1
|
Oliveira IS, Ferreira IG, Alexandre-Silva GM, Cerni FA, Cremonez CM, Arantes EC, Zottich U, Pucca MB. Scorpion toxins targeting Kv1.3 channels: insights into immunosuppression. J Venom Anim Toxins Incl Trop Dis 2019; 25:e148118. [PMID: 31131004 PMCID: PMC6483409 DOI: 10.1590/1678-9199-jvatitd-1481-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/17/2018] [Indexed: 01/26/2023] Open
Abstract
Scorpion venoms are natural sources of molecules that have, in addition to their
toxic function, potential therapeutic applications. In this source the
neurotoxins can be found especially those that act on potassium channels.
Potassium channels are responsible for maintaining the membrane potential in the
excitable cells, especially the voltage-dependent potassium channels (Kv),
including Kv1.3 channels. These channels (Kv1.3) are expressed by various types
of tissues and cells, being part of several physiological processes. However,
the major studies of Kv1.3 are performed on T cells due its importance on
autoimmune diseases. Scorpion toxins capable of acting on potassium channels
(KTx), mainly on Kv1.3 channels, have gained a prominent role for their possible
ability to control inflammatory autoimmune diseases. Some of these toxins have
already left bench trials and are being evaluated in clinical trials, presenting
great therapeutic potential. Thus, scorpion toxins are important natural
molecules that should not be overlooked in the treatment of autoimmune and other
diseases.
Collapse
Affiliation(s)
- Isadora S Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isabela G Ferreira
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Felipe A Cerni
- Ribeirão Preto Medical School, Department of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Caroline M Cremonez
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Eliane C Arantes
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Umberto Zottich
- Medical School, Federal University of Roraima, Boa Vista, RR, Brazil
| | - Manuela B Pucca
- Medical School, Federal University of Roraima, Boa Vista, RR, Brazil
| |
Collapse
|
2
|
Zou Y, Zhang F, Li Y, Wang Y, Li Y, Long Z, Shi S, Shuai L, Liu J, Di Z, Yin S. Cloning, expression and identification of KTX-Sp4, a selective Kv1.3 peptidic blocker from Scorpiops pococki. Cell Biosci 2017; 7:60. [PMID: 29142737 PMCID: PMC5674823 DOI: 10.1186/s13578-017-0187-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/27/2017] [Indexed: 11/10/2022] Open
Abstract
Background Specific and selective peptidic blockers of Kv1.3 channels can serve as a valuable drug lead for treating T cell-mediated autoimmune diseases, and scorpion venom is an important source of kv1.3 channel inhibitors. Through conducting transcriptomic sequencing for the venom gland of Scorpiops pococki from Xizang province of China, this research aims to discover a novel functional gene encoding peptidic blocker of Kv1.3, and identify its function. Results We screened out a new peptide toxin KTX-Sp4 which had 43 amino acids including six cysteine residues. Electrophysiological experiments indicated that recombinant expression products of KTX-Sp4 blocked both endogenous and exogenous Kv1.3 channel concentration-dependently, and exhibited good selectivity on Kv1.3 over Kv1.1, Kv1.2, respectively. Mutation experiments showed that the Kv1 turret region was responsible for the selectivity of KTX-Sp4 peptide on Kv1.3 over Kv1.1. Conclusions This work not only provided a novel lead compound for the development of anti autoimmune disease drugs, but also enriched the molecular basis for the interaction between scorpion toxins and potassium channels, serving as an important theoretical basis for designing high selective Kv1.3 peptide inhibitors.
