron 5 (MCN5) is peptidergic, containing Gly1-SIFamide. MCN5 and Gly1-SIFamide elicit similar output from two well-defined motor circuits. Their distinct actions may result partly from circuit feedback onto the MCN5 axon terminals. Their similar actions include eliciting divergent activity patterns in normally coactive, electrically coupled neurons, providing an opportunity to examine peptide modulation of electrically coupled neurons in a functional context.
Collapse
Affiliation(s)
- Dawn M Blitz
- Department of Biology, Miami University , Oxford, Ohio
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean & Earth Science & Technology, University of Hawaii at Manoa , Honolulu, Hawaii
| | - Aaron P Cook
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | | | - Michael P Nusbaum
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Lismont E, Mortelmans N, Verlinden H, Vanden Broeck J. Molecular cloning and characterization of the SIFamide precursor and receptor in a hymenopteran insect, Bombus terrestris. Gen Comp Endocrinol 2018; 258:39-52. [PMID: 29127004 DOI: 10.1016/j.ygcen.2017.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 10/10/2017] [Accepted: 10/21/2017] [Indexed: 01/09/2023]
Abstract
SIFamides (SIFa) are a family of neuropeptides that are highly conserved among arthropods. In insects, this peptide is mainly expressed in four medial interneurons in the pars intercerebralis and affects sexual behavior, sleep regulation and pupal mortality. Furthermore, an influence on the hatching rate has been observed. The first SIFa receptor (SIFR) was pharmacologically characterized in Drosophila melanogaster and is homologous to the vertebrate gonadotropin-inhibitory hormone (GnIH) receptor (NPFFR). In this study, we pharmacologically characterized the SIFR of the buff-tailed bumblebee Bombus terrestris. We demonstrated an intracellular increase in calcium ions and cyclic AMP (cAMP) upon ligand binding with an EC50 value in the picomolar and nanomolar range, respectively. In addition, we studied the agonistic properties of a range of related and modified peptides. By means of quantitative real time PCR (qPCR), we examined the relative transcript levels of Bomte-SIFa and Bomte-SIFR in a variety of tissues.
Collapse
Affiliation(s)
- Els Lismont
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Nele Mortelmans
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
15
|
Christie AE, Cieslak MC, Roncalli V, Lenz PH, Major KM, Poynton HC. Prediction of a peptidome for the ecotoxicological model Hyalella azteca (Crustacea; Amphipoda) using a de novo assembled transcriptome. Mar Genomics 2018; 38:67-88. [PMID: 29395622 DOI: 10.1016/j.margen.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 02/05/2023]
Abstract
Due to its sensitivity to many environmental and anthropogenic stressors, including a wide range of chemical compounds, Hyalella azteca, a freshwater amphipod, has emerged as one of the most commonly used invertebrates for ecotoxicological assessment.Peptidergic signaling systems are key components in the control of organism-environment interactions, and there is a growing literature suggesting that they are targets of a number of aquatic toxicants.Interestingly, and despite its model species status in the field of ecotoxicology, little is known about the peptide hormones of H. azteca.Here, a transcriptome was produced for this species using the de novo assembler Trinity and mined for sequences encoding putative peptide precursors; the transcriptome was assembled from 460,291,636 raw reads and consists of 133,486 unique transcripts.Seventy-six sequences encoding peptide pre/preprohormones were identified from this transcriptome, allowing for the prediction of 202 distinct peptides, which included members of the allatostatin A, allatostatin B, allatostatin C, allatotropin, bursicon, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/molt-inhibiting hormone, ecdysis-triggering hormone, eclosion hormone, elevenin, FMRFamide-like peptide, glycoprotein hormone, GSEFLamide, inotocin, leucokinin, myosuppressin, neuropeptide F, orcokinin, orcomyotropin, pigment dispersing hormone, proctolin, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, SIFamide, sulfakinin, tachykinin-related peptide and trissin families.These peptides expand the known peptidome for H. azteca approximately nine-fold, forming a strong foundation for future studies of peptidergic control, including disruption by aquatic toxicants, in this important ecotoxicological model.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | - Matthew C Cieslak
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Vittoria Roncalli
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Petra H Lenz
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Kaley M Major
- School for the Environment, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
| | - Helen C Poynton
- School for the Environment, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA.
| |
Collapse
|
16
|
Cheng X, Ye X, Liu D, Zhao N, Gao H, Wang P, Ge G, Zhang X. N-Butyl-4-hydroxy-1,8-naphthalimide: A new matrix for small molecule analysis by matrix-assisted laser desorption/ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1779-1784. [PMID: 28838027 DOI: 10.1002/rcm.7930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/15/2017] [Accepted: 06/24/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE The matrix plays an essential role in defining detection limits and ionization yields of analytes in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis. Small molecule MALDI-MS analyses commonly suffer from the high background interference generated from matrices. Moreover, the inhomogeneous crystallization of some matrices, such as 2,5-dihydroxybenzoic acid (DHB), is to the detriment of the quality or repeatability of detection. We have found that N-butyl-4-hydroxy-1,8-naphthalimide (BHN) can provide improved performance as a matrix for small molecule analysis. METHODS BHN was evaluated in the low-mass region for its ionization efficiency, repeatability and background interference using O-acetyl-L-carnitine hydrochloride, Aβ35-40, Aβ35-42, and oxytocin as the model analytes. In addition, the modification effects of BHN on DHB were investigated for the in situ analysis of endogenous compounds in rat brain slices using Fourier transform ion cyclotron resonance (FTICR)-MS. RESULTS BHN is capable of ionizing small molecules, including O-acetyl-L-carnitine hydrochloride and peptides, with high repeatability and low background interference signals. A low concentration of BHN (3 mM) modifies the crystallization state of DHB but still retains its ionization performance. The determination of small molecules desorbed from tissue slices was significantly improved by using a binary matrix of DHB and BHN, yielding superior signal-to-noise ratio and signal intensities. CONCLUSIONS The new matrix BHN has exhibited suitability for the analysis of small molecules. Compared with the conventional matrices, CHCA and DHB, BHN provides a clean background in the low-mass region. In combination with DHB, the ability of BHN to form highly homogenous crystalline particles shows the clear beneficial effects of BHN for the reproducibility of MS detection.
Collapse
Affiliation(s)
- Xina Cheng
- CAS Key Laboratory of Separation of Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xueting Ye
- Key Laboratory of Structure-Based Drug Design&Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dan Liu
- CAS Key Laboratory of Separation of Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Nan Zhao
- CAS Key Laboratory of Separation of Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Huiyuan Gao
- Key Laboratory of Structure-Based Drug Design&Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ping Wang
- CAS Key Laboratory of Separation of Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Guangbo Ge
- CAS Key Laboratory of Separation of Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation of Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
17
|
Christie AE. Neuropeptide discovery in Proasellus cavaticus: Prediction of the first large-scale peptidome for a member of the Isopoda using a publicly accessible transcriptome. Peptides 2017; 97:29-45. [PMID: 28893643 DOI: 10.1016/j.peptides.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 11/29/2022]
Abstract
In silico transcriptome mining is one of the most effective methods for neuropeptide discovery in crustaceans, particularly for species that are small, rare or from geographically inaccessible habitats that make obtaining the large pools of tissue needed for other peptide discovery platforms impractical. Via this approach, large peptidomes have recently been described for members of many of the higher crustacean taxa, one notable exception being the Isopoda; no peptidome has been predicted for any member of this malacostracan order. Using a publicly accessible transcriptome for the isopod Proasellus cavaticus, a subcentimeter subterranean ground water dweller, the first in silico-predicted peptidome for a member of the Isopoda is presented here. BLAST searches employing known arthropod neuropeptide pre/preprohormone queries identified 49 transcripts as encoding putative homologs within the P. cavaticus transcriptome. The proteins deduced from these transcripts allowed for the prediction of 171 distinct mature neuropeptides. The P. cavaticus peptidome includes members of the adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, allatotropin, bursicon α, bursicon β, CCHamide, crustacean cardioactive peptide, crustacean hyperglycemic hormone/molt-inhibiting hormone, diuretic hormone 31, eclosion hormone, elevenin, FMRFamide-like peptide, glycoprotein hormone α2, leucokinin, myosuppressin, neuroparsin, neuropeptide F, pigment dispersing hormone, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, sulfakinin, tachykinin-related peptide and trissin families, as well as many linker/precursor-related sequences that may or may not represent additional bioactive molecules. Interestingly, many of the predicted P. cavaticus neuropeptides possess structures identical (or nearly so) to those previously described from members of several other malacostracan orders, i.e., the Decapoda, Amphipoda and Euphausiacea, a finding that suggests broad phylogenetic conservation of bioactive peptide structures, and possibly functions, may exist within the Malacostraca.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822 USA, USA.
| |
Collapse
|
18
|
Christie AE, Roncalli V, Cieslak MC, Pascual MG, Yu A, Lameyer TJ, Stanhope ME, Dickinson PS. Prediction of a neuropeptidome for the eyestalk ganglia of the lobster Homarus americanus using a tissue-specific de novo assembled transcriptome. Gen Comp Endocrinol 2017; 243:96-119. [PMID: 27823957 PMCID: PMC5796769 DOI: 10.1016/j.ygcen.2016.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/03/2016] [Indexed: 11/19/2022]
Abstract
In silico transcriptome mining is a powerful tool for crustacean peptidome prediction. Using homology-based BLAST searches and a simple bioinformatics workflow, large peptidomes have recently been predicted for a variety of crustaceans, including the lobster, Homarus americanus. Interestingly, no in silico studies have been conducted on the eyestalk ganglia (lamina ganglionaris, medulla externa, medulla interna and medulla terminalis) of the lobster, although the eyestalk is the location of a major neuroendocrine complex, i.e., the X-organ-sinus gland system. Here, an H. americanus eyestalk ganglia-specific transcriptome was produced using the de novo assembler Trinity. This transcriptome was generated from 130,973,220 Illumina reads and consists of 147,542 unique contigs. Eighty-nine neuropeptide-encoding transcripts were identified from this dataset, allowing for the deduction of 62 distinct pre/preprohormones. Two hundred sixty-two neuropeptides were predicted from this set of precursors; the peptides include members of the adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, bursicon α, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone (CHH), CHH precursor-related peptide, diuretic hormone 31, diuretic hormone 44, eclosion hormone, elevenin, FMRFamide-like peptide, glycoprotein hormone α2, glycoprotein hormone β5, GSEFLamide, intocin, leucokinin, molt-inhibiting hormone, myosuppressin, neuroparsin, neuropeptide F, orcokinin, orcomyotropin, pigment dispersing hormone, proctolin, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, SIFamide, sulfakinin, tachykinin-related peptide and trissin families. The predicted peptides expand the H. americanus eyestalk ganglia neuropeptidome approximately 7-fold, and include 78 peptides new to the lobster. The transcriptome and predicted neuropeptidome described here provide new resources for investigating peptidergic signaling within/from the lobster eyestalk ganglia.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | - Vittoria Roncalli
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Matthew C Cieslak
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Micah G Pascual
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Andy Yu
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Tess J Lameyer
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04672, USA
| | - Meredith E Stanhope
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04672, USA
| | - Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04672, USA
| |
Collapse
|
19
|
Christie AE, Pascual MG. Peptidergic signaling in the crab Cancer borealis: Tapping the power of transcriptomics for neuropeptidome expansion. Gen Comp Endocrinol 2016; 237:53-67. [PMID: 27497705 DOI: 10.1016/j.ygcen.2016.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 11/21/2022]
Abstract
The crab Cancer borealis has long been used as a model for understanding neural control of rhythmic behavior. One significant discovery made through its use is that even numerically simple neural circuits are capable of producing an essentially infinite array of distinct motor outputs via the actions of locally released and circulating neuromodulators, the largest class being peptides. While much work has focused on elucidating the peptidome of C. borealis, no investigation has used in silico transcriptome mining for peptide discovery in this species, a strategy proven highly effective for identifying neuropeptides in other crustaceans. Here, we mined a C. borealis neural transcriptome for putative peptide-encoding transcripts, and predicted 200 distinct mature neuropeptides from the proteins deduced from these sequences. The identified peptides include isoforms of allatostatin A, allatostatin B, allatostatin C, CCHamide, crustacean cardioactive peptide, crustacean hyperglycemic hormone, diuretic hormone 31 (DH31), diuretic hormone 44 (DH44), FMRFamide-like peptide, GSEFLamide, HIGSLYRamide, insulin-like peptide (ILP), intocin, leucokinin, neuroparsin, pigment dispersing hormone, pyrokinin, red pigment concentrating hormone, short neuropeptide F and SIFamide. While some of the predicted peptides were known previously from C. borealis, most (159) are new discoveries for the species, e.g., the isoforms of CCHamide, DH31, DH44, GSEFLamide, ILP, intocin and neuroparsin, which are the first members of these peptide families identified from C. borealis. Collectively, the peptides predicted here approximately double the peptidome known for C. borealis, and in so doing provide an expanded platform from which to launch new investigations of peptidergic neuromodulation in this species.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822 USA.
| | - Micah G Pascual
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822 USA
| |
Collapse
|
20
|
Dickinson PS, Qu X, Stanhope ME. Neuropeptide modulation of pattern-generating systems in crustaceans: comparative studies and approaches. Curr Opin Neurobiol 2016; 41:149-157. [PMID: 27693928 DOI: 10.1016/j.conb.2016.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/14/2022]
Abstract
Central pattern generators are subject to modulation by peptides, allowing for flexibility in patterned output. Current techniques used to characterize peptides include mass spectrometry and transcriptomics. In recent years, hundreds of neuropeptides have been sequenced from crustaceans; mass spectrometry has been used to identify peptides and to determine their levels and locations, setting the stage for comparative studies investigating the physiological roles of peptides. Such studies suggest that there is some evolutionary conservation of function, but also divergence of function even within a species. With current baseline data, it should be possible to begin using comparative approaches to ask fundamental questions about why peptides are encoded the way that they are and how this affects nervous system function.
Collapse
Affiliation(s)
- Patsy S Dickinson
- Biology and Neuroscience, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA.
| | - Xuan Qu
- Neuroscience, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Meredith E Stanhope
- Neuroscience, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| |
Collapse
|
21
|
Christie AE. Expansion of the neuropeptidome of the globally invasive marine crab Carcinus maenas. Gen Comp Endocrinol 2016; 235:150-169. [PMID: 27179880 DOI: 10.1016/j.ygcen.2016.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
Abstract
Carcinus maenas is widely recognized as one of the world's most successful marine invasive species; its success as an invader is due largely to its ability to thrive under varied environmental conditions. The physiological/behavioral control systems that allow C. maenas to adapt to new environments are undoubtedly under hormonal control, the largest single class of hormones being peptides. While numerous studies have focused on identifying native C. maenas peptides, none has taken advantage of mining transcriptome shotgun assembly (TSA) sequence data, a strategy proven highly successful for peptide discovery in other crustaceans. Here, a C. maenas peptidome was predicted via in silico transcriptome mining. Thirty-seven peptide families were searched for in the extant TSA database, with transcripts encoding precursors for 29 groups identified. The pre/preprohormones deduced from the identified sequences allowed for the prediction of 263 distinct mature peptides, 193 of which are new discoveries for C. maenas. The predicted peptides include isoforms of adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, bursicon, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone, diuretic hormone 31, diuretic hormone 44, eclosion hormone, FMRFamide-like peptide, HIGSLYRamide, intocin, leucokinin, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone, proctolin, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, SIFamide, and tachykinin-related peptide. This peptidome is the largest predicted from any single crustacean using the in silico approach, and provides a platform for investigating peptidergic signaling in C. maenas, including control of the processes that allow for its success as a global marine invader.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
22
|
Veenstra JA. Similarities between decapod and insect neuropeptidomes. PeerJ 2016; 4:e2043. [PMID: 27257538 PMCID: PMC4888303 DOI: 10.7717/peerj.2043] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/25/2016] [Indexed: 12/31/2022] Open
Abstract
Background. Neuropeptides are important regulators of physiological processes and behavior. Although they tend to be generally well conserved, recent results using trancriptome sequencing on decapod crustaceans give the impression of significant differences between species, raising the question whether such differences are real or artefacts. Methods. The BLAST+ program was used to find short reads coding neuropeptides and neurohormons in publicly available short read archives. Such reads were then used to find similar reads in the same archives, and the DNA assembly program Trinity was employed to construct contigs encoding the neuropeptide precursors as completely as possible. Results. The seven decapod species analyzed in this fashion, the crabs Eriocheir sinensis, Carcinus maenas and Scylla paramamosain, the shrimp Litopenaeus vannamei, the lobster Homarus americanus, the fresh water prawn Macrobrachium rosenbergii and the crayfish Procambarus clarkii had remarkably similar neuropeptidomes. Although some neuropeptide precursors could not be assembled, in many cases individual reads pertaining to the missing precursors show unambiguously that these neuropeptides are present in these species. In other cases, the tissues that express those neuropeptides were not used in the construction of the cDNA libraries. One novel neuropeptide was identified: elongated PDH (pigment dispersing hormone), a variation on PDH that has a two-amino-acid insertion in its core sequence. Hyrg is another peptide that is ubiquitously present in decapods and is likely a novel neuropeptide precursor. Discussion. Many insect species have lost one or more neuropeptide genes, but apart from elongated PDH and hyrg all other decapod neuropeptides are present in at least some insect species, and allatotropin is the only insect neuropeptide missing from decapods. This strong similarity between insect and decapod neuropeptidomes makes it possible to predict the receptors for decapod neuropeptides that have been deorphanized in insects. This includes the androgenic insulin-like peptide that seems to be homologous to drosophila insulin-like peptide 8.