Collapse
Affiliation(s)
- Yan Zou
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Feng Zhang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Yaxian Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Yuanfang Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Yi Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Zhengtao Long
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Shujuan Shi
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Li Shuai
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Jiukai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Zhiyong Di
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027 People's Republic of China
| | - Shijin Yin
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| |
Collapse
|
3
|
Venom gland transcriptomic and venom proteomic analyses of the scorpion Megacormus gertschi Díaz-Najera, 1966 (Scorpiones: Euscorpiidae: Megacorminae). Toxicon 2017; 133:95-109. [DOI: 10.1016/j.toxicon.2017.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/20/2017] [Accepted: 05/01/2017] [Indexed: 12/31/2022]
|
4
|
Ding L, Chen J, Hao J, Zhang J, Huang X, Hu F, Wu Z, Liu Y, Li W, Cao Z, Wu Y, Li J, Li S, Liu H, Wu W, Chen Z. Discovery of three toxin peptides with Kv1.3 channel and IL-2 cytokine-inhibiting activities from Non-Buthidae scorpions, Chaerilus tricostatus and Chaerilus tryznai. Peptides 2017; 91:13-19. [PMID: 28300672 DOI: 10.1016/j.peptides.2017.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/29/2022]
Abstract
Non-Buthidae venomous scorpions are huge natural sources of toxin peptides; however, only a few studies have been done to understand their toxin peptides. Herein, we describe three new potential immunomodulating toxin peptides, Ctri18, Ctry68 and Ctry2908, from two non-Buthidae scorpions, Chaerilus tricostatus and Chaerilus tryznai. Sequence alignment analyses showed that Ctri18, Ctry68 and Ctry2908 are three new members of the scorpion toxin α-KTx15 subfamily. Electrophysiological experiments showed that Ctri18, Ctry68 and Ctry2908 blocked the Kv1.3 channel at micromole to nanomole levels, but had weak effects on potassium channel KCNQ1 and sodium channel Nav1.4, which indicated that Ctri18, Ctry68 and Ctry2908 might have specific inhibiting effects on the Kv1.3 channel. ELISA experiments showed that Ctri18, Ctry68 and Ctry2908 inhibited IL-2 cytokine secretions of activated T lymphocyte in human PBMCs. Excitingly, consistent with the good Kv1.3 channel inhibitory activity, Ctry2908 inhibited cytokine IL-2 secretion in nanomole level, which indicated that Ctry2908 might be a new lead drug template toward Kv1.3 channels. Together, these studies discovered three new toxin peptides, Ctri18, Ctry68 and Ctry2908, with Kv1.3 channel and IL-2 cytokine-inhibiting activities from two scorpions, C. tricostatus and C. tryznai, and highlighted that non-Buthidae venomous scorpions are new natural toxin peptide sources.
Collapse
Affiliation(s)
- Li Ding
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China
| | - Jing Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Jinbo Hao
- Department of Clinical Laboratory, Shiyan Occupational Disease Hospital, Hubei, China
| | - Jiahui Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Xuejun Huang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Fangfang Hu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Zheng Wu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Yaru Liu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Jian Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Shan Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China
| | - Hongyan Liu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China
| | - Wenlong Wu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China.
| |
Collapse
|
5
|
Venom Gland Transcriptomic and Proteomic Analyses of the Enigmatic Scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with Insights on the Evolution of Its Venom Components. Toxins (Basel) 2016; 8:toxins8120367. [PMID: 27941686 PMCID: PMC5198561 DOI: 10.3390/toxins8120367] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 11/28/2022] Open
Abstract
Venom gland transcriptomic and proteomic analyses have improved our knowledge on the diversity of the heterogeneous components present in scorpion venoms. However, most of these studies have focused on species from the family Buthidae. To gain insights into the molecular diversity of the venom components of scorpions belonging to the family Superstitioniidae, one of the neglected scorpion families, we performed a transcriptomic and proteomic analyses for the species Superstitionia donensis. The total mRNA extracted from the venom glands of two specimens was subjected to massive sequencing by the Illumina protocol, and a total of 219,073 transcripts were generated. We annotated 135 transcripts putatively coding for peptides with identity to known venom components available from different protein databases. Fresh venom collected by electrostimulation was analyzed by LC-MS/MS allowing the identification of 26 distinct components with sequences matching counterparts from the transcriptomic analysis. In addition, the phylogenetic affinities of the found putative calcins, scorpines, La1-like peptides and potassium channel κ toxins were analyzed. The first three components are often reported as ubiquitous in the venom of different families of scorpions. Our results suggest that, at least calcins and scorpines, could be used as molecular markers in phylogenetic studies of scorpion venoms.
Collapse
|
6
|
Housley DM, Housley GD, Liddell MJ, Jennings EA. Scorpion toxin peptide action at the ion channel subunit level. Neuropharmacology 2016; 127:46-78. [PMID: 27729239 DOI: 10.1016/j.neuropharm.2016.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/06/2016] [Accepted: 10/06/2016] [Indexed: 12/19/2022]
Abstract
This review categorizes functionally validated actions of defined scorpion toxin (SCTX) neuropeptides across ion channel subclasses, highlighting key trends in this rapidly evolving field. Scorpion envenomation is a common event in many tropical and subtropical countries, with neuropharmacological actions, particularly autonomic nervous system modulation, causing significant mortality. The primary active agents within scorpion venoms are a diverse group of small neuropeptides that elicit specific potent actions across a wide range of ion channel classes. The identification and functional characterisation of these SCTX peptides has tremendous potential for development of novel pharmaceuticals that advance knowledge of ion channels and establish lead compounds for treatment of excitable tissue disorders. This review delineates the unique specificities of 320 individual SCTX peptides that collectively act on 41 ion channel subclasses. Thus the SCTX research field has significant translational implications for pathophysiology spanning neurotransmission, neurohumoral signalling, sensori-motor systems and excitation-contraction coupling. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- David M Housley
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia; Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia.
| | - Gary D Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Michael J Liddell
- Centre for Tropical Environmental and Sustainability Science and College of Science & Engineering, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia
| | - Ernest A Jennings
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia; Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Queensland 4878, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, QLD, Australia
| |
Collapse
|
7
|
Luna-Ramírez K, Quintero-Hernández V, Juárez-González VR, Possani LD. Whole Transcriptome of the Venom Gland from Urodacus yaschenkoi Scorpion. PLoS One 2015; 10:e0127883. [PMID: 26020943 PMCID: PMC4447460 DOI: 10.1371/journal.pone.0127883] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 04/20/2015] [Indexed: 12/24/2022] Open
Abstract
Australian scorpion venoms have been poorly studied, probably because they do not pose an evident threat to humans. In addition, the continent has other medically important venomous animals capable of causing serious health problems. Urodacus yaschenkoi belongs to the most widely distributed family of Australian scorpions (Urodacidae) and it is found all over the continent, making it a useful model system for studying venom composition and evolution. This communication reports the whole set of mRNA transcripts produced by the venom gland. U. yaschenkoi venom is as complex as its overseas counterparts. These transcripts certainly code for several components similar to known scorpion venom components, such as: alpha-KTxs, beta-KTxs, calcins, protease inhibitors, antimicrobial peptides, sodium-channel toxins, toxin-like peptides, allergens, La1-like, hyaluronidases, ribosomal proteins, proteasome components and proteins related to cellular processes. A comparison with the venom gland transcriptome of Centruroides noxius (Buthidae) showed that these two scorpions have similar components related to biological processes, although important differences occur among the venom toxins. In contrast, a comparison with sequences reported for Urodacus manicatus revealed that these two Urodacidae species possess the same subfamily of scorpion toxins. A comparison with sequences of an U. yaschenkoi cDNA library previously reported by our group showed that both techniques are reliable for the description of the venom components, but the whole transcriptome generated with Next Generation Sequencing platform provides sequences of all transcripts expressed. Several of which were identified in the proteome, but many more transcripts were identified including uncommon transcripts. The information reported here constitutes a reference for non-Buthidae scorpion venoms, providing a comprehensive view of genes that are involved in venom production. Further, this work identifies new putative bioactive compounds that could be used to seed research into new pharmacological compounds and increase our understanding of the function of different ion channels.