Collapse
Affiliation(s)
- Jan A Veenstra
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (CNRS UMR5287), University of Bordeaux , Pessac , France
| |
Collapse
|
23
|
Christie AE. Prediction of Scylla olivacea (Crustacea; Brachyura) peptide hormones using publicly accessible transcriptome shotgun assembly (TSA) sequences. Gen Comp Endocrinol 2016; 230-231:1-16. [PMID: 26965954 DOI: 10.1016/j.ygcen.2016.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/06/2016] [Indexed: 12/21/2022]
Abstract
The aquaculture of crabs from the genus Scylla is of increasing economic importance for many Southeast Asian countries. Expansion of Scylla farming has led to increased efforts to understand the physiology and behavior of these crabs, and as such, there are growing molecular resources for them. Here, publicly accessible Scylla olivacea transcriptomic data were mined for putative peptide-encoding transcripts; the proteins deduced from the identified sequences were then used to predict the structures of mature peptide hormones. Forty-nine pre/preprohormone-encoding transcripts were identified, allowing for the prediction of 187 distinct mature peptides. The identified peptides included isoforms of adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, bursicon β, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/molt-inhibiting hormone, diuretic hormone 31, eclosion hormone, FMRFamide-like peptide, HIGSLYRamide, insulin-like peptide, intocin, leucokinin, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, SIFamide and tachykinin-related peptide, all well-known neuropeptide families. Surprisingly, the tissue used to generate the transcriptome mined here is reported to be testis. Whether or not the testis samples had neural contamination is unknown. However, if the peptides are truly produced by this reproductive organ, it could have far reaching consequences for the study of crustacean endocrinology, particularly in the area of reproductive control. Regardless, this peptidome is the largest thus far predicted for any brachyuran (true crab) species, and will serve as a foundation for future studies of peptidergic control in members of the commercially important genus Scylla.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
24
|
Christie AE, Chi M, Lameyer TJ, Pascual MG, Shea DN, Stanhope ME, Schulz DJ, Dickinson PS. Neuropeptidergic Signaling in the American Lobster Homarus americanus: New Insights from High-Throughput Nucleotide Sequencing. PLoS One 2015; 10:e0145964. [PMID: 26716450 PMCID: PMC4696782 DOI: 10.1371/journal.pone.0145964] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/10/2015] [Indexed: 11/20/2022] Open
Abstract
Peptides are the largest and most diverse class of molecules used for neurochemical communication, playing key roles in the control of essentially all aspects of physiology and behavior. The American lobster, Homarus americanus, is a crustacean of commercial and biomedical importance; lobster growth and reproduction are under neuropeptidergic control, and portions of the lobster nervous system serve as models for understanding the general principles underlying rhythmic motor behavior (including peptidergic neuromodulation). While a number of neuropeptides have been identified from H. americanus, and the effects of some have been investigated at the cellular/systems levels, little is currently known about the molecular components of neuropeptidergic signaling in the lobster. Here, a H. americanus neural transcriptome was generated and mined for sequences encoding putative peptide precursors and receptors; 35 precursor- and 41 receptor-encoding transcripts were identified. We predicted 194 distinct neuropeptides from the deduced precursor proteins, including members of the adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin C, bursicon, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone (CHH), CHH precursor-related peptide, diuretic hormone 31, diuretic hormone 44, eclosion hormone, FLRFamide, GSEFLamide, insulin-like peptide, intocin, leucokinin, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone, proctolin, pyrokinin, SIFamide, sulfakinin and tachykinin-related peptide families. While some of the predicted peptides are known H. americanus isoforms, most are novel identifications, more than doubling the extant lobster neuropeptidome. The deduced receptor proteins are the first descriptions of H. americanus neuropeptide receptors, and include ones for most of the peptide groups mentioned earlier, as well as those for ecdysis-triggering hormone, red pigment concentrating hormone and short neuropeptide F. Multiple receptors were identified for most peptide families. These data represent the most complete description of the molecular underpinnings of peptidergic signaling in H. americanus, and will serve as a foundation for future gene-based studies of neuropeptidergic control in the lobster.
Collapse
Affiliation(s)
- Andrew E. Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center and Technology, 6500 College Station, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, Hawaii, 96822, United States of America
- * E-mail:
| | - Megan Chi
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center and Technology, 6500 College Station, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, Hawaii, 96822, United States of America
| | - Tess J. Lameyer
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine, 04672, United States of America
| | - Micah G. Pascual
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center and Technology, 6500 College Station, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, Hawaii, 96822, United States of America
| | - Devlin N. Shea
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine, 04672, United States of America
| | - Meredith E. Stanhope
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine, 04672, United States of America
| | - David J. Schulz
- Division of Biological Sciences, University of Missouri, 218A LeFevre Hall, Columbia, Missouri, 65211, United States of America
| | - Patsy S. Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine, 04672, United States of America
| |
Collapse
|
25
|
Christie AE, Chi M. Prediction of the neuropeptidomes of members of the Astacidea (Crustacea, Decapoda) using publicly accessible transcriptome shotgun assembly (TSA) sequence data. Gen Comp Endocrinol 2015; 224:38-60. [PMID: 26070255 DOI: 10.1016/j.ygcen.2015.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 05/30/2015] [Accepted: 06/03/2015] [Indexed: 11/20/2022]
Abstract
The decapod infraorder Astacidea is comprised of clawed lobsters and freshwater crayfish. Due to their economic importance and their use as models for investigating neurochemical signaling, much work has focused on elucidating their neurochemistry, particularly their peptidergic systems. Interestingly, no astacidean has been the subject of large-scale peptidomic analysis via in silico transcriptome mining, this despite growing transcriptomic resources for members of this taxon. Here, the publicly accessible astacidean transcriptome shotgun assembly data were mined for putative peptide-encoding transcripts; these sequences were used to predict the structures of mature neuropeptides. One hundred seventy-six distinct peptides were predicted for Procambarus clarkii, including isoforms of adipokinetic hormone-corazonin-like peptide (ACP), allatostatin A (AST-A), allatostatin B, allatostatin C (AST-C) bursicon α, bursicon β, CCHamide, crustacean hyperglycemic hormone (CHH)/ion transport peptide (ITP), diuretic hormone 31 (DH31), eclosion hormone (EH), FMRFamide-like peptide, GSEFLamide, intocin, leucokinin, neuroparsin, neuropeptide F, pigment dispersing hormone, pyrokinin, RYamide, short neuropeptide F (sNPF), SIFamide, sulfakinin and tachykinin-related peptide (TRP). Forty-six distinct peptides, including isoforms of AST-A, AST-C, bursicon α, CCHamide, CHH/ITP, DH31, EH, intocin, myosuppressin, neuroparsin, red pigment concentrating hormone, sNPF and TRP, were predicted for Pontastacus leptodactylus, with a bursicon β and a neuroparsin predicted for Cherax quadricarinatus. The identification of ACP is the first from a decapod, while the predictions of CCHamide, EH, GSEFLamide, intocin, neuroparsin and RYamide are firsts for the Astacidea. Collectively, these data greatly expand the catalog of known astacidean neuropeptides and provide a foundation for functional studies of peptidergic signaling in members of this decapod infraorder.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | - Megan Chi
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
26
|
Arendt A, Neupert S, Schendzielorz J, Predel R, Stengl M. The neuropeptide SIFamide in the brain of three cockroach species. J Comp Neurol 2015; 524:1337-60. [DOI: 10.1002/cne.23910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/14/2015] [Accepted: 10/01/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Andreas Arendt
- Department of Biology; Animal Physiology, University of Kassel; 34132 Kassel Germany
| | - Susanne Neupert
- Department of Biology; Institute of Zoology, University of Cologne; 50674 Cologne Germany
| | - Julia Schendzielorz
- Department of Biology; Animal Physiology, University of Kassel; 34132 Kassel Germany
| | - Reinhard Predel
- Department of Biology; Institute of Zoology, University of Cologne; 50674 Cologne Germany
| | - Monika Stengl
- Department of Biology; Animal Physiology, University of Kassel; 34132 Kassel Germany
| |
Collapse
|
27
|
Christie AE. Neuropeptide discovery in Symphylella vulgaris (Myriapoda, Symphyla): In silico prediction of the first myriapod peptidome. Gen Comp Endocrinol 2015; 223:73-86. [PMID: 26407502 DOI: 10.1016/j.ygcen.2015.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/22/2015] [Indexed: 12/27/2022]
Abstract
Arthropods have contributed greatly to our understanding of peptidergic control of physiology and behavior, and being the largest and most diverse animal phylum, represent a model for investigating peptide hormone evolution. Surprisingly, one arthropod subphylum, the Myriapoda, is uninvestigated in terms of its peptide hormones. The public deposition of a transcriptome for Symphylella vulgaris, a pseudocentipede, provides a means for peptide discovery in myriapods. Here, in silico transcriptome mining was used to identify 47 S. vulgaris neuropeptide-encoding transcripts within this dataset. The identified transcripts allowed for the deduction of 31 unique pre/preprohormone sequences, with 97 distinct mature peptides predicted from the deduced proteins. The predicted S. vulgaris peptidome includes members of the adipokinetic hormone/red pigment concentrating hormone, adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin C (AST-C), allatotropin, CCHamide, crustacean cardioactive peptide, GSEFLamide, insulin-like peptide, intocin, proctolin, pyrokinin, short neuropeptide F, SIFamide and sulfakinin families. This is the first, and thus far only, peptidome predicted for a myriapod. Of particular note were a modified AST-C, TYWKQCAFNAVSRFamide, that lacks one of two cysteine residues (i.e. one at position 13) stereotypically present in members of this peptide family (and hence is missing the disulfide bridge that spans these residues) and a SIFamide, PPFNGSIFamide, that is truncated due to a lysine for arginine substitution in the dibasic residue pair commonly located at positions 3 and 4 of stereotypical full-length isoforms (e.g. the crustacean peptide GYRKPPFNGSIFamide). The peptides predicted here represent the only extant resource for initiating investigations of native peptidergic signaling in the Myriapoda.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
28
|
Gemperline E, Li L. MALDI-MS-assisted molecular imaging of metabolites in legume plants. Methods Mol Biol 2015; 1203:29-40. [PMID: 25361664 DOI: 10.1007/978-1-4939-1357-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mass spectrometric imaging (MSI) is a powerful analytical tool that provides spatial information of several compounds in a single experiment. This technique has been used extensively to study proteins, peptides, and lipids, and is becoming more common for studying small molecules such as endogenous metabolites. With matrix-assisted laser desorption/ionization (MALDI)-MSI, spatial distributions of multiple metabolites can be simultaneously detected within a biological tissue section. Herein, we present a method developed specifically for imaging metabolites in legume plant roots and root nodules which can be adapted for studying metabolites in other legume organs and even other biological tissue samples. We focus on essential steps such as sample preparation and matrix application, comparing several useful techniques, and present a standard workflow that can be easily modified for different tissue types and instrumentation.