Collapse
Affiliation(s)
- Karen Luna-Ramírez
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria, Australia
| | - Verónica Quintero-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Víctor Rivelino Juárez-González
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
8
|
Ali SA, Alam M, Abbasi A, Kalbacher H, Schaechinger TJ, Hu Y, Zhijian C, Li W, Voelter W. Structure–Activity Relationship of a Highly Selective Peptidyl Inhibitor of Kv1.3 Voltage-Gated K+-Channel from Scorpion (B. sindicus) Venom. Int J Pept Res Ther 2013. [DOI: 10.1007/s10989-013-9362-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Chen Z, Han S, Cao Z, Wu Y, Zhuo R, Li W. Fusion expression and purification of four disulfide-rich peptides reveals enterokinase secondary cleavage sites in animal toxins. Peptides 2013. [PMID: 23207277 DOI: 10.1016/j.peptides.2012.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Animal toxins are powerful tools for testing the pharmacological, physiological, and structural characteristics of ion channels, proteases, and other receptors. However, most animal toxins are disulfide-rich peptides that are difficult to produce functionally. Here, a glutathione S-transferase (GST) fusion expression strategy was used to produce four recombinant animal toxin peptides, ChTX, StKTx23, BmP01, and ImKTx1, with different isoelectric points from 4.7 to 9.2. GST tags were removed by enterokinase, a widely used and effective commercial protease that cleaves after lysine at the cleavage site DDDDK. Using this strategy, two disulfide-rich animal toxins ChTX and StKTx23 were obtained successfully with a yield of approximately 1-2 mg/l culture. Electrophysiological experiments further showed that these two recombinant toxins showed good bioactivities, indicating that our method was effective in producing large amounts of functional disulfide-rich animal toxins. Interestingly, by analyzing the separated fractions of BmP01, StKTx23, and ImKTx1 using matrix-assisted laser desorption ionization time-of-flight mass spectrometry, four new enterokinase secondary cleavage sites were found, consisting of the sequences "WEYR," "EDK," "QNAR," and "DNDK." To our knowledge, this is the first report of the presence of secondary cleavage sites for commercial enterokinase in animal toxins. These findings will help us use commercial enterokinase appropriately as a cleavage tool in the production of animal toxins.
Collapse
Affiliation(s)
- Zongyun Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
10
|
Xie S, Feng J, Yu C, Li Z, Wu Y, Cao Z, Li W, He X, Xiang M, Han S. Identification of a new specific Kv1.3 channel blocker, Ctri9577, from the scorpion Chaerilus tricostatus. Peptides 2012; 36:94-9. [PMID: 22580271 DOI: 10.1016/j.peptides.2012.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 01/04/2023]
Abstract
Scorpion toxins are valuable resources for discovering new ion channel modulators and drug candidates. Potassium channel Kv1.3 is an important pharmacological target of T cell-mediated autoimmune diseases, which are encouraging the screening and design of the specific peptide blockers for Kv1.3 channel. Ctri9577, the first neurotoxin gene of Chaerilidae family was cloned from the venom of the scorpion Chaerilus tricostatus through the constructing its cDNA library. The sequence analysis showed that the mature peptide of Ctri9577 contained 39 amino acid residues including six conserved cysteines, whose low sequence similarity indicated that it was a new member of α-KTx15 subfamily. By using expression and purification technology, the recombinant peptide was obtained. Subsequently, the electrophysiological experiments indicated that the Ctri9577 peptide selectively inhibited Kv1.3 channel current with an IC(50) of 0.49±0.45 nM without effectively blocking potassium channels Kv1.1, Kv1.2, hERG and SK3. All these findings not only enrich the knowledge of toxins from the Chaerilidae family, but also present a novel potential drug candidate targeting Kv1.3 channels for the therapy of autoimmune diseases.
Collapse
Affiliation(s)
- Shujun Xie
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhao R, Dai H, Qiu S, Li T, He Y, Ma Y, Chen Z, Wu Y, Li W, Cao Z. SdPI, the first functionally characterized Kunitz-type trypsin inhibitor from scorpion venom. PLoS One 2011; 6:e27548. [PMID: 22087336 PMCID: PMC3210814 DOI: 10.1371/journal.pone.0027548] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 10/19/2011] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Kunitz-type venom peptides have been isolated from a wide variety of venomous animals. They usually have protease inhibitory activity or potassium channel blocking activity, which by virtue of the effects on predator animals are essential for the survival of venomous animals. However, no Kunitz-type peptides from scorpion venom have been functionally characterized. PRINCIPAL FINDINGS A new Kunitz-type venom peptide gene precursor, SdPI, was cloned and characterized from a venom gland cDNA library of the scorpion Lychas mucronatus. It codes for a signal peptide of 21 residues and a mature peptide of 59 residues. The mature SdPI peptide possesses a unique cysteine framework reticulated by three disulfide bridges, different from all reported Kunitz-type proteins. The recombinant SdPI peptide was functionally expressed. It showed trypsin inhibitory activity with high potency (K(i) = 1.6×10(-7) M) and thermostability. CONCLUSIONS The results illustrated that SdPI is a potent and stable serine protease inhibitor. Further mutagenesis and molecular dynamics simulation revealed that SdPI possesses a serine protease inhibitory active site similar to other Kunitz-type venom peptides. To our knowledge, SdPI is the first functionally characterized Kunitz-type trypsin inhibitor derived from scorpion venom, and it represents a new class of Kunitz-type venom peptides.
Collapse
Affiliation(s)
- Ruiming Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Hui Dai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Su Qiu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Tian Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yawen He
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yibao Ma
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Zongyun Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- * E-mail: (WL); (ZC)
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- * E-mail: (WL); (ZC)
| |
Collapse
|
12
|
Chen Z, Hu Y, Han S, Yin S, He Y, Wu Y, Cao Z, Li W. ImKTx1, a new Kv1.3 channel blocker with a unique primary structure. J Biochem Mol Toxicol 2011; 25:244-51. [DOI: 10.1002/jbt.20382] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/13/2010] [Accepted: 06/03/2010] [Indexed: 12/25/2022]
|
13
|
Han S, Hu Y, Zhang R, Yi H, Wei J, Wu Y, Cao Z, Li W, He X. ImKTx88, a novel selective Kv1.3 channel blocker derived from the scorpion Isometrus maculates. Toxicon 2010; 57:348-55. [PMID: 21194541 DOI: 10.1016/j.toxicon.2010.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/20/2010] [Accepted: 12/20/2010] [Indexed: 01/15/2023]
Abstract
Scorpion toxins are useful in the structure-function research of ion channels and valuable resources for drug design. The Kv1.3 channel is an important pharmacological target for the therapy of T cell-mediated autoimmune diseases, and many toxin peptides targeting Kv1.3 have been identified as good drug candidates in recent years. In this study, a novel toxin gene ImKTx88 was isolated from the venom of the scorpion Isometrus maculates through the construction of the cDNA library method, and the recombinant toxin peptide was purified and characterized physiologically. The mature peptide of ImKTx88 contained 39 amino acid residues including six cysteines and was predicted to be a new member of α-KTx scorpion family by sequence analysis. The electrophysiological experiments further indicated that the rImKTx88 peptide had a novel pharmacological profile: it inhibited Kv1.3 channel current with an IC₅₀ of 91 ± 42 pM, and exhibited very good selectivity for Kv1.3 over Kv1.1 (4200-fold) and Kv1.2 (93000-fold) channels, respectively. All these results suggested that, as a new selective Kv1.3 channel blocker, the ImKTx88 peptide may serve as a potential drug candidate in the therapy of autoimmune diseases.