Collapse
Affiliation(s)
- Erin Gemperline
- Department of Chemistry, University of Wisconsin-Madison, 5232 Rennebohm Hall, 777 Highland Avenue, Madison, WI, 53705-2222, USA
| | | |
Collapse
|
29
|
Chen R, Ouyang C, Xiao M, Li L. In situ identification and mapping of neuropeptides from the stomatogastric nervous system of Cancer borealis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:2437-2444. [PMID: 25303472 PMCID: PMC4216564 DOI: 10.1002/rcm.7037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/26/2014] [Accepted: 08/31/2014] [Indexed: 06/02/2023]
Abstract
RATIONALE The crustacean stomatogastric nervous system (STNS) is a classic experimental model to derive basic knowledge about neuronal functions and how they coordinate with each other to generate neural circuits. To investigate the components of the neuromodulators and how they are distributed in such a system is essential to understand the underlying mechanism. In this study, in situ mass spectrometry based techniques were employed to fulfill this goal. METHODS Offline high-performance liquid chromatography (HPLC) separation was coupled with matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) to analyze the neuropeptides in the stomatogastric ganglion (STG) tissue extract from the Jonah crab Cancer borealis. Direct tissue analysis was employed to investigate the neuropeptides present in the STNS. MALDI imaging was also applied to map the localization of multiple neuropeptide families in the STG and the upstream nerve fibers. RESULTS Fifty-seven neuropeptides were detected from a single desheathed STG using direct tissue analysis, and they were from eleven different neuropeptide families, including FaRP, AST-A, AST-B, etc. Differential neuropeptide profiles from three different types of ganglia and two types of nerve fiber tissues from the STNS were documented. The direct tissue analysis was shown better for studying neuropeptides from small neural organs like the STG as compared to the large-scale HPLC/MALDI analysis. MALDI images were also acquired to study the distribution of neuropeptides in the STG. CONCLUSIONS In this study, the components and distribution of neuropeptides have been analyzed in the STNS from C. borealis using direct tissue profiling and MALDI imaging. The results show that the direct tissue analysis of desheathed neural tissues can provide higher sensitivity for neuropeptide study compared to large-scale HPLC/MALDI analysis of pooled tissues. The results are valuable for understanding the functions of neuropeptides in neural network generation.
Collapse
Affiliation(s)
- Ruibing Chen
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Chuanzi Ouyang
- Department of Chemistry and Pharmacy School, University of Wisconsin at Madison, WI 53705, USA
| | - Mingming Xiao
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lingjun Li
- Department of Chemistry and Pharmacy School, University of Wisconsin at Madison, WI 53705, USA
| |
Collapse
|
30
|
Christie AE. Prediction of the first neuropeptides from a member of the Remipedia (Arthropoda, Crustacea). Gen Comp Endocrinol 2014; 201:74-86. [PMID: 24530630 DOI: 10.1016/j.ygcen.2014.01.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/10/2014] [Accepted: 01/28/2014] [Indexed: 11/16/2022]
Abstract
The Remipedia is a small, recently described crustacean class that inhabits submerged marine/anchialine cave systems. Phylogenetic and morphological investigations support a sister group relationship between these animals and the hexapods. The recent deposition of numerous (>100,000) transcriptome shotgun assembly sequences for Speleonectes cf. tulumensis provides a unique resource to identify proteins of interest from a member of the Remipedia. Here, this dataset was mined for sequences encoding putative neuropeptide pre/preprohormones, with the mature peptides predicted from the deduced precursors using an established workflow. The structures of 40 mature peptides were obtained via this strategy, including members of 11 well-known arthropod peptide families (adipokinetic hormone/corazonin-like peptide [ACP], allatostatin A, allatostatin C, diuretic hormone 31, eclosion hormone, ion transport peptide/crustacean hyperglycemic hormone, neuropeptide F, proctolin, SIFamide, sulfakinin and tachykinin-related peptide); these are the only peptides thus far described from any member of the Remipedia. Comparison of the Speleonectes isoforms with those from other crustaceans and hexapods revealed the peptidome of this species to have characteristics of both subphyla (e.g. it possesses the stereotypical decapod crustacean SIFamide and tachykinin-related peptide isoforms, while simultaneously being the only crustacean with an insect AKC). Moreover, BLAST searches in which the deduced Speleonectes precursors were compared to the pancrustacean protein database most frequently returned insect homologs as the closest matches. The peptidomic analyses presented here are consistent with the hypothesized phylogenetic position of the Remipedia within the Pancrustacea, and serve as a foundation from which to launch future investigations of peptidergic signaling in remipedes.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
31
|
Gemperline E, Li L. MALDI-mass spectrometric imaging for the investigation of metabolites in Medicago truncatula root nodules. J Vis Exp 2014. [PMID: 24637669 DOI: 10.3791/51434] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Most techniques used to study small molecules, such as pharmaceutical drugs or endogenous metabolites, employ tissue extracts which require the homogenization of the tissue of interest that could potentially cause changes in the metabolic pathways being studied(1). Mass spectrometric imaging (MSI) is a powerful analytical tool that can provide spatial information of analytes within intact slices of biological tissue samples(1-5). This technique has been used extensively to study various types of compounds including proteins, peptides, lipids, and small molecules such as endogenous metabolites. With matrix-assisted laser desorption/ionization (MALDI)-MSI, spatial distributions of multiple metabolites can be simultaneously detected. Herein, a method developed specifically for conducting untargeted metabolomics MSI experiments on legume roots and root nodules is presented which could reveal insights into the biological processes taking place. The method presented here shows a typical MSI workflow, from sample preparation to image acquisition, and focuses on the matrix application step, demonstrating several matrix application techniques that are useful for detecting small molecules. Once the MS images are generated, the analysis and identification of metabolites of interest is discussed and demonstrated. The standard workflow presented here can be easily modified for different tissue types, molecular species, and instrumentation.
Collapse
Affiliation(s)
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin- Madison; School of Pharmacy, University of Wisconsin- Madison;
| |
Collapse
|
32
|
Toullec JY, Corre E, Bernay B, Thorne MAS, Cascella K, Ollivaux C, Henry J, Clark MS. Transcriptome and peptidome characterisation of the main neuropeptides and peptidic hormones of a euphausiid: the Ice Krill, Euphausia crystallorophias. PLoS One 2013; 8:e71609. [PMID: 23990964 PMCID: PMC3749230 DOI: 10.1371/journal.pone.0071609] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/01/2013] [Indexed: 11/19/2022] Open
Abstract
Background The Ice krill, Euphausia crystallorophias is one of the species at the base of the Southern Ocean food chain. Given their significant contribution to the biomass of the Southern Ocean, it is vitally important to gain a better understanding of their physiology and, in particular, anticipate their responses to climate change effects in the warming seas around Antarctica. Methodology/Principal Findings Illumina sequencing was used to produce a transcriptome of the ice krill. Analysis of the assembled contigs via two different methods, produced 36 new pre-pro-peptides, coding for 61 neuropeptides or peptide hormones belonging to the following families: Allatostatins (A, B et C), Bursicon (α and β), Crustacean Hyperglycemic Hormones (CHH and MIH/VIHs), Crustacean Cardioactive Peptide (CCAP), Corazonin, Diuretic Hormones (DH), the Eclosion Hormone (EH), Neuroparsin, Neuropeptide F (NPF), small Neuropeptide F (sNPF), Pigment Dispersing Hormone (PDH), Red Pigment Concentrating Hormone (RPCH) and finally Tachykinin. LC/MS/MS proteomics was also carried out on eyestalk extracts, which are the major site of neuropeptide synthesis in decapod crustaceans. Results confirmed the presence of six neuropeptides and six precursor-related peptides previously identified in the transcriptome analyses. Conclusions This study represents the first comprehensive analysis of neuropeptide hormones in a Eucarida non-decapod Malacostraca, several of which are described for the first time in a non-decapod crustacean. Additionally, there is a potential expansion of PDH and Neuropeptide F family members, which may reflect certain life history traits such as circadian rhythms associated with diurnal migrations and also the confirmation via mass spectrometry of several novel pre-pro-peptides, of unknown function. Knowledge of these essential hormones provides a vital framework for understanding the physiological response of this key Southern Ocean species to climate change and provides a valuable resource for studies into the molecular phylogeny of these organisms and the evolution of neuropeptide hormones.
Collapse
Affiliation(s)
- Jean-Yves Toullec
- UPMC University of Paris 06, UMR 7144 CNRS, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, UMR 7144, Station Biologique de Roscoff, Roscoff, France
- * E-mail:
| | - Erwan Corre
- UPMC University of Paris 06, FR 2424 CNRS, ABiMS, Analysis and Bioinformatics for Marine Science, Station Biologique de Roscoff, Roscoff, France
| | - Benoît Bernay
- University of Caen Basse Normandie, FRE 3484 CNRS, Biologie des Mollusques Marins et des Ecosystèmes Associés, Caen, France
- University of Caen Basse Normandie, Plateforme PROTEOGEN, Caen, France, SF ICORE 4206
| | - Michael A. S. Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Cambridge, United Kingdom
| | - Kévin Cascella
- UPMC University of Paris 06, UMR 7144 CNRS, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, UMR 7144, Station Biologique de Roscoff, Roscoff, France
| | - Céline Ollivaux
- UPMC University of Paris 06, UMR 7150 CNRS, Mer et Santé, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, UMR 7150, Station Biologique de Roscoff, Roscoff, France
- Université Européenne de Bretagne, UEB, France
| | - Joël Henry
- University of Caen Basse Normandie, FRE 3484 CNRS, Biologie des Mollusques Marins et des Ecosystèmes Associés, Caen, France
- University of Caen Basse Normandie, Plateforme PROTEOGEN, Caen, France, SF ICORE 4206
| | - Melody S. Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Cambridge, United Kingdom
| |
Collapse
|
33
|
Stemmler EA, Barton EE, Esonu OK, Polasky DA, Onderko LL, Bergeron AB, Christie AE, Dickinson PS. C-terminal methylation of truncated neuropeptides: an enzyme-assisted extraction artifact involving methanol. Peptides 2013; 46:108-25. [PMID: 23714174 DOI: 10.1016/j.peptides.2013.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 10/26/2022]
Abstract
Neuropeptides are the largest class of signaling molecules used by nervous systems. Today, neuropeptide discovery commonly involves chemical extraction from a tissue source followed by mass spectrometric characterization. Ideally, the extraction procedure accurately preserves the sequence and any inherent modifications of the native peptides. Here, we present data showing that this is not always true. Specifically, we present evidence showing that, in the lobster Homarus americanus, the orcokinin family members, NFDEIDRSGFG-OMe and SSEDMDRLGFG-OMe, are non-native peptides generated from full-length orcokinin precursors as the result of a highly selective peptide modification (peptide truncation with C-terminal methylation) that occurs during extraction. These peptides were observed by MALDI-FTMS and LC-Q-TOFMS analyses when eyestalk ganglia were extracted in a methanolic solvent, but not when tissues were dissected, co-crystallized with matrix, and analyzed directly with methanol excluded from the sample preparation. The identity of NFDEIDRSGFG-OMe was established using MALDI-FTMS/SORI-CID, LC-Q-TOFMS/MS, and comparison with a peptide standard. Extraction substituting deuterated methanol for methanol confirmed that the latter is the source of the C-terminal methyl group, and MS/MS confirmed the C-terminal localization of the added CD3. Surprisingly, NFDEIDRSGFG-OMe is not produced via a chemical acid-catalyzed esterification. Instead, the methylated peptide appears to result from proteolytic truncation in the presence of methanol, as evidenced by a reduction in conversion with the addition of a protease-inhibitor cocktail; heat effectively eliminated the conversion. This unusual and highly specific extraction-derived peptide conversion exemplifies the need to consider both chemical and biochemical processes that may modify the structure of endogenous neuropeptides.
Collapse
Affiliation(s)
- Elizabeth A Stemmler
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hui L, D’Andrea BT, Jia C, Liang Z, Christie AE, Li L. Mass spectrometric characterization of the neuropeptidome of the ghost crab Ocypode ceratophthalma (Brachyura, Ocypodidae). Gen Comp Endocrinol 2013; 184:22-34. [PMID: 23298572 PMCID: PMC3684161 DOI: 10.1016/j.ygcen.2012.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 11/22/2022]
Abstract
The horn-eyed ghost crab Ocypode ceratophthalma is a terrestrial brachyuran native to the Indo-Pacific region, including the islands of Hawaii. Here, multiple mass spectrometric platforms, including matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS) and nanoflow liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nanoLC-ESI-Q-TOF MS/MS), were used to characterize the neuropeptidome of this species. In total, 156 peptide paracrines/hormones, representing 15 peptide families, were identified from the O. ceratophthalma supraesophageal ganglion (brain), eyestalk ganglia, pericardial organ and/or sinus gland, including 59 neuropeptides de novo sequenced here for the first time. Among the de novo sequenced peptides were isoforms of A-type allatostatin, B-type allatostatin, FMRFamide-like peptide (FLP), orcokinin, orcomyotropin and RYamide. Of particular note, were several novel FLPs including DVRAPALRLRFamide, an isoform of short neuropeptide F, and NRSNLRFamide, the orcokinins NFDEIDRSGYGFV and DFDEIDRSSFGFH, which exhibit novel Y for F and D for N substitutions at positions 10 and 1, respectively, and FDAYTTGFGHS, a member of the orcomyotropin family exhibiting a novel Y for F substitution at position 4. Taken collectively, the set of peptides described here represents the largest number of neuropeptides thus far characterized via mass spectrometry from any single crustacean, and provides a framework for future investigations of the physiological roles played by these molecules in this species.