Collapse
Affiliation(s)
- Song Han
- School of Medicine, Wuhan University, Wuhan 430071, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ruiming Z, Yibao M, Yawen H, Zhiyong D, Yingliang W, Zhijian C, Wenxin L. Comparative venom gland transcriptome analysis of the scorpion Lychas mucronatus reveals intraspecific toxic gene diversity and new venomous components. BMC Genomics 2010; 11:452. [PMID: 20663230 PMCID: PMC3091649 DOI: 10.1186/1471-2164-11-452] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/28/2010] [Indexed: 11/13/2022] Open
Abstract
Background Lychas mucronatus is one scorpion species widely distributed in Southeast Asia and southern China. Anything is hardly known about its venom components, despite the fact that it can often cause human accidents. In this work, we performed a venomous gland transcriptome analysis by constructing and screening the venom gland cDNA library of the scorpion Lychas mucronatus from Yunnan province and compared it with the previous results of Hainan-sourced Lychas mucronatus. Results A total of sixteen known types of venom peptides and proteins are obtained from the venom gland cDNA library of Yunnan-sourced Lychas mucronatus, which greatly increase the number of currently reported scorpion venom peptides. Interestingly, we also identified nineteen atypical types of venom molecules seldom reported in scorpion species. Surprisingly, the comparative transcriptome analysis of Yunnan-sourced Lychas mucronatus and Hainan-sourced Lychas mucronatus indicated that enormous diversity and vastly abundant difference could be found in venom peptides and proteins between populations of the scorpion Lychas mucronatus from different geographical regions. Conclusions This work characterizes a large number of venom molecules never identified in scorpion species. This result provides a comparative analysis of venom transcriptomes of the scorpion Lychas mucronatus from different geographical regions, which thoroughly reveals the fact that the venom peptides and proteins of the same scorpion species from different geographical regions are highly diversified and scorpion evolves to adapt a new environment by altering the primary structure and abundance of venom peptides and proteins.
Collapse
Affiliation(s)
- Zhao Ruiming
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
15
|
Yuan W, Cao L, Ma Y, Mao P, Wang W, Zhao R, Wu Y, Cao Z, Li W. Cloning and functional characterization of a new antimicrobial peptide gene StCT1 from the venom of the scorpion Scorpiops tibetanus. Peptides 2010; 31:22-6. [PMID: 19854232 DOI: 10.1016/j.peptides.2009.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 10/12/2009] [Accepted: 10/12/2009] [Indexed: 11/28/2022]
Abstract
Scorpion has an innovative venom gland, which is an important determinant in contributing to its successful survival for more than 400 million years. Scorpion venom contains a diversity of bioactive peptides, which represent a tremendous hitherto unexplored resource for use in drug design and development. Here, StCT1, a new antimicrobial peptide gene, was screened and isolated from the venomous gland cDNA library of the scorpion Scorpiops tibetanus. The full-length cDNA of StCT1 is 369 nucleotides encoding the precursor that contains a putative 24-residue signal peptide, a presumed 14-residue mature peptide, and an uncommon 37-residue acidic propeptide at the C-terminus. The minimal inhibitory concentrations (MICs) of the synthetic StCT1 peptide against Staphylococcus aureus and Micrococcus luteus were 12.5microg/ml and 100microg/ml, respectively. The MICs of StCT1 against clinical antibiotics-resistant bacterial strains, were 50-250microg/ml, 2-40 folds lower than those of penicillin. These results show that the antimicrobial peptide encoded by StCT1 gene from the venom of the scorpion S. tibetanus is a potential anti-infective polypeptide or lead compound, especially for treating antibiotics-resistant pathogens.
Collapse
Affiliation(s)
- Wenying Yuan
- Hubei Maternal and Child Health Hospital, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Baek JH, Woo TH, Kim CB, Park JH, Kim H, Lee S, Lee SH. Differential gene expression profiles in the venom gland/sac of Orancistrocerus drewseni (Hymenoptera: Eumenidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2009; 71:205-222. [PMID: 19479740 DOI: 10.1002/arch.20316] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To determine differential gene expression profiles in the venom gland and sac (gland/sac) of a solitary hunting wasp species, Orancistrocerus drewseni Saussure (1857), a subtractive cDNA library was constructed by suppression subtractive hybridization. A total of 498 expressed sequence tags (EST) were clustered and assembled into 205 contigs (94 multiple sequences and 111 singletons). About 65% (134) of the contigs had matched BLASTx hits (E< or =10(-4)). Among these, 115 contigs had similarity to proteins with assigned molecular function in the Gene Ontology database, and most of them (112 contigs, 83%) were homologous to genes from Hymenoptera, particularly to Apis mellifera (98 contigs). The contigs encoding hyaluronidase and phospholipase A2, known to be main components of wasp venoms, were found in high frequencies (27 and 4%, respectively, as judged by the number of ESTs) in the gene ontology category of catalytic activity. Full-length open reading frames of hyaluronidase and phospholipase A2 were characterized and their abundance in the venom gland/sac was confirmed by quantitative real-time PCR. Several contigs encoding enzymes, including zinc-metallopeptidases that are likely involved in the processing and activation of venomous proteins or peptides, were also identified from the library. Discovery of venom gland/sac-specific genes should promote further studies on biologically active components in the venom of O. drewseni.