Collapse
Affiliation(s)
- Limei Hui
- Department of Chemistry University of Wisconsin 1101 University Avenue Madison, Wisconsin 53706-1396, USA
| | - Brandon T. D’Andrea
- Békésy Laboratory of Neurobiology Pacific Biosciences Research Center University of Hawaii at Manoa 1993 East-West Road Honolulu, Hawaii 96822, USA
| | - Chenxi Jia
- School of Pharmacy University of Wisconsin 777 Highland Avenue Madison, Wisconsin 53705-2222, USA
| | - Zhidan Liang
- School of Pharmacy University of Wisconsin 777 Highland Avenue Madison, Wisconsin 53705-2222, USA
| | - Andrew E. Christie
- Békésy Laboratory of Neurobiology Pacific Biosciences Research Center University of Hawaii at Manoa 1993 East-West Road Honolulu, Hawaii 96822, USA
- Correspondence to either: Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, Hawaii 96822, USA. Phone: 808-956-5212; FAX: 808-956-6984; School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA; Phone: 608-265-8491; Fax: 608-262-5345;
| | - Lingun Li
- Department of Chemistry University of Wisconsin 1101 University Avenue Madison, Wisconsin 53706-1396, USA
- School of Pharmacy University of Wisconsin 777 Highland Avenue Madison, Wisconsin 53705-2222, USA
- Correspondence to either: Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, Hawaii 96822, USA. Phone: 808-956-5212; FAX: 808-956-6984; School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA; Phone: 608-265-8491; Fax: 608-262-5345;
| |
Collapse
|
35
|
Kwiatkowski MA, Gabranski ER, Huber KE, Chapline MC, Christie AE, Dickinson PS. Coordination of distinct but interacting rhythmic motor programs by a modulatory projection neuron using different co-transmitters in different ganglia. ACTA ACUST UNITED AC 2013; 216:1827-36. [PMID: 23393282 DOI: 10.1242/jeb.082503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
While many neurons are known to contain multiple neurotransmitters, the specific roles played by each co-transmitter within a neuron are often poorly understood. Here, we investigated the roles of the co-transmitters of the pyloric suppressor (PS) neurons, which are located in the stomatogastric nervous system (STNS) of the lobster Homarus americanus. The PS neurons are known to contain histamine; using RT-PCR, we identified a second co-transmitter as the FMRFamide-like peptide crustacean myosuppressin (Crust-MS). The modulatory effects of Crust-MS application on the gastric mill and pyloric patterns, generated in the stomatogastric ganglion (STG), closely resembled those recorded following extracellular PS neuron stimulation. To determine whether histamine plays a role in mediating the effects of the PS neurons in the STG, we bath-applied histamine receptor antagonists to the ganglion. In the presence of the antagonists, the histamine response was blocked, but Crust-MS application and PS stimulation continued to modulate the gastric and pyloric patterns, suggesting that PS effects in the STG are mediated largely by Crust-MS. PS neuron stimulation also excited the oesophageal rhythm, produced in the commissural ganglia (CoGs) of the STNS. Application of histamine, but not Crust-MS, to the CoGs mimicked this effect. Histamine receptor antagonists blocked the ability of both histamine and PS stimulation to excite the oesophageal rhythm, providing strong evidence that the PS neurons use histamine in the CoGs to exert their effects. Overall, our data suggest that the PS neurons differentially utilize their co-transmitters in spatially distinct locations to coordinate the activity of three independent networks.
Collapse
Affiliation(s)
- Molly A Kwiatkowski
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | | | | | | | | | | |
Collapse
|
36
|
Ye H, Hui L, Kellersberger K, Li L. Mapping of neuropeptides in the crustacean stomatogastric nervous system by imaging mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:134-47. [PMID: 23192703 PMCID: PMC3554855 DOI: 10.1007/s13361-012-0502-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/05/2012] [Accepted: 09/10/2012] [Indexed: 05/04/2023]
Abstract
Considerable effort has been devoted to characterizing the crustacean stomatogastric nervous system (STNS) with great emphasis on comprehensive analysis and mapping distribution of its diverse neuropeptide complement. Previously, immunohistochemistry (IHC) has been applied to this endeavor, yet with identification accuracy and throughput compromised. Therefore, molecular imaging methods are pursued to unequivocally determine the identity and location of the neuropeptides at a high spatial resolution. In this work, we developed a novel, multi-faceted mass spectrometric strategy combining profiling and imaging techniques to characterize and map neuropeptides from the blue crab Callinectes sapidus STNS at the network level. In total, 55 neuropeptides from 10 families were identified from the major ganglia in the C. sapidus STNS for the first time, including the stomatogastric ganglion (STG), the paired commissural ganglia (CoG), the esophageal ganglion (OG), and the connecting nerve stomatogastric nerve (stn) using matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) and the MS/MS capability of this technique. In addition, the locations of multiple neuropeptides were documented at a spatial resolution of 25 μm in the STG and upstream nerve using MALDI-TOF/TOF and high-mass-resolution and high-mass-accuracy MALDI-Fourier transform ion cyclotron resonance (FT-ICR) instrument. Furthermore, distributions of neuropeptides in the whole C. sapidus STNS were examined by imaging mass spectrometry (IMS). Different isoforms from the same family were simultaneously and unambiguously mapped, facilitating the functional exploration of neuropeptides present in the crustacean STNS and exemplifying the revolutionary role of this novel platform in neuronal network studies.
Collapse
Affiliation(s)
- Hui Ye
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA
| | - Limei Hui
- Department of Chemistry, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA
| | | | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA
- Department of Chemistry, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA
| |
Collapse
|
37
|
Yan XC, Chen ZF, Sun J, Matsumura K, Wu RSS, Qian PY. Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: evidence of roles in larval settlement. PLoS One 2012; 7:e46513. [PMID: 23056329 PMCID: PMC3462748 DOI: 10.1371/journal.pone.0046513] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 09/01/2012] [Indexed: 01/18/2023] Open
Abstract
The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in this study shall provide a platform for unraveling peptidergic control of barnacle larval behavior and settlement process.
Collapse
Affiliation(s)
- Xing-Cheng Yan
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhang-Fan Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jin Sun
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Kiyotaka Matsumura
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Rudolf S. S. Wu
- School of Biological Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Pei-Yuan Qian
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
38
|
Hui L, Xiang F, Zhang Y, Li L. Mass spectrometric elucidation of the neuropeptidome of a crustacean neuroendocrine organ. Peptides 2012; 36:230-9. [PMID: 22627023 PMCID: PMC3402701 DOI: 10.1016/j.peptides.2012.05.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/14/2012] [Accepted: 05/14/2012] [Indexed: 01/23/2023]
Abstract
The blue crab Callinectes sapidus has been used as an experimental model organism for the study of regulation of cardiac activity and other physiological processes. Moreover, it is an economically and ecologically important crustacean species. However, there was no previous report on the characterization of its neuropeptidome. To fill in this gap, we employed multiple sample preparation methods including direct tissue profiling, crude tissue extraction and tissue extract fractionation by HPLC to obtain a complete description of the neuropeptidome of C. sapidus. Matrix-assisted laser desorption/ionization (MALDI)-Fourier transform mass spectrometry (FTMS) and MALDI-time-of-flight (TOF)/TOF were utilized initially to obtain a quick snapshot of the neuropeptide profile, and subsequently nanoflow liquid chromatography (nanoLC) coupled with electrospray ionization quadrupole time-of-flight (ESI-Q-TOF) tandem MS analysis of neuropeptide extracts was conducted for de novo sequencing. Simultaneously, the pericardial organ (PO) tissue extract was labeled by a novel N,N-dimethylated leucine (DiLeu) reagent, offering enhanced fragmentation efficiency of peptides. In total, 130 peptide sequences belonging to 11 known neuropeptide families including orcomyotropin, pyrokinin, allatostatin A (AST-A), allatostatin B (AST-B), FMRFamide-like peptides (FLPs), and orcokinin were identified. Among these 130 sequences, 44 are novel peptides and 86 are previously identified. Overall, our results lay the groundwork for future physiological studies of neuropeptides in C. sapidus and other crustaceans.
Collapse
Affiliation(s)
- Limei Hui
- Department of Chemistry, University of Wisconsin-Madison, WI, USA
| | - Feng Xiang
- School of Pharmacy, University of Wisconsin-Madison, WI, USA
| | - Yuzhuo Zhang
- Department of Chemistry, University of Wisconsin-Madison, WI, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, WI, USA
- School of Pharmacy, University of Wisconsin-Madison, WI, USA
- Address correspondence to: Dr. Lingjun Li, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705-2222. Phone: (608)265-8491; Fax: (608)262-5345;
| |
Collapse
|
39
|
Jungmann JH, Heeren RMA. Emerging technologies in mass spectrometry imaging. J Proteomics 2012; 75:5077-5092. [PMID: 22469858 DOI: 10.1016/j.jprot.2012.03.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 12/11/2022]
Abstract
Mass spectrometry imaging (MSI) as an analytical tool for bio-molecular and bio-medical research targets accurate compound localization and identification. In terms of dedicated instrumentation, this translates into the demand for more detail in the image dimension (spatial resolution) and in the spectral dimension (mass resolution and accuracy), preferably combined in one instrument. At the same time, large area biological tissue samples require fast acquisition schemes, instrument automation and a robust data infrastructure. This review discusses the analytical capabilities of an "ideal" MSI instrument for bio-molecular and bio-medical molecular imaging. The analytical attributes of such an ideal system are contrasted with technological and methodological challenges in MSI. In particular, innovative instrumentation for high spatial resolution imaging in combination with high sample throughput is discussed. Detector technology that targets various shortcomings of conventional imaging detector systems is highlighted. The benefits of accurate mass analysis, high mass resolving power, additional separation strategies and multimodal three-dimensional data reconstruction algorithms are discussed to provide the reader with an insight in the current technological advances and the potential of MSI for bio-medical research.
Collapse
Affiliation(s)
- Julia H Jungmann
- FOM-Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Ron M A Heeren
- FOM-Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Hui L, Zhang Y, Wang J, Cook A, Ye H, Nusbaum MP, Li L. Discovery and functional study of a novel crustacean tachykinin neuropeptide. ACS Chem Neurosci 2011; 2:711-722. [PMID: 22247794 DOI: 10.1021/cn200042p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tachykinin-related peptide (TRP) refers to a large and structurally diverse family of neuropeptides found in vertebrate and invertebrate nervous systems. These peptides have various important physiological functions, from regulating stress in mammals to exciting the pyloric (food filtering) rhythm in the stomatogastric nervous system (STNS) of decapod crustaceans. Here, a novel TRP, which we named CalsTRP (Callinectes sapidus TRP), YPSGFLGMRamide (m/z 1026.52), was identified and de novo sequenced using a multifaceted mass spectrometry-based platform in both the central nervous system (CNS) and STNS of C. sapidus. We also found, using isotopic formaldehyde labeling, that CalsTRP in the C. sapidus brain and commissural ganglion (CoG) was up-regulated after food-intake, suggesting that TRPs in the CNS and STNS are involved in regulating feeding in Callinectes. Using imaging mass spectrometry, we determined that the previously identified CabTRP Ia (APSGFLGMRamide) and CalsTRP were co-localized in the C. sapidus brain. Lastly, our electrophysiological studies show that bath-applied CalsTRP and CabTRP Ia each activates the pyloric and gastric mill rhythms in C. sapidus, as shown previously for pyloric rhythm activation by CabTRP Ia in the crab Cancer borealis. In summary, the newly identified CalsTRP joins CabTRP Ia as a TRP family member in the decapod crustacean nervous system, whose actions include regulating feeding behavior.
Collapse
Affiliation(s)
| | | | | | - Aaron Cook
- Department of Neuroscience, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Michael P. Nusbaum
- Department of Neuroscience, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
41
|
Maestro JL, Tobe SS, Belles X. Leucomyosuppressin modulates cardiac rhythm in the cockroach Blattella germanica. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1677-1681. [PMID: 21925505 DOI: 10.1016/j.jinsphys.2011.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/02/2011] [Accepted: 09/05/2011] [Indexed: 05/31/2023]
Abstract
Several lines of evidence point to leucomyosuppressin (LMS) and myosuppressin-related peptides as inhibitory modulators of heartbeat frequency in arthropods. Previous studies in Blattella germanica demonstrated that heartbeat frequency decreases after ootheca formation, and remains low during the period of ootheca transport. Subsequent work in this cockroach resulted in the characterization of LMS and the cloning and sequencing of its precursor. The present paper describes the activity of LMS on modulation of heartbeat in B. germanica. Assays using semi-isolated heart preparations revealed that LMS reduces heartbeat frequency in a dose dependent manner, at physiological concentrations. Additional experiments showed that LMS inhibits heartbeat rates in vivo. Finally, injection of dsRNA for LMS elicited a decrease in LMS mRNA to virtually undetectable levels and heartbeat frequency increased significantly in females carrying oothecae. These data suggest that LMS contributes to the modulation of cardiac rhythm in B. germanica during the reproductive cycle.
Collapse
Affiliation(s)
- José L Maestro
- Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain.
| | | | | |
Collapse
|
42
|
Dircksen H, Neupert S, Predel R, Verleyen P, Huybrechts J, Strauss J, Hauser F, Stafflinger E, Schneider M, Pauwels K, Schoofs L, Grimmelikhuijzen CJP. Genomics, transcriptomics, and peptidomics of Daphnia pulex neuropeptides and protein hormones. J Proteome Res 2011; 10:4478-504. [PMID: 21830762 DOI: 10.1021/pr200284e] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report 43 novel genes in the water flea Daphnia pulex encoding 73 predicted neuropeptide and protein hormones as partly confirmed by RT-PCR. MALDI-TOF mass spectrometry identified 40 neuropeptides by mass matches and 30 neuropeptides by fragmentation sequencing. Single genes encode adipokinetic hormone, allatostatin-A, allatostatin-B, allatotropin, Ala(7)-CCAP, CCHamide, Arg(7)-corazonin, DENamides, CRF-like (DH52) and calcitonin-like (DH31) diuretic hormones, two ecdysis-triggering hormones, two FIRFamides, one insulin, two alternative splice forms of ion transport peptide (ITP), myosuppressin, neuroparsin, two neuropeptide-F splice forms, three periviscerokinins (but no pyrokinins), pigment dispersing hormone, proctolin, Met(4)-proctolin, short neuropeptide-F, three RYamides, SIFamide, two sulfakinins, and three tachykinins. There are two genes for a preprohormone containing orcomyotropin-like peptides and orcokinins, two genes for N-terminally elongated ITPs, two genes (clustered) for eclosion hormones, two genes (clustered) for bursicons alpha, beta, and two genes (clustered) for glycoproteins GPA2, GPB5, three genes for different allatostatins-C (two of them clustered) and three genes for IGF-related peptides. Detailed comparisons of genes or their products with those from insects and decapod crustaceans revealed that the D. pulex peptides are often closer related to their insect than to their decapod crustacean homologues, confirming that branchiopods, to which Daphnia belongs, are the ancestor group of insects.
Collapse
|
43
|
Christie AE, Chapline MC, Jackson JM, Dowda JK, Hartline N, Malecha SR, Lenz PH. Identification, tissue distribution and orexigenic activity of neuropeptide F (NPF) in penaeid shrimp. ACTA ACUST UNITED AC 2011; 214:1386-96. [PMID: 21430216 DOI: 10.1242/jeb.053173] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The neuropeptide Fs (NPFs) are an invertebrate subgroup of the FMRFamide-like peptides, and are proposed by some to be the homologs of vertebrate neuropeptide Y. Although there is some information about the identity, tissue distribution and function of NPFs in insects, essentially nothing is known about them in crustaceans. We have identified and characterized NPF-encoding transcripts from the penaeid shrimp Litopenaeus vannamei and Melicertus marginatus. Two transcripts were identified from each species. For each shrimp species, the two transcripts differed from one another by the presence or absence of an insert in the portion of the open reading frame that encodes the NPF peptide. The two NPF isoforms are identical in L. vannamei and M. marginatus, with their predicted structures being KPDPSQLANMAEALKYLQELDKYYSQVSRPRFamide and KPDPSQLANMAEALKYLQELDKYYSQVSRPSPRSAPGPASQIQALENTLKFLQLQELGKLYSLRARPRFamide. RT-PCR tissue profiling showed both transcripts are broadly distributed within the nervous system of each species. The transcript encoding the shorter NPF was detected in some, but not all, midgut samples. The transcript encoding the longer NPF was absent in the midgut of both species, and neither transcript was detected in their skeletal muscle. Juvenile L. vannamei fed on a diet supplemented with the shorter NPF exhibited a marked increase in food intake relative to control individuals that did not receive the supplement; the NPF-fed shrimp also showed a significant increase in growth relative to the control group. Our data suggest that NPF is present in both the nervous system and midgut of penaeid shrimp, functioning, at least in part, as a powerful orexigenic agent.
Collapse
Affiliation(s)
- Andrew E Christie
- Neuroscience Program, John W. and Jean C. Boylan Center for Cellular and Molecular Physiology, Mount Desert Island Biological Laboratory, PO Box 35, Old Bar Harbor Road, Salisbury Cove, Maine 04672, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Christie AE. Crustacean neuroendocrine systems and their signaling agents. Cell Tissue Res 2011; 345:41-67. [PMID: 21597913 DOI: 10.1007/s00441-011-1183-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/20/2011] [Indexed: 11/24/2022]
Abstract
Decapod crustaceans have long served as important models for the study of neuroendocrine signaling. For example, the process of neurosecretion was first formally demonstrated by using a member of this order. In this review, the major decapod neuroendocrine organs are described, as are their phylogenetic conservation and neurochemistry. In addition, recent advances in crustacean neurohormone discovery and tissue mapping are discussed, as are several recent advances in our understanding of hormonal control in this group of animals.
Collapse
Affiliation(s)
- Andrew E Christie
- Neuroscience Program, John W. and Jean C. Boylan Center for Cellular and Molecular Physiology, Mount Desert Island Biological Laboratory, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA.
| |
Collapse
|
45
|
Cooper AS, Leksrisawat B, Gilberts AB, Mercier AJ, Cooper RL. Physiological experimentation with the crayfish hindgut: a student laboratory exercise. J Vis Exp 2011:2324. [PMID: 21304460 PMCID: PMC3341103 DOI: 10.3791/2324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The purpose of the report is to describe dissection techniques for preparing the crayfish hindgut and to demonstrate how to make physiological recordings with a force transducer to monitor the strength of contraction. In addition, we demonstrate how to visually monitor peristaltic activity, which can be used as a bioassay for various peptides, biogenic amines and neurotransmitters. This preparation is amenable to student laboratories in physiology and for demonstrating pharmacological concepts to students. This preparation has been in use for over 100 years, and it still offers much as a model for investigating the generation and regulation of peristaltic rhythms and for describing the mechanisms underlying their modulation. The pharmacological assays and receptor sub-typing that were started over 50 years ago on the hindgut still contribute to research today. This robust preparation is well suited to training students in physiology and pharmacology.