Collapse
Affiliation(s)
- Ji Hyeong Baek
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Liu J, Ma Y, Yin S, Zhao R, Fan S, Hu Y, Wu Y, Cao Z, Li W. Molecular cloning and functional identification of a new K(+) channel blocker, LmKTx10, from the scorpion Lychas mucronatus. Peptides 2009; 30:675-80. [PMID: 19103241 DOI: 10.1016/j.peptides.2008.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 11/21/2008] [Accepted: 11/21/2008] [Indexed: 12/31/2022]
Abstract
Scorpions have a venom gland which is an important determinant in contributing to their successful survival for more than 400 million years. Their venoms contain a diversity of neurotoxins, which represent a tremendous hitherto partially unexplored resource not only for understanding ion channels but also for use in drug design and development. In this investigation, LmKTx10, a new toxin gene was identified from the venom of the scorpion Lychas mucronatus by constructing cDNA library method, and its product was expressed and characterized physiologically. The mature peptide has 38 residues including six conserved cysteines. The electrophysiological experiments further indicated that the recombinant LmKTx10 peptide has an interesting pharmacological profile: it blocks Kv1.3 channel with IC(50)=28nM which is moderate Kv1.3 channel blocking activity compared to the other a-KTxs toxins, and exhibits good selectivity on Kv1.3 over Kv1.1 and Kv1.2, about 60 folds and 450 folds, respectively. These data not only enrich the family of K(+) channel toxins from scorpion venoms but also present a potential drug template for selectively targeting the Kv1.3 channel.
Collapse
Affiliation(s)
- Jun Liu
- Wuhan University, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shijin Y, Hong Y, Yibao M, Zongyun C, Han S, Yingliang W, Zhijian C, Wenxin L. Characterization of a new Kv1.3 channel-specific blocker, J123, from the scorpion Buthus martensii Karsch. Peptides 2008; 29:1514-20. [PMID: 18571286 DOI: 10.1016/j.peptides.2008.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 04/29/2008] [Accepted: 04/30/2008] [Indexed: 01/22/2023]
Abstract
The potassium channel Kv1.3 is an attractive pharmacological target for T-cell-mediated autoimmune diseases, and specific and selective peptidic blockers of Kv1.3 channels have served as valuable therapeutic leads for treating these diseases. Here, we found a new peptide toxin, J123, with 43 amino acids including six cysteine residues by screening the venomous cDNA library of scorpion Buthus martensii Karsch, which has been used as traditional medicine in China for more than 2000 years. The sequence analysis suggested that peptide J123 constituted a new member of the alpha-KTx toxins. The electrophysiological experiments further indicated that peptide J123 has a novel pharmacological profiles: it blocked Kv1.3 channel with high potency (IC50=0.79 nM), and exhibited good selectivity on Kv1.3 over Kv1.1 (>1000-fold) and Kv1.2 (about 30-fold), respectively. Furthermore, peptide J123 had no activity on SKCa2 and SKCa3 channels at micromolar concentration level. Based on the pharmacological activities, the possible channel-interacting surface of peptide J123 was also predicted by molecular modeling and docking. All these data not only enrich the knowledge of the structure-function relationship of the new Kv1.3-speicific peptide but also present a potential drug candidate for selectively targeting Kv1.3 channels.
Collapse
Affiliation(s)
- Yin Shijin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | | | | | | | | | | | | | | |
Collapse
|