Collapse
Affiliation(s)
- Ann S Cooper
- Department of Biology, University of Kentucky, KY, USA
| | | | | | | | | |
Collapse
|
46
|
Smith DF, Aizikov K, Duursma MC, Giskes F, Spaanderman DJ, McDonnell LA, O’Connor PB, Heeren RMA. An external matrix-assisted laser desorption ionization source for flexible FT-ICR Mass spectrometry imaging with internal calibration on adjacent samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:130-7. [PMID: 21472551 PMCID: PMC3042104 DOI: 10.1007/s13361-010-0003-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 09/02/2010] [Accepted: 10/08/2010] [Indexed: 05/03/2023]
Abstract
We describe the construction and application of a new MALDI source for FT-ICR mass spectrometry imaging. The source includes a translational X-Y positioning stage with a 10×10 cm range of motion for analysis of large sample areas, a quadrupole for mass selection, and an external octopole ion trap with electrodes for the application of an axial potential gradient for controlled ion ejection. An off-line LC MALDI MS/MS run demonstrates the utility of the new source for data- and position-dependent experiments. A FT-ICR MS imaging experiment of a coronal rat brain section yields ∼200 unique peaks from m/z 400-1100 with corresponding mass-selected images. Mass spectra from every pixel are internally calibrated with respect to polymer calibrants collected from an adjacent slide.
Collapse
Affiliation(s)
- Donald F. Smith
- FOM Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Konstantin Aizikov
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, MA USA
| | - Marc C. Duursma
- FOM Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Frans Giskes
- FOM Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Dirk-Jan Spaanderman
- FOM Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Liam A. McDonnell
- FOM Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam, The Netherlands
- Present Address: Department of Parasitology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Peter B. O’Connor
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, MA USA
- Present Address: Department of Chemistry, University of Warwick, Coventry, UK
| | - Ron M. A. Heeren
- FOM Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
47
|
Christie AE, Stemmler EA, Dickinson PS. Crustacean neuropeptides. Cell Mol Life Sci 2010; 67:4135-69. [PMID: 20725764 PMCID: PMC11115526 DOI: 10.1007/s00018-010-0482-8] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 07/09/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
Abstract
Crustaceans have long been used for peptide research. For example, the process of neurosecretion was first formally demonstrated in the crustacean X-organ-sinus gland system, and the first fully characterized invertebrate neuropeptide was from a shrimp. Moreover, the crustacean stomatogastric and cardiac nervous systems have long served as models for understanding the general principles governing neural circuit functioning, including modulation by peptides. Here, we review the basic biology of crustacean neuropeptides, discuss methodologies currently driving their discovery, provide an overview of the known families, and summarize recent data on their control of physiology and behavior.
Collapse
Affiliation(s)
- Andrew E Christie
- Program in Neuroscience, John W. and Jean C. Boylan Center for Cellular and Molecular Physiology, Mount Desert Island Biological Laboratory, Old Bar Harbor Road, P.O. Box 35, Salisbury Cove, ME 04672, USA.
| | | | | |
Collapse
|
48
|
Christie AE, Durkin CS, Hartline N, Ohno P, Lenz PH. Bioinformatic analyses of the publicly accessible crustacean expressed sequence tags (ESTs) reveal numerous novel neuropeptide-encoding precursor proteins, including ones from members of several little studied taxa. Gen Comp Endocrinol 2010; 167:164-78. [PMID: 20064519 DOI: 10.1016/j.ygcen.2010.01.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/31/2009] [Accepted: 01/03/2010] [Indexed: 12/25/2022]
Abstract
ESTs have been generated for many crustacean species, providing an invaluable resource for peptide discovery in members of this arthropod subphylum. Here, these data were mined for novel peptide-encoding transcripts, with the mature peptides encoded by them predicted using a combination of online peptide prediction programs and homology to known arthropod sequences. In total, 70 mature full-length/partial peptides representing members of 16 families/subfamilies were predicted, the vast majority being novel; the species from which the peptides were identified included members of the Branchiopoda (Daphnia carinata and Triops cancriformis), Maxillopoda (Caligus clemensi, Caligus rogercresseyi, Lepeophtheirus salmonis and Lernaeocera branchialis) and Malacostraca (Euphausia superba, Marsupenaeus japonicus, Penaeus monodon, Homarus americanus, Petrolisthes cinctipes, Callinectes sapidus and Portunus trituberculatus). Of particular note were the identifications of an intermediate between the insect adipokinetic hormones and crustacean red pigment concentrating hormone and a modified crustacean cardioactive peptide from the daphnid D. carinata; Arg(7)-corazonin was also deduced from this species, the first identification of a corazonin from a non-decapod crustacean. Our data also include the first reports of members of the calcitonin-like diuretic hormone, FMRFamide-related peptide (neuropeptide F subfamily) and orcokinin families from members of the Copepoda. Moreover, the prediction of a bursicon alpha from the euphausid E. superba represents the first peptide identified from any member of the basal eucaridean order Euphausiacea. In addition, large collections of insect eclosion hormone- and neuroparsin-like peptides were identified from a variety of species, greatly expanding the number of known members of these families in crustaceans.
Collapse
Affiliation(s)
- Andrew E Christie
- Neuroscience Program, John W. and Jean C. Boylan Center for Cellular and Molecular Physiology, Mount Desert Island Biological Laboratory, P.O. Box 35, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA.
| | | | | | | | | |
Collapse
|
49
|
Walker RJ, Papaioannou S, Holden-Dye L. A review of FMRFamide- and RFamide-like peptides in metazoa. INVERTEBRATE NEUROSCIENCE 2010; 9:111-53. [PMID: 20191373 DOI: 10.1007/s10158-010-0097-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 02/01/2010] [Indexed: 12/13/2022]
Abstract
Neuropeptides are a diverse class of signalling molecules that are widely employed as neurotransmitters and neuromodulators in animals, both invertebrate and vertebrate. However, despite their fundamental importance to animal physiology and behaviour, they are much less well understood than the small molecule neurotransmitters. The neuropeptides are classified into families according to similarities in their peptide sequence; and on this basis, the FMRFamide and RFamide-like peptides, first discovered in molluscs, are an example of a family that is conserved throughout the animal phyla. In this review, the literature on these neuropeptides has been consolidated with a particular emphasis on allowing a comparison between data sets in phyla as diverse as coelenterates and mammals. The intention is that this focus on the structure and functional aspects of FMRFamide and RFamide-like neuropeptides will inform understanding of conserved principles and distinct properties of signalling across the animal phyla.
Collapse
Affiliation(s)
- Robert J Walker
- School of Biological Sciences, University of Southampton, Southampton, UK
| | | | | |
Collapse
|
50
|
Christie AE, Stevens JS, Bowers MR, Chapline MC, Jensen DA, Schegg KM, Goldwaser J, Kwiatkowski MA, Pleasant TK, Shoenfeld L, Tempest LK, Williams CR, Wiwatpanit T, Smith CM, Beale KM, Towle DW, Schooley DA, Dickinson PS. Identification of a calcitonin-like diuretic hormone that functions as an intrinsic modulator of the American lobster, Homarus americanus, cardiac neuromuscular system. ACTA ACUST UNITED AC 2010; 213:118-27. [PMID: 20008368 DOI: 10.1242/jeb.037077] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In insects, a family of peptides with sequence homology to the vertebrate calcitonins has been implicated in the control of diuresis, a process that includes mixing of the hemolymph. Here, we show that a member of the insect calcitonin-like diuretic hormone (CLDH) family is present in the American lobster, Homarus americanus, serving, at least in part, as a powerful modulator of cardiac output. Specifically, during an ongoing EST project, a transcript encoding a putative H. americanus CLDH precursor was identified; a full-length cDNA was subsequently cloned. In silico analyses of the deduced prepro-hormone predicted the mature structure of the encoded CLDH to be GLDLGLGRGFSGSQAAKHLMGLAAANFAGGPamide (Homam-CLDH), which is identical to a known Tribolium castaneum peptide. RT-PCR tissue profiling suggests that Homam-CLDH is broadly distributed within the lobster nervous system, including the cardiac ganglion (CG), which controls the movement of the neurogenic heart. RT-PCR analysis conducted on pacemaker neuron- and motor neuron-specific cDNAs suggests that the motor neurons are the source of the CLDH message in the CG. Perfusion of Homam-CLDH through the isolated lobster heart produced dose-dependent increases in both contraction frequency and amplitude and a dose-dependent decrease in contraction duration, with threshold concentrations for all parameters in the range 10(-11) to 10(-10) mol l(-1) or less, among the lowest for any peptide on this system. This report is the first documentation of a decapod CLDH, the first demonstration of CLDH bioactivity outside the Insecta, and the first detection of an intrinsic neuropeptide transcript in the crustacean CG.
Collapse
Affiliation(s)
- A E Christie
- Center for Marine Functional Genomics, Mount Desert Island Biological Laboratory, PO Box 35, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